1
|
Koyama H, Takahashi Y, Matori S, Kuniyoshi H, Kurose K. A newly identified enzyme from Japanese common squid Todarodes pacificus has the ability to biosynthesize d-aspartate. Arch Biochem Biophys 2023; 750:109809. [PMID: 37925062 DOI: 10.1016/j.abb.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Amino acids exist in two chiral forms, namely L and D. Although l-amino acids are predominant in vivo, certain limited circumstances have reported the usage of d-amino acids. d-aspartate (Asp), among them, plays crucial physiological roles in living organisms and is biosynthesized from L-Asp by the enzyme named aspartate racemase (AspRase). D-Asp is known to accumulate in large amounts in the nervous system of cephalopods. To understand the function of D-Asp in nervous system in more detail, it is necessary to elucidate its metabolic pathway; however, AspRase gene has not been identified in cephalopods as in the case of mammals. In this study, we successfully identified a novel gene encoding AspRase from the optic ganglion of Japanese common squid Todarodes pacificus. Our discovery of the squid AspRase challenges the prevailing assumption that AspRases across different animals share similar structures. Surprisingly, the squid AspRase is a unique enzyme that differs significantly from known AspRases, being structurally and phylogenetically related to aspartate aminotransferase (AST) and possessing both AspRase and AST activities. The optimum pH and temperature for AspRase activity using L-Asp as a substrate are approximately 7.0 and 20 °C, respectively. Moreover, we have found that AspRase activity is enhanced in the presence of 2-oxoacids. These findings have far-reaching implications for the understanding of enzymology and suggest that yet-to-be-identified mammalian AspRases may also be phylogenetically related to AST, rather than conventional AspRases. Furthermore, our results provide valuable insights into the evolution of the D-Asp biosynthetic pathway.
Collapse
Affiliation(s)
- Hiroki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| | - Yui Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - San Matori
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Hisato Kuniyoshi
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| |
Collapse
|
2
|
d-aspartate and N-methyl-d-aspartate promote proliferative activity in mouse spermatocyte GC-2 cells. Reprod Biol 2022; 22:100601. [PMID: 35032869 DOI: 10.1016/j.repbio.2021.100601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
D-Aspartate (D-Asp) and its methylated form N-methyl-d-aspartate (NMDA) promote spermatogenesis by stimulating the biosynthesis of sex steroid hormones. d-Asp also induces spermatogonia proliferation directly by activating the ERK/Aurora B pathway. In the present study, a mouse spermatocyte-derived cell line (GC-2) which represents a stage between preleptotene spermatocyte and round spermatids was exposed to 200 μM d-Asp or 50 μM NMDA for 30 min, 2 h, and 4 h to explore the influence of these amino acids on cell proliferation and mitochondrial activities occurring during this process. By Western blotting analyses, the expressions of AMPAR (GluA1-GluA2/3 subunits), cell proliferation as well as mitochondria functionality markers were determined at different incubation times. The results revealed that d-Asp or NMDA stimulate proliferation and meiosis in the GC-2 cells via the AMPAR/ERK/Akt pathway, which led to increased levels of the PCNA, p-H3, and SYCP3 proteins. The effects of d-Asp and NMDA on the mitochondrial functionality of the GC-2 cells strongly suggested an active role of these amino acids in germ cell maturation. In both d-Asp- and NMDA-treated GC-2 cells mitochondrial biogenesis as well as mitochondrial fusion are increased while mitochondria fission is inhibited. Finally, the findings showed that NMDA significantly increased the expressions of the CII, CIII, CIV, and CV complexes of oxidative phosphorylation system (OXPHOS), whereas d-Asp induced a significant increase in the expressions only of the CIV and CV complexes. The present study provides novel insights into the mechanisms underlying the role of d-Asp and NMDA in promoting spermatogenesis.
