1
|
Sharma P, McFadden JR, Frost FG, Markello TC, Grange DK, Introne WJ, Gahl WA, Malicdan MCV. Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features. Hum Genet 2024; 143:1445-1457. [PMID: 39453476 DOI: 10.1007/s00439-024-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jason R McFadden
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - F Graeme Frost
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
3
|
Shinriki S, Matsui H. Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis. Front Oncol 2022; 12:992340. [PMID: 36119490 PMCID: PMC9478608 DOI: 10.3389/fonc.2022.992340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloid malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), patient selection and therapeutic strategies are increasingly based on tumor-specific genetic mutations. Among these, mutations in DDX41, which encodes a DEAD-box type RNA helicase, are present in approximately 2–5% of AML and MDS patients; this disease subtype exhibits a distinctive disease phenotype characterized by late age of onset, tendency toward cytopenia in the peripheral blood and bone marrow, a relatively favorable prognosis, and a high frequency of normal karyotypes. Typically, individuals with a loss-of-function germline DDX41 variant in one allele later acquire the p.R525H mutation in the other allele before overt disease manifestation, suggesting that the progressive decrease in DDX41 expression and/or function is involved in myeloid leukemogenesis.RNA helicases play roles in many processes involving RNA metabolism by altering RNA structure and RNA-protein interactions through ATP-dependent helicase activity. A single RNA helicase can play multiple cellular roles, making it difficult to elucidate the mechanisms by which mutations in DDX41 are involved in leukemogenesis. Nevertheless, multiple DDX41 functions have been associated with disease development. The enzyme has been implicated in the regulation of RNA splicing, nucleic acid sensing in the cytoplasm, R-loop resolution, and snoRNA processing.Most of the mutated RNA splicing-related factors in MDS are involved in the recognition and determination of 3’ splice sites (SS), although their individual roles are distinct. On the other hand, DDX41 is likely incorporated into the C complex of the spliceosome, which may define a distinctive disease phenotype. This review summarizes the current understanding of how DDX41 is involved in this unique myeloid malignancy.
Collapse
|
4
|
Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep 2022; 39:110856. [PMID: 35613581 PMCID: PMC9205463 DOI: 10.1016/j.celrep.2022.110856] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022] Open
Abstract
Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation. cGAS is activated by dsDNA. Singh et al. find DDX41 regulates cGAS activation through unwinding and annealing activities on dsDNA and ssDNA, respectively, and MDS/AML patient mutant R525H causes overactivation of innate immune response due to its unbalanced activities. This DDX41-cGAS-STING pathway may be related to molecular pathogenesis of MDS/AML.
Collapse
Affiliation(s)
- Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Manisha Yadav
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Aanchal Aggarwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kannupriya Pandey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aizhang Xu
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Noreen Rapin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Mark Bosch
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jim Xiang
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada; Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Susan R Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
5
|
Su C, Tang YD, Zheng C. DExD/H-box helicases: multifunctional regulators in antiviral innate immunity. Cell Mol Life Sci 2021; 79:2. [PMID: 34910251 PMCID: PMC8671602 DOI: 10.1007/s00018-021-04072-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
DExD/H-box helicases play critical roles in multiple cellular processes, including transcription, cellular RNA metabolism, translation, and infections. Several seminal studies over the past decades have delineated the distinct functions of DExD/H-box helicases in regulating antiviral innate immune signaling pathways, including Toll-like receptors, retinoic acid-inducible gene I-like receptors, cyclic GMP-AMP synthase-the stimulator of interferon gene, and NOD-like receptors signaling pathways. Besides the prominent regulatory roles, there is increasing attention on their functions as nucleic acid sensors involved in antiviral innate immunity. Here we summarize the complex regulatory roles of DExD/H-box helicases in antiviral innate immunity. A better understanding of the underlying molecular mechanisms of DExD/H-box helicases' regulatory roles is vital for developing new therapeutics targeting DExD/H-box helicases and their mediated signaling transduction in viral infectious diseases.
