1
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen K, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. Nucleic Acids Res 2024; 52:12244-12261. [PMID: 39373517 PMCID: PMC11551747 DOI: 10.1093/nar/gkae862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of the Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that the RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics are controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano,20129 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Milan, Italy
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- CZ Biohub Chicago, LLC, Chicago, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen KL, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598725. [PMID: 38915624 PMCID: PMC11195235 DOI: 10.1101/2024.06.12.598725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics is controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally to the work
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally to the work
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: College of Arts and Science, Vanderbilt University, Nashville, TN, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli studi di Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Chen J, Chen X, Guo W, Tang W, Zhang Y, Tian X, Zou Y. Comparison of the gene expression profile of testicular tissue before and after sexual maturity in Qianbei Ma goats. BMC Vet Res 2024; 20:92. [PMID: 38459496 PMCID: PMC10921700 DOI: 10.1186/s12917-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/11/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With long-term research on the reproductive ability of Qianbei Ma goat, we found that the puberty of the male goats comes at the age of 3 months and reaches sexual maturity at 4 months,the male goats are identified as physically mature at 9 months and able to mate. Compared with other kinds of breeds of goats, Qianbei Ma goat is featured with more faster growth and earlier sexual maturity.Therefore, in order to explore the laws of growth of Qianbei Ma goat before sexual maturity(3-month-old)and after sexual maturity (9-month-old). The testicular tissue was collected to explore their changes in morphology through HE staining, the serum was collected to detect the hormone content, and the mRNA expression profile of the testis was analyzed by transcriptomics. In this way, the effect of testicular development on the reproduction of Qianbei ma goats was further analyzed. RESULTS The results showed that the area and diameter of spermatogenic tubules were larger at 9 months than 3 months, and the number of spermatocytes, interstitial cells, spermatogonia and secondary spermatocytes in the lumen of the tubules showed a similar trend. The appearance of spermatozoa at age 3 months indicated that puberty had begun in Qianbei Ma goats. The Elasa test for testosterone, luteinizing hormone, follicle stimulating hormone and anti-Müllerian hormone showed that the levels of these hormones in the serum at age 9 months were all highly significantly different than those at age 3 months (P < 0.01). There were 490 differentially expressed genes (DEGs) between the (|log2(fold change)| > 1 and p value < 0.05) 3-month-old and 9-month-old groups, of which 233 genes were upregulated and 257 genes were downregulated (3 months of age was used as the control group and 9 months of age was used as the experimental group). According to the GO and KEGG enrichment analyses of DEGs, PRSS58, ECM1, WFDC8 and LHCGR are involved in testicular development and androgen secretion, which contribute to the sexual maturation of Qianbei Ma goats. CONCLUSIONS Potential biomarker genes and relevant pathways involved in the regulation of testicular development and spermatogenesis in Qianbei Ma goats were identified, providing a theoretical basis and data support for later studies on the influence of testicular development and spermatogenesis before and after sexual maturity in Qianbei Ma goats.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China.
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| | - Wen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Wang X, Pei J, Xiong L, Kang Y, Guo S, Cao M, Ding Z, Bao P, Chu M, Liang C, Yan P, Guo X. Single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics offer new insights into the etiological basis for male cattle-yak sterility. Int J Biol Macromol 2023; 253:126831. [PMID: 37716658 DOI: 10.1016/j.ijbiomac.2023.126831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
The variety of species can be efficiently increased by interspecific hybridization. However, because the males in the hybrid progeny are usually sterile, this heterosis cannot be employed when other cattle and yaks are hybridized. While some system-level studies have sought to explore the etiological basis for male cattle-yak sterility, no systematic cellular analyses of this phenomenon have yet been performed. Here, single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics methods were used to study the differences in testicular tissue between 4-year-old male yak and 4-year-old male cattle-yak, providing new and comprehensive insights into the causes of male cattle-yak sterility. Cattle-yak testes samples detected 6 somatic cell types and one mixed germ cell type. Comparisons of these cell types revealed the more significant differences in Sertoli cells (SCs) and [Leydig cells and myoid cells (LCs_MCs)] between yak and cattle-yak samples compared to other somatic cell clusters. Even though the LCs and MCs from yaks and cattle-yaks were derived from the differentiation of