Collapse
|
3
|
Santillo A, Chieffi Baccari G, Minucci S, Falvo S, Venditti M, Di Matteo L. The Harderian gland: Endocrine function and hormonal control. Gen Comp Endocrinol 2020; 297:113548. [PMID: 32679156 DOI: 10.1016/j.ygcen.2020.113548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
The Harderian gland (HG) is an exocrine gland located within the eye socket in a variety of tetrapods. During the 1980s and 1990s the HG elicited great interest in the scientific community due to its morphological and functional complexity, and from a phylogenetic point of view. A comparative approach has contributed to a better understanding of its physiology. Whereas the chemical nature of its secretions (mucous, serous or lipids) varies between different groups of tetrapods, the lipids represent the more common component among different species. Indeed, besides being an accessory to lubricate the nictitating membrane, the lipids may have a pheromonal function. Porphyrins and melatonin secretion is a feature of the rodent HG. The porphyrins, being phototransducers, could modulate HG melatonin production. The melatonin synthesis suggests an involvement of the HG in the retinal-pineal axis. Finally, StAR protein and steroidogenic enzyme activities in the rat HG suggests that the gland contributes to steroid hormone synthesis. Over the past twenty years, much has become known on the hamster (Mesocricetus auratus) HG, unique among rodents in displaying a remarkable sexual dimorphism concerning the contents of porphyrins and melatonin. Mainly for this reason, the hamster HG has been used as a model to compare, under normal conditions, the physiological oxidative stress between females (strong) and males (moderate). Androgens are responsible for the sexual dimorphism in hamster and they are known to control the HG secretory activity in different species. Furthermore, HG is a target of pituitary, pineal and thyroid hormones. This review offers a comparative panorama of the endocrine activity of the HG as well as the hormonal control of its secretory activity, with a particular emphasis on the sex dimorphic aspects of the hamster HG.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy.
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Loredana Di Matteo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|
4
|
Di Fiore MM, Boni R, Santillo A, Falvo S, Gallo A, Esposito S, Baccari GC. D-Aspartic Acid in Vertebrate Reproduction: Animal Models and Experimental Designs ‡. Biomolecules 2019; 9:biom9090445. [PMID: 31484465 PMCID: PMC6770039 DOI: 10.3390/biom9090445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
This article reviews the animal models and experimental designs that have been used during the past twenty years to demonstrate the prominent role played by d-aspartate (d-Asp) in the reproduction of vertebrates, from amphibians to humans. We have tabulated the findings of in vivo and in vitro experiments that demonstrate the effects of d-Asp uptake on hormone production and gametogenesis in vertebrate animal models. The contribution of each animal model to the existing knowledge on the role of d-Asp in reproductive processes has been discussed. A critical analysis of experimental designs has also been carried out. Experiments performed on wild animal species suggest a role of d-Asp in the mechanisms that regulate the reproductive cycle. Several in vivo and in vitro studies carried out on mouse and rat models have facilitated an understanding of the molecular pathways activated by D-Asp in both steroidogenesis and spermatogenesis, with particular emphasis on testosterone biosynthesis. Some attempts using d-Asp for the improvement of reproductive activity in animals of commercial interest have yielded mixed results. The increased transcriptome activity of enzymes and receptors involved in the reproductive activity in d-Asp-treated broiler roosters revealed further details on the mechanism of action of d-Asp on the reproductive processes. The close relationship between d-Asp and reproductive activity has emerged, particularly in relation to its effects exerted on semen quality, proposing therapeutic applications of this amino acid in andrology and in medically-assisted procreation techniques.
Collapse
Affiliation(s)
- Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Raffaele Boni
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Gallo
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Sabrina Esposito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
5
|
Santillo A, Falvo S, Di Fiore MM, Di Giacomo Russo F, Chieffi P, Usiello A, Pinelli C, Baccari GC. AMPA receptor expression in mouse testis and spermatogonial GC-1 cells: A study on its regulation by excitatory amino acids. J Cell Biochem 2019; 120:11044-11055. [PMID: 30762900 DOI: 10.1002/jcb.28382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Excitatory amino acids (EAAs) are found present in the nervous and reproductive systems of animals. Numerous studies have demonstrated a regulatory role for Glutamate (Glu), d-aspartate ( d-Asp) and N-methyl- d-aspartate (NMDA) in the control of spermatogenesis. EAAs are able to stimulate the Glutamate receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Here in, we assess expression of the main AMPAR subunits, GluA1 and GluA2/3, in the mouse testis and in spermatogonial GC-1 cells. The results showed that both GluA1 and GluA2/3 were localized in mouse testis prevalently in spermatogonia. The subunit GluA2/3 was more highly expressed compared with GluA1 in both the testis and the GC-1 cells. Subsequently, GC-1 cells were incubated with medium containing l-Glu, d-Glu, d-Asp or NMDA to determine GluA1 and GluA2/3 expressions. At 30 minutes and 2 hours of incubation, EAA-treated GC-1 cells showed significantly higher expression levels of both GluA1 and GluA2/3. Furthermore, p-extracellular signal-regulated kinase (ERK), p-Akt, proliferating cell nuclear antigen (PCNA), and Aurora B expressions were assayed in l-Glu-, d-Glu-, and NMDA-treated GC-1 cells. At 30 minutes and 2 hours of incubation, treated GC-1 cells showed significantly higher expression levels of p-ERK and p-Akt. A consequent increase of PCNA and Aurora B expressions was induced by l-Glu and NMDA, but not by d-Glu. Our study demonstrates a direct effect of the EAAs on spermatogonial activity. In addition, the increased protein expression levels of GluA1 and GluA2/3 in EAA-treated GC-1 cells suggest that EAAs could activate ERK and Akt pathways through the AMPAR. Finally, the increased PCNA and Aurora B levels may imply an enhanced proliferative activity.