Collapse
Affiliation(s)
- Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- The Wistar Institute, Philadelphia, PA, USA
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Andreou AZ. DDX41: a multifunctional DEAD-box protein involved in pre-mRNA splicing and innate immunity. Biol Chem 2021; 402:645-651. [PMID: 33711218 DOI: 10.1515/hsz-2020-0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
DEAD-box helicases participate in nearly all steps of an RNA's life. In recent years, increasing evidence has shown that several family members are multitasking enzymes. They are often involved in different processes, which may be typical for RNA helicases, such as RNA export and translation, or atypical, e.g., acting as nucleic acid sensors that activate downstream innate immune signaling. This review focuses on the DEAD-box protein DDX41 and summarizes our current understanding of its roles as an innate immunity sensor in the cytosol and in pre-mRNA splicing in the nucleus and discusses DDX41's involvement in disease.
Collapse
Affiliation(s)
- Alexandra Z Andreou
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
7
|
Soponpong S, Amparyup P, Kawai T, Tassanakajon A. A Cytosolic Sensor, PmDDX41, Binds Double Stranded-DNA and Triggers the Activation of an Innate Antiviral Response in the Shrimp Penaeus monodon via the STING-Dependent Signaling Pathway. Front Immunol 2019; 10:2069. [PMID: 31552028 PMCID: PMC6736559 DOI: 10.3389/fimmu.2019.02069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023] Open
Abstract
Helicase DDX41 is a cytosolic sensor capable of detecting double-stranded DNA in mammals. However, the function of DDX41 remains poorly understood in invertebrates. In a previous study, we identified the first DDX41 sensor in the black tiger shrimp Penaeus monodon (PmDDX41) and showed that it played a role in anti-viral response. In the present study, we demonstrated that PmDDX41 was localized in the cytoplasm of shrimp hemocytes. However, PmDDX41 was localized in both the cytoplasm and nucleus of hemocytes in the presence of white spot syndrome virus (WSSV) infection or when stimulated by the nucleic acid mimics, poly(dA:dT) and poly(I:C). Similar results were observed when PmDDX41 was transfected into human embryonic kidney 293T (HEK293T) cells. Immunoprecipitation further demonstrated that PmDDX41 bound to biotin-labeled poly(dA:dT) but not poly(I:C). The overexpression of shrimp PmDDX41 and mouse stimulator of interferon gene (MmSTING) in HEK293T cells synergistically promoted IFN-β and NF-κB promoter activity via the DEADc domain. Co-immunoprecipitation (Co-IP) also confirmed that there was an interaction between PmDDX41 and STING after stimulation with poly(dA:dT) but not poly(I:C). Our study is the first to demonstrate that PmDDX41 acts as a cytosolic DNA sensor that interacts with STING via its DEADc domain to trigger the IFN-β and NF-κB signaling pathways, thus activating antiviral innate immune responses.
Collapse
Affiliation(s)
- Suthinee Soponpong
- Department of Biochemistry, Faculty of Science, Center of Excellence for Molecular Biology and Genomics of Shrimp, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Anchalee Tassanakajon
- Department of Biochemistry, Faculty of Science, Center of Excellence for Molecular Biology and Genomics of Shrimp, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Liu J, Huang Y, Huang X, Li C, Ni SW, Yu Y, Qin Q. Grouper DDX41 exerts antiviral activity against fish iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:40-49. [PMID: 31082519 DOI: 10.1016/j.fsi.