the same progenitor cells, a high degree of overlap between LCs and MCs was observed in yak samples. Still, only a small overlap between LCs and MCs was observed in cattle-yak samples. Functional enrichment analyses revealed that genes down-regulated in cattle-yak SCs were primarily enriched in biological activity, whereas up-regulated genes in these cells were enriched for apoptotic activity. Furthermore, the genes of up-regulated in LCs_MCs of cattle-yak were significantly enriched in enzyme inhibitor and molecular function inhibitor activity. On the other hand, the genes of down-regulated in these cells were enriched for signal receptor binding, molecular function regulation, positive regulation of biological processes, and regulation of cell communication activity. The most significant annotated differences between yak and cattle-yak LCs_MCs were associated with cell-to-cell communication. While yak LCs_MCs regulated spermatogenic cells at spermatogonia, spermatocyte, and spermatid levels, no such relationships were found between cattle-yak LCs_MCs and germ cells. This may suggest that the somatic niche in male cattle-yak testes is a microenvironment that is ultimately not favorable for spermatogenesis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
5
|
Lei Y. WITHDRAWN: Catalytically inactive phosphatase MTMR12 is a novel regulator of osteoclast function through F-actin ring formation. Biochim Biophys Acta Mol Basis Dis 2018:S0925-4439(18)30212-6. [PMID: 29902551 DOI: 10.1016/j.bbadis.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn as it was submitted without the knowledge of several co-authors. Under journal policies, all listed authors must have provided final approval of the submitted manuscript and the Corresponding Author is asked to confirm this approval during the submission process. Several of the listed co-authors have stated that they were not involved in the drafting of the manuscript and were not made aware of their inclusion as authors. Therefore they have been removed from this record. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Brill JA, Yildirim S, Fabian L. Phosphoinositide signaling in sperm development. Semin Cell Dev Biol 2016; 59:2-9. [PMID: 27321976 DOI: 10.1016/j.semcdb.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023]
Abstract
Phosphatidylinositol phosphates (PIPs)1 are membrane lipids with crucial roles during cell morphogenesis, including the establishment of cytoskeletal organization, membrane trafficking, cell polarity, cell-cycle control and signaling. Recent studies in mice (Mus musculus), fruit flies (Drosophila melanogaster) and other organisms have defined germ cell intrinsic requirements for these lipids and their regulatory enzymes in multiple aspects of sperm development. In particular, PIP levels are crucial in germline stem cell maintenance, spermatogonial proliferation and survival, spermatocyte cytokinesis, spermatid polarization, sperm tail formation, nuclear shaping, and production of mature, motile sperm. Here, we briefly review the stages of spermatogenesis and discuss the roles of PIPs and their regulatory enzymes in male germ cell development.
Collapse
Affiliation(s)
- Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sukriye Yildirim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada.
| | - Lacramioara Fabian
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G OA4, Canada.
| |
Collapse
|
7
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|
8
|
Walker WH, Easton E, Moreci RS, Toocheck C, Anamthathmakula P, Jeyasuria P. Restoration of spermatogenesis and male fertility using an androgen receptor transgene. PLoS One 2015; 10:e0120783. [PMID: 25803277 PMCID: PMC4372537 DOI: 10.1371/journal.pone.0120783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 01/25/2023] Open
Abstract
Androgens signal through the androgen receptor (AR) to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC) was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3’ to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO) background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues.
Collapse
Affiliation(s)
- William H. Walker
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Evan Easton
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca S. Moreci
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Corey Toocheck
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Prashanth Anamthathmakula
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pancharatnam Jeyasuria
- Center for Research in Reproductive Physiology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 2014; 30:2-13. [PMID: 24598768 DOI: 10.1016/j.semcdb.2014.02.012] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022]
Abstract
Testosterone is essential for maintaining spermatogenesis and male fertility. However, the molecular mechanisms by which testosterone acts have not begun to be revealed until recently. With the advances obtained from the use of transgenic mice lacking or overexpressing the androgen receptor, the cell specific targets of testosterone action as well as the genes and signaling pathways that are regulated by testosterone are being identified. In this review, the critical steps of spermatogenesis that are regulated by testosterone are discussed as well as the intracellular signaling pathways by which testosterone acts. We also review the functional information that has been obtained from the knock out of the androgen receptor from specific cell types in the testis and the genes found to be regulated after altering testosterone levels or androgen receptor expression.