Collapse
Affiliation(s)
- Alessandra Santillo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Sara Falvo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Maria M Di Fiore
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Di Giacomo Russo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
6
|
Falvo S, Chieffi Baccaria G, Spaziano G, Rosati L, Venditti M, Di Fiore MM, Santillo A. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland. C R Biol 2018. [PMID: 29534958 DOI: 10.1016/j.crvi.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccaria
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, School of Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Napoli, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, School of Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
7
|
Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:743-758. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Laurent Nahon
- L'Orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Takano
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
8
|
Patel AV, Kawai T, Wang L, Rubakhin SS, Sweedler JV. Chiral Measurement of Aspartate and Glutamate in Single Neurons by Large-Volume Sample Stacking Capillary Electrophoresis. Anal Chem 2017; 89:12375-12382. [PMID: 29064231 PMCID: PMC5800852 DOI: 10.1021/acs.analchem.7b03435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
d-Amino acids (d-AAs) are endogenous molecules found throughout the metazoan, the functions of which remain poorly understood. Measurements of low abundance and heterogeneously distributed d-AAs in complex biological samples, such as cells and multicellular structures of the central nervous system (CNS), require the implementation of sensitive and selective analytical approaches. In order to measure the d- and l-forms of aspartate and glutamate, we developed and applied a stacking chiral capillary electrophoresis (CE) with laser-induced fluorescence detection method. The achieved online analyte preconcentration led to a 480-fold enhancement of detection sensitivity relative to capillary zone electrophoresis, without impacting separation resolution or analysis time. Additionally, the effects of inorganic ions on sample preconcentration and CE separation were evaluated. The approach enabled the relative quantification of d-aspartate and d-glutamate in individual neurons mechanically isolated from the CNS of the sea slug Aplysia californica, a well characterized neurobiological model. Levels of these structurally similar d-AAs were significantly different in subpopulations of cells collected from the investigated neuronal clusters.
Collapse
Affiliation(s)
- Amit V. Patel
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Takayuki Kawai
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Liping Wang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
9
|
Santillo A, Falvo S, Chieffi P, Di Fiore MM, Senese R, Chieffi Baccari G. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells. J Cell Physiol 2016; 231:490-5. [PMID: 26189884 DOI: 10.1002/jcp.25095] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/17/2015] [Indexed: 01/10/2023]
Abstract
D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Paolo Chieffi
- Dipartimento di Psicologia, Seconda Università di Napoli, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| |
Collapse
|
10
|
Current knowledge of d-aspartate in glandular tissues. Amino Acids 2014; 46:1805-18. [DOI: 10.1007/s00726-014-1759-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022]
|
11
|
Santillo A, Falvo S, Chieffi P, Burrone L, Chieffi Baccari G, Longobardi S, Di Fiore MM. d-aspartate affects NMDA receptor-extracellular signal–regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology 2014; 81:744-51. [DOI: 10.1016/j.theriogenology.2013.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
12
|
Santillo A, Pinelli C, Burrone L, Chieffi Baccari G, Di Fiore MM. D-Aspartic acid implication in the modulation of frog brain sex steroid levels. Gen Comp Endocrinol 2013; 181:72-6. [PMID: 23153651 DOI: 10.1016/j.ygcen.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
There is evidence that D-aspartate (D-Asp) modulates sex hormone levels in frog testis by regulating the activity of P450 aromatase (P450 aro), the key enzyme which converts Testosterone (T) in 17ß-Estradiol (E2). Here we report, for the first time, that there is a direct correlation among brain levels of D-Asp, P450 aro, E2 and Estradiol Receptor (ERα) in the male frogs during the reproductive as well as the post-reproductive phases of the breeding cycle, with highest levels being observed in the post-reproductive period. D-Asp i.p. administration to frogs ready for reproduction, induced an increase of brain P450 aro protein expression with concomitant enhancement of both E2 levels and ERα expression; at the same time, brain T levels and Androgen receptor expression decreased. In contrast, in the post-reproductive frogs, D-Asp treatment did not modify any of these parameters. Taken together, these results imply that the regulation of P450 aro expression by D-Asp could be an important step in the control of E2 levels in the frog brain.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | |
Collapse
|
13
|
D-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 2012; 43:1873-86. [PMID: 22872108 DOI: 10.1007/s00726-012-1364-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
D-Aspartate (D-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of D-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of D-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by D-Asp application. D-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that D-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter-that the molecule's biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for D-Asp's biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although D-Asp receptors remain to be characterized, the postsynaptic response of D-Asp has been studied and several L-glutamate receptors are known to respond to D-Asp. In this review, we discuss the current status of research on D-Asp in neuronal and neuroendocrine systems, and highlight results that support D-Asp's role as a signaling molecule.