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box polypeptide 41 (DDX41) is a member of the DEXDc family of helicases, that has recently been identified to be a crucial intracellular DNA sensor that triggers multiple signaling molecules to activate the type I interferon response. However, the precise function of DDX41 in fish during a viral infection remains unknown. In the present study, the DDX41 homolog from orange spotted grouper, Epinephelus coioides (EcDDX41), was cloned and its potential role in the immune response to a fish viral infection were investigated. EcDDX41 encodes a putative protein of 614 amino acid residues that contained two conserved domains: 1) DEADc domain; and 2) HELICc domain. The sequence analysis indicated that EcDDX41 shared 99%, 94%, and 86% identity with Asian seabass (Lates calcarifer), zebrafish (Danio rerio), and humans (Homo sapiens), respectively. EcDDX41 mRNA was present in all of the detected tissues, with the highest level of expression in the gills. The level of EcDDX41 expression was up-regulated following infection with Singapore grouper iridovirus (SGIV) or red-spotted grouper nervous necrosis virus (RGNNV) in grouper spleen (GS) cell cultures, suggesting that EcDDX41 may be involved in fish virus infection. Furthermore, EcDDX41 overexpression in GS cells significantly inhibited SGIV and RGNNV replication. EcDDX41 overexpression significantly increased the expression of antiviral and inflammatory cytokine genes, including interferon regulatory factor genes (e.g., IRF1, IRF2, IRF3, and IRF7), interferon induced genes (e.g., ISG15, ISG56, IFP35, Viperin, and MXI), and pro-inflammatory cytokine genes (e.g., TNFα, IL-1β, and IL-8). Moreover, EcDDX41 positively regulated the mitochondrial antiviral-signaling protein (MAVS) and TANK-binding kinase 1 (TBK1)-induced interferon immune response, but did mediate IRF3 activation (MITA) to evoke an interferon immune response in unstimulated cells. Together, our results provide novel insight into the role of fish DDX41 in the antiviral innate immune response.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Song Wei Ni
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Ma JX, Li JY, Fan DD, Feng W, Lin AF, Xiang LX, Shao JZ. Identification of DEAD-Box RNA Helicase DDX41 as a Trafficking Protein That Involves in Multiple Innate Immune Signaling Pathways in a Zebrafish Model. Front Immunol 2018; 9:1327. [PMID: 29942316 PMCID: PMC6005158 DOI: 10.3389/fimmu.2018.01327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
DDX41 is an important sensor for host recognition of DNA viruses and initiation of nuclear factor-κB (NF-κB) and IFN signaling pathways in mammals. However, its occurrence and functions in other vertebrates remain poorly defined. Here, a DDX41 ortholog [Danio rerio DDX41 (DrDDX41)] with various conserved structural features to its mammalian counterparts was identified from a zebrafish model. This DrDDX41 was found to be a trafficking protein distributed in the nucleus of resting cells but transported into the cytoplasm under DNA stimulation. Two nuclear localization signal motifs were localized beside the coiled-coil domain, whereas one nuclear export signal motif existed in the DEADc domain. DrDDX41 acts as an initiator for the activation of NF-κB and IFN signaling pathways in a Danio rerio STING (DrSTING)-dependent manner through its DEADc domain, which is a typical performance of mammalian DDX41. These observations suggested the conservation of DDX41 proteins throughout the vertebrate evolution, making zebrafish an alternative model in understanding DDX41-mediated immunology. With this model system, we found that DrDDX41 contributes to DrSTING–Danio rerio STAT6 (DrSTAT6)-mediated chemokine (Danio rerio CCL20) production through its DEADc domain. To the best of our knowledge, this work is the first report showing that DDX41 is an upstream initiator in this newly identified signaling pathway. The DrDDX41-mediated signaling pathways play important roles in innate antibacterial immunity because knockdown of either DrDDX41 or DrSTING/DrSTAT6 significantly reduced the survival of zebrafish under Aeromonas hydrophilia or Edwardsiella tarda infection. Our findings would enrich the current knowledge of DDX41-mediated immunology and the evolutionary history of the DDX41 family.