Collapse
Affiliation(s)
- Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - William H Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
A genome-wide siRNA screen identifies novel phospho-enzymes affecting Wnt/β-catenin signaling in mouse embryonic stem cells. Stem Cell Rev Rep 2012; 7:910-26. [PMID: 21494821 DOI: 10.1007/s12015-011-9265-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
The expression and localization of a novel protein phosphatase inhibitor 2810408A11Rik in mouse testis and sperm. J Biomed Res 2012; 26:110-6. [PMID: 23554739 PMCID: PMC3597327 DOI: 10.1016/s1674-8301(12)60020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/15/2011] [Accepted: 09/01/2011] [Indexed: 11/22/2022] Open
Abstract
This study investigated the expression and distribution of 2810408A11Rik in mouse testis and sperm, and explored its role in spermatogenesis and sperm function. The expression levels of 2810408A11Rik mRNA in multiple tissue samples were analyzed using bioinformatic resources and RT-PCR technique. A specific rabbit polyclonal antibody was prepared by prokaryotic expression of 2810408A11Rik recombinant protein and utilized for animal immunization. Western blotting, immunohistochemistry and immunofluorescence were used to detect the expression and distribution of 2810408A11Rik. The results of the bioinformatic analysis and RT-PCR showed that 2810408A11Rik mRNA was specifically expressed in mouse testis, and 2810408A11Rik protein included a protein phosphatase inhibitor domain. Western blotting assays, immunohistochemistry and immunofluorescence confirmed the expression of 2810408A11Rik protein in mouse testis, especially in post-meiosis round and long spermatids, and that it is localized in the acrosome and the post-nucleus area of sperm. Our findings suggest that 2810408A11Rik may play an important role in spermatogenesis, sperm capacitation and fertilization.
Collapse
|
12
|
Pierson CR, Dulin-Smith AN, Durban AN, Marshall ML, Marshall JT, Snyder AD, Naiyer N, Gladman JT, Chandler DS, Lawlor MW, Buj-Bello A, Dowling JJ, Beggs AH. Modeling the human MTM1 p.R69C mutation in murine Mtm1 results in exon 4 skipping and a less severe myotubular myopathy phenotype. Hum Mol Genet 2011; 21:811-25. [PMID: 22068590 DOI: 10.1093/hmg/ddr512] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
X-linked myotubular myopathy (MTM) is a severe neuromuscular disease of infancy caused by mutations of MTM1, which encodes the phosphoinositide lipid phosphatase, myotubularin. The Mtm1 knockout (KO) mouse has a severe phenotype and its short lifespan (8 weeks) makes it a challenge to use as a model in the testing of certain preclinical therapeutics. Many MTM patients succumb early in life, but some have a more favorable prognosis. We used human genotype-phenotype correlation data to develop a myotubularin-deficient mouse model with a less severe phenotype than is seen in Mtm1 KO mice. We modeled the human c.205C>T point mutation in Mtm1 exon 4, which is predicted to introduce the p.R69C missense change in myotubularin. Hemizygous male Mtm1 p.R69C mice develop early muscle atrophy prior to the onset of weakness at 2 months. The median survival period is 66 weeks. Histopathology shows small myofibers with centrally placed nuclei. Myotubularin protein is undetectably low because the introduced c.205C>T base change induced exon 4 skipping in most mRNAs, leading to premature termination of myotubularin translation. Some full-length Mtm1 mRNA bearing the mutation is present, which provides enough myotubularin activity to account for the relatively mild phenotype, as Mtm1 KO and Mtm1 p.R69C mice have similar muscle phosphatidylinositol 3-phosphate levels. These data explain the basis for phenotypic variability among human patients with MTM1 p.R69C mutations and establish the Mtm1 p.R69C mouse as a valuable model for the disease, as its less severe phenotype will expand the scope of testable preclinical therapies.