Collapse
|
14
|
Burrone L, Santillo A, Pinelli C, Baccari GC, Di Fiore MM. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain. ACTA ACUST UNITED AC 2012; 215:3559-65. [PMID: 22771744 DOI: 10.1242/jeb.073296] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis.
Collapse
Affiliation(s)
- Lavinia Burrone
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy
| | | | | | | | | |
Collapse
|
15
|
Santillo A, Burrone L, Minucci S, Di Giovanni M, Chieffi Baccari G. Molecular pathways involved in the cyclic activity of frog (Pelophylax esculentus) Harderian gland: Influence of temperature and testosterone. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:71-6. [DOI: 10.1016/j.cbpb.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 01/01/2023]
|
16
|
Topo E, Fisher G, Sorricelli A, Errico F, Usiello A, D'Aniello A. Thyroid hormones and D-aspartic acid, D-aspartate oxidase, D-aspartate racemase, H2O2, and ROS in rats and mice. Chem Biodivers 2010; 7:1467-78. [PMID: 20564565 DOI: 10.1002/cbdv.200900360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Total concentrations of thyroid hormones T(3) and T(4), and of their free forms, FT(3) and FT(4), D-aspartic acid (D-Asp), D-aspartate oxidase (D-AspO), D-aspartate racemase, H(2)O(2), and ROS (reactive oxygen species) were determined in rats and mice. T(3) and T(4) were 1 and 50 ng/ml, respectively, in serum, and 750 and 40000 ng/g, respectively, in thyroid. Concentrations of the free forms FT(3) and FT(4) were ca. 250 times lower than their respective total concentrations. The endogenous content of D-Asp in thyroid gland was ca. 100 nmol/g tissue, whereas the activity of D-AspO was ca. 80 units/mg thyroid, and that of D-aspartate racemase was ca. 15 units/mg thyroid. H(2)O(2) Concentration in rat and mouse thyroid gland was ca. 290 pmol/g thyroid, and the concentration of ROS was ca. 10 pmol/DCF/min/mg protein. H(2)O(2) is essential for the iodination of the tyrosyl residues to produce mono- and diiodotyrosine that are the precursors for the synthesis of T(3) and T(4). Production of H(2)O(2) in thyroid glands occurs by oxidation of endogenous D-Asp by D-AspO (D-Asp+O(2)+H(2)O-->alpha-oxaloacetate+NH(3)+H(2)O(2)). D-Aspartate racemase catalyzes the in vivo production of D-Asp from L-Asp. Thus, interaction of endogenous D-Asp, D-AspO, and D-aspartate racemase in thyroid gland constitutes an additional biochemical pathway for the production of H(2)O(2) and consequently for the synthesis of thyroid hormones.