Collapse
Affiliation(s)
- Jun-Xia Ma
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Feng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Jiang Y, Zhu Y, Qiu W, Liu YJ, Cheng G, Liu ZJ, Ouyang S. Structural and functional analyses of human DDX41 DEAD domain. Protein Cell 2018; 8:72-76. [PMID: 27928732 PMCID: PMC5233616 DOI: 10.1007/s13238-016-0351-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yan Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weicheng Qiu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Jun Liu
- Baylor Research Institute, Baylor Scott and White Health, Dallas, TX, 75246, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Peters D, Radine C, Reese A, Budach W, Sohn D, Jänicke RU. The DEAD-box RNA helicase DDX41 is a novel repressor of p21 WAF1/CIP1 mRNA translation. J Biol Chem 2017; 292:8331-8341. [PMID: 28348086 DOI: 10.1074/jbc.m116.772327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21 is an important player in stress pathways exhibiting both tumor-suppressive and oncogenic functions. Thus, expression of p21 has to be tightly controlled, which is achieved by numerous mechanisms at the transcriptional, translational, and posttranslational level. Performing immunoprecipitation of bromouridine-labeled p21 mRNAs that had been incubated before with cytoplasmic extracts of untreated HCT116 colon carcinoma cells, we identified the DEAD-box RNA helicase DDX41 as a novel regulator of p21 expression. DDX41 specifically precipitates with the 3'UTR, but not with the 5'UTR, of p21 mRNA. Knockdown of DDX41 increases basal and γ irradiation-induced p21 protein levels without affecting p21 mRNA expression. Conversely, overexpression of DDX41 strongly inhibits expression of a FLAG-p21 and a luciferase construct, but only in the presence of the p21 3'UTR. Together, these data suggest that this helicase regulates p21 expression at the translational level independent of the transcriptional activity of p53. However, knockdown of DDX41 completely fails to increase p21 protein levels in p53-deficient HCT116 cells. Moreover, posttranslational up-regulation of p21 achieved in both p53+/+ and p53-/- HCT116 cells in response to pharmaceutical inhibition of the proteasome (by MG-132) or p90 ribosomal S6 kinases (by BI-D1870) is further increased by knockdown of DDX41 only in p53-proficient but not in p53-deficient cells. Although our data demonstrate that DDX41 suppresses p21 translation without disturbing the function of p53 to directly induce p21 mRNA expression, this process indirectly requires p53, perhaps in the form of another p53 target gene or as a still undefined posttranscriptional function of p53.
Collapse
Affiliation(s)
- Dominik Peters
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany.
| |
Collapse
|
12
|
Jiang Y, Zhu Y, Liu ZJ, Ouyang S. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell 2017; 8:83-89. [PMID: 27502187 PMCID: PMC5291771 DOI: 10.1007/s13238-016-0303-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
RNA helicases are involved in almost every aspect of RNA, from transcription to RNA decay. DExD/H-box helicases comprise the largest SF2 helicase superfamily, which are characterized by two conserved RecA-like domains. In recent years, an increasing number of unexpected functions of these proteins have been discovered. They play important roles not only in innate immune response but also in diseases like cancers and chronic hepatitis C. In this review, we summarize the recent literatures on one member of the SF2 superfamily, the DEAD-box protein DDX41. After bacterial or viral infection, DNA or cyclic-di-GMP is released to cells. After phosphorylation of Tyr414 by BTK kinase, DDX41 will act as a sensor to recognize the invaders, followed by induction of type I interferons (IFN). After the immune response, DDX41 is degraded by the E3 ligase TRIM21, using Lys9 and Lys115 of DDX41 as the ubiquitination sites. Besides the roles in innate immunity, DDX41 is also related to diseases. An increasing number of both inherited and acquired mutations in DDX41 gene are identified from myelodysplastic syndrome and/or acute myeloid leukemia (MDS/AML) patients. The review focuses on DDX41, as well as its homolog Abstrakt in Drosophila, which is important for survival at all stages throughout the life cycle of the fly.
Collapse
Affiliation(s)
- Yan Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- iHuman Institute, Shanghai Tech University, Shanghai, 201210, China
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia. Exp Hematol 2016; 44:745-754.e4. [DOI: 10.1016/j.exphem.2016.04.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
|
14
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
15
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
16
|
Prosser DC, Tran D, Schooley A, Wendland B, Ngsee JK. A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling. Traffic 2011; 11:1347-62. [PMID: 20604901 DOI: 10.1111/j.1600-0854.2010.01100.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer-dependent functions of SNX1 and SNX2 have been well documented, potential retromer-independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin-7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin-7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG-dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1- and retromer-independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin-7-mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | |
Collapse
|