Collapse
|
13
|
Cheng CY, Wong EWP, Lie PPY, Mruk DD, Xiao X, Li MWM, Lui WY, Lee WM. Polarity proteins and actin regulatory proteins are unlikely partners that regulate cell adhesion in the seminiferous epithelium during spermatogenesis. Histol Histopathol 2011; 26:1465-74. [PMID: 21938683 PMCID: PMC4059515 DOI: 10.14670/hh-26.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammalian testis, spermatogenesis takes place in the seminiferous epithelium of the seminiferous tubule, which is composed of a series of cellular events. These include: (i) spermatogonial stem cell (SSC) renewal via mitosis and differentiation of SSC to spermatogenia, (ii) meiosis, (iii) spermiogenesis, and (iv) spermiation. Throughout these events, developing germ cells remain adhered to the Sertoli cell in the seminiferous epithelium amidst extensive cellular, biochemical, molecular and morphological changes to obtain structural support and nourishment. These events are coordinated via signal transduction at the cell-cell interface through cell junctions, illustrating the significance of cell junctions and adhesion in spermatogenesis. Additionally, developing germ cells migrate progressively across the seminiferous epithelium from the stem cell niche, which is located in the basal compartment near the basement membrane of the tunica propria adjacent to the interstitium. Recent studies have shown that some apparently unrelated proteins, such as polarity proteins and actin regulatory proteins, are in fact working in concert and synergistically to coordinate the continuous cyclic changes of adhesion at the Sertoli-Sertoli and Sertoli-germ cell interface in the seminiferous epithelium during the epithelial cycle of spermatogenesis, such that developing germ cells remain attached to the Sertoli cell in the epithelium while they alter in cell shape and migrate across the epithelium. In this review, we highlight the physiological significance of endocytic vesicle-mediated protein trafficking events under the influence of polarity and actin regulatory proteins in conferring cyclic events of cell adhesion and de-adhesion. Furthermore, these recent findings have unraveled some unexpected molecules to be targeted for male contraceptive development, which are also targets of toxicant-induced male reproductive dysfunction.
Collapse
Affiliation(s)
- C Y Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Siu MK, Wong CH, Xia W, Mruk DD, Lee WM, Cheng CY. The β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin is a novel regulatory protein complex at the apical ectoplasmic specialization in adult rat testes. SPERMATOGENESIS 2011; 1:73-86. [PMID: 21866278 DOI: 10.4161/spmg.1.1.15452] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2001] [Revised: 02/11/2011] [Accepted: 03/11/2011] [Indexed: 12/21/2022]
Abstract
During spermatogenesis, step 1 spermatids (round spermatids) derive from spermatocytes following meiosis I and II at stage XIV of the epithelial cycle begin a series of morphological transformation and differentiation via 19 steps in rats to form spermatozoa. This process is known as spermiogenesis, which is marked by condensation of the genetic material in the spermatid head, formation of the acrosome and elongation of the tail. Since developing spermatids are lacking the robust protein synthesis and transcriptional activity, the cellular, molecular and morphological changes associated with spermiogenesis rely on the Sertoli cell in the seminiferous epithelium via desmosome and gap junction between Sertoli cells and step 1-7 spermatids. Interestingly, a unique anchoring junction type arises at the interface of step 8 spermatid and Sertoli cell known as apical ectoplasmic specialization (apical ES). Once it appears, apical ES is the only anchoring device restricted to the interface of step 8-19 spermatids and Sertoli cells to confer spermatid polarity, adhesion, signal communication and structural support, and to provide nutritional support during spermiogenesis, replacing desmosome and gap junction. While the adhesion protein complexes that constitute the apical ES are known, the signaling protein complexes that regulate apical ES dynamics, however, remain largely unknown. Herein we report the presence of a FAK (focal adhesion kinase)-p130Cas (p130 Crk-associated substrate)-DOCK180 (Dedicator of cytokinesis 180)-RhoA (Ras homolog gene family, member A)-vinculin signaling protein complex at the apical ES, which is also an integrated component of the β1-integrin-based adhesion protein complex based on co-immunoprecipitation experiment. It was also shown that besides p-FAK-Tyr(397) and p-FAK-Tyr(576), β1-integrin, p130Cas, RhoA and vinculin displayed stage-specific expression in the seminiferous epithelium during the epithelial cycle with predominant localization at the apical ES as demonstrated by immunohistochemistry. Based on these findings, functional studies can now be performed to assess the role of this β1-integrin-p-FAK-p130Cas-DOCK180-RhoA-vinculin protein complex in apical ES dynamics during spermiogenesis.
Collapse
Affiliation(s)
- Michelle Ky Siu
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | | | | | | | | | |
Collapse
|
15
|
Sun S, Wong EWP, Li MWM, Lee WM, Cheng CY. 14-3-3 and its binding partners are regulators of protein-protein interactions during spermatogenesis. J Endocrinol 2009; 202:327-36. [PMID: 19366886 PMCID: PMC2804912 DOI: 10.1677/joe-09-0041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During spermatogenesis, spermiation takes place at the adluminal edge of the seminiferous epithelium at stage VIII of the epithelial cycle during which fully developed spermatids (i.e. spermatozoa) detach from the epithelium in adult rat testes. This event coincides with the migration of preleptotene/leptotene spermatocytes across the blood-testis barrier from the basal to the apical (or adluminal) compartment. At stage XIV of the epithelial cycle, Pachytene spermatocytes (diploid, 2n) differentiate into diplotene spermatocytes (tetraploid, 4n) in the apical compartment of the epithelium, which begin meiosis I to be followed by meiosis II to form spermatids (haploid, 1n) at stage XIV of the epithelial cycle. These spermatids, in turn, undergo extensive morphological changes and traverse the seminiferous epithelium until they differentiate into elongated spermatids. Thus, there are extensive changes at the Sertoli-Sertoli and Sertoli-germ cell interface via protein 'coupling' and 'uncoupling' between cell adhesion protein complexes, as well as changes in interactions between integral membrane proteins and their peripheral adaptors, regulatory protein kinases and phosphatases, and the cytoskeletal proteins. These precisely coordinated protein-protein interactions affect cell adhesion and cell movement. In this review, we focus on the 14-3-3 protein family, whose members have different binding partners in the seminiferous epithelium. Recent studies have illustrated that 14-3-3 affects protein-protein interactions in the seminiferous epithelium, and regulates cell adhesion possibly via its effects on intracellular protein trafficking and cell-polarity proteins. This review provides a summary on the latest findings regarding the role of 14-3-3 family of proteins and their potential implications on spermatogenesis. We also highlight research areas that deserve attentions by investigators.
Collapse
Affiliation(s)
- Shengyi Sun
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
16
|
Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245-63. [PMID: 19622063 PMCID: PMC2758293 DOI: 10.1080/10409230903061207] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During spermatogenesis in adult rat testes, fully developed spermatids (i.e. spermatozoa) at the luminal edge of the seminiferous epithelium undergo "spermiation" at stage VIII of the seminiferous epithelial cycle. This is manifested by the disruption of the apical ectoplasmic specialization (apical ES) so that spermatozoa can enter the tubule lumen and to complete their maturation in the epididymis. At the same time, the blood-testis barrier (BTB) located near the basement membrane undergoes extensive restructuring to allow transit of preleptotene spermatocytes so that post-meiotic germ cells complete their development behind the BTB. While spermiation and BTB restructuring take place concurrently at opposite ends of the Sertoli cell epithelium, the biochemical mechanism(s) by which they are coordinated were not known until recently. Studies have shown that fragments of laminin chains are generated from the laminin/integrin protein complex at the apical ES via the action of MMP-2 (matrix metalloprotease-2) at spermiation. These peptides serve as the local autocrine factors to destabilize the BTB. These laminin peptides also exert their effects on hemidesmosome which, in turn, further potentiates BTB restructuring. Thus, a novel apical ES-BTB-hemidesmosome regulatory loop is operating in the seminiferous epithelium to coordinate these two crucial cellular events of spermatogenesis. This functional loop is further assisted by the Par3/Par6-based polarity protein complex in coordination with cytokines and testosterone at the BTB. Herein, we provide a critical review based on the latest findings in the field regarding the regulation of these cellular events. These recent findings also open up a new window for investigators studying blood-tissue barriers.
Collapse
Affiliation(s)
- C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
17
|
Kang KH, Lemke G, Kim JW. The PI3K-PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol Med 2009; 15:191-8. [PMID: 19380252 DOI: 10.1016/j.molmed.2009.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 01/01/2023]
Abstract
The retinal pigment epithelium (RPE) is indispensable for photoreceptor function, not only because it provides functional photopigments to photoreceptors, but also because it eliminates oxidatively damaged materials from photoreceptors. Maintaining homeostatic antioxidative programs that support a healthy RPE is therefore important for the normal functioning of the eye. These homeostatic mechanisms, however, often fail in aged RPE cells that have been exposed repeatedly to excessive oxidative stress. When RPE cells succumb to oxidative stress, their death contributes to the development of retinal degenerative diseases such as age-related macular degeneration. Recent studies have highlighted the importance of reciprocal phosphoinositide signaling events orchestrated by phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) in the homeostatic programs that protect RPE cells against oxidative stress. Here, we discuss the role of PI3K signaling pathways in RPE cells and suggest that they might be crucial targets of oxidative molecules that initiate early pathological events in retinal degenerative diseases.
Collapse
Affiliation(s)
- Kyung Hwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | |
Collapse
|
18
|
Pulido R, van Huijsduijnen RH. Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 2008; 275:848-66. [DOI: 10.1111/j.1742-4658.2008.06250.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Lassila M, Juhila J, Heikkilä E, Holthöfer H. Densin is a novel cell membrane protein of sertoli cells in the testis. Mol Reprod Dev 2007; 74:641-5. [PMID: 17039495 DOI: 10.1002/mrd.20659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-cell interactions between Sertoli cells and germ cells are crucial for the maturation of germ cells in spermatogenesis but the structural and functional aspects of the interactions remain to be fully elucidated. Densin is a junction protein suggested to play a role in establishment of specific cell-cell contacts in the post-synaptic densities of the brain and the slit diaphragm of the kidney podocyte. In the present study, densin was discovered to be expressed in the testis of the man and the mouse. Expression of densin at the gene and the protein level was studied by using RT-PCR and Western blotting analyses, and the localization of densin was explored with immunofluorescence staining. RT-PCR and Western blotting analyses showed that densin is expressed at the gene and the protein levels. Immunofluorescence staining localized the expression of densin to the cell membranes of Sertoli cells suggesting that densin may be an adherens junction protein between Sertoli cells and developing germ cells. Densin is a novel testicular protein expressed in the cell membranes of Sertoli cells. Its functional role remains to be assessed.
Collapse
Affiliation(s)
- Markus Lassila
- Research Program in Molecular Medicine, Biomedicum, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
20
|
Mruk DD, Wong CH, Silvestrini B, Cheng CY. A male contraceptive targeting germ cell adhesion. Nat Med 2006; 12:1323-8. [PMID: 17072312 DOI: 10.1038/nm1420] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 04/24/2006] [Indexed: 12/17/2022]
Abstract
Throughout spermatogenesis, developing germ cells remain attached to Sertoli cells via testis-specific anchoring junctions. If adhesion between these cell types is compromised, germ cells detach from the seminiferous epithelium and infertility often results. Previously, we reported that Adjudin is capable of inducing germ cell loss from the epithelium. In a small subset of animals, however, oral administration of Adjudin (50 mg per kg body weight (b.w.) for 29 d) resulted in adverse effects such as liver inflammation and muscle atrophy. Here, we report a novel approach in which Adjudin is specifically targeted to the testis by conjugating Adjudin to a recombinant follicle-stimulating hormone (FSH) mutant, which serves as its 'carrier'. Using this approach, infertility was induced in adult rats when 0.5 microg Adjudin per kg b.w. was administered intraperitoneally, which was similar to results when 50 mg per kg b.w. was given orally. This represents a substantial increase in Adjudin's selectivity and efficacy as a male contraceptive.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
21
|
Xia W, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev 2005; 16:469-93. [PMID: 16023885 DOI: 10.1016/j.cytogfr.2005.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the mammalian testis, preleptotene and leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) at late stage VIII through early stage IX of the epithelial cycle during spermatogenesis, entering the adluminal compartment for further development. However, until recently the regulatory mechanisms that regulate BTB dynamics remained largely unknown. We provide a critical review regarding the significance of cytokines in regulating the 'opening' and 'closing' of the BTB. We also discuss how cytokines may be working in concert with adaptors that selectively govern the downstream signaling pathways. This process, in turn, regulates the dynamics of either Sertoli-Sertoli tight junction (TJ), Sertoli-germ cell adherens junction (AJ), or both junction types in the epithelium, thereby permitting TJ opening without compromising AJs, and vice versa. We also discuss how adaptors alter their protein-protein association with the integral membrane proteins at the cell-cell interface via changes in their phosphorylation status, thereby altering adhesion function at AJ. These findings illustrate that the testis is a novel in vivo model to study the biology of junction restructuring. Furthermore, a molecular model is presented regarding how cytokines selectively regulate TJ/AJ restructuring in the epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | | | | | |
Collapse
|