Collapse
Affiliation(s)
- Enza Topo
- Laboratory of Animal Physiology and Evolution, Zoological Station Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Hasunuma I, Iwamuro S, Kobayashi T, Shirama K, Conlon JM, Kikuyama S. Expression of genes encoding antimicrobial peptides in the Harderian gland of the bullfrog Lithobates catesbeianus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:301-5. [PMID: 20510387 DOI: 10.1016/j.cbpc.2010.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The Harderian gland is an orbital gland found in many tetrapod species that possess a nictitating membrane. While the main role of the Harderian gland is lubrication of the eyeballs, numerous other functions are attributed to this gland. In amphibians, mast cells have been detected in the Harderian gland, suggesting that the gland is involved in the host's system of innate immunity defending against microbial invasions. Using reverse-transcription polymerase chain reaction, we cloned from the bullfrog Harderian gland total RNA preparations, cDNAs encoding biosynthetic precursors for the antimicrobial peptides temporin-CBa (FLPIASLLGKYL-NH2), previously isolated from an extract of bullfrog skin, and chensirin-2CBa (IIPLPLGYFAKKP) that contained the amino acid substitution Thr13-->Pro compared with chensirin-2 from the Chinese brown frog, Rana chensinensis. By means of in situ hybridization using digoxigenin-labeled cRNA probes for preprotemporin-CBa and preprochensirin-2CBa, we have demonstrated for the first time in an amphibian the presence of mRNAs encoding these two precursors in the cytoplasm of the glandular cells in the bullfrog Harderian gland.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Center for Advanced Biomedical Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Di Giovanni M, Burrone L, Chieffi Baccari G, Topo E, Santillo A. Distribution of free D-aspartic acid and D-aspartate oxidase in frog Rana esculenta tissues. ACTA ACUST UNITED AC 2010; 313:137-43. [PMID: 20108220 DOI: 10.1002/jez.585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper, we examined the distribution pattern of D-aspartic acid (D-Asp), as well as D-aspartate oxidase (D-AspO), D-amino acid oxidase (D-AAO), and L-amino acid oxidase (L-AAO) activities in different tissues of frog, Rana esculenta. High concentrations of free D-Asp were found in the testes (0.21+/-0.02 micromol/g b.w), in the liver (0.20+/-0.03 micromol/g b.w), and in the Harderian gland (HG) (0.19+/-0.03 micromol/g b.w). A higher activity of both D-AspO and D-AAO with respect to L-AAO was endogenously present in all examined frog tissues, particularly within the kidney, liver, and brain. Our in vivo experiments, consisting of i.p. injections of 2.0 micromol/g b.w. D-Asp in frogs, revealed that all examined tissues can take up and accumulate D-Asp and that this amino acid specifically triggers D-AspO activity. Indeed, no increase in both D-AAO and L-AAO was found in all frog tissues after D-Asp treatment. The optimum pH for D-AspO activity was around 8.2 and the optimum temperature was about 37 degrees C. Furthermore, its activity linearly increased with increasing D-Asp incubation times. In vitro experiments assaying the substrate specificity of D-AspO indicated that the enzyme had greater affinity for N-methyl-D-aspartate than for D-Asp and D-glutamate. This study provides evidence of the presence of free D-Asp in frog R. esculenta tissues, along with its role in triggering D-AspO activity. These findings suggest that D-AspO could play an essential role in decreasing excessive amounts of D-Asp in frog tissues, a phenomenon that, if left unchecked, could have detrimental physiological effects on the animal.
Collapse
Affiliation(s)
- Marcello Di Giovanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, via Vivaldi, Caserta, Italy.
| | | | | | | | | |
Collapse
|
19
|
Burrone L, Di Giovanni M, Di Fiore M, Chieffi Baccari G, Santillo A. Effects of D-Aspartate Treatment on D-Aspartate Oxidase, Superoxide Dismutase, and Caspase 3 Activities in Frog (Rana esculenta) Tissues. Chem Biodivers 2010; 7:1459-66. [DOI: 10.1002/cbdv.200900331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
d-Aspartate binding sites in rat Harderian gland. Amino Acids 2009; 38:229-35. [DOI: 10.1007/s00726-008-0231-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
21
|
Monteforte R, Santillo A, Di Giovanni M, D'Aniello A, Di Maro A, Chieffi Baccari G. D-Aspartate affects secretory activity in rat Harderian gland: molecular mechanism and functional significance. Amino Acids 2008; 37:653-64. [PMID: 18820994 DOI: 10.1007/s00726-008-0185-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
In this paper, the role of D-aspartate in the rat Harderian gland (HG) was investigated by histochemical, ultrastructural, and biochemical analyses. In this gland, substantial amounts of endogenous D-Asp were detected, along with aspartate racemases that convert D-Asp to L-Asp and vice versa. We found that the gland was capable of uptaking and accumulating exogenously administered D-Asp. D-Asp acute treatment markedly increased lipid and porphyrin secretion and induced a powerful hyperaemia in inter-acinar interstitial tissue. Since D-Asp is known to be recognized by NMDA receptors, the expression of such receptors in rat HG led us to the hypothesis that D-Asp acute treatment induced the activation of the extracellular signal-regulated protein kinase (ERK) and nitric oxide synthase (NOS) pathways mediated by NMDA. Interestingly, as a result of enhanced oxidative stress due to increased porphyrin secretion, the revealed activation of the stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JNK) pro-apoptotic pathway was probably triggered by the gland itself to preserve its cellular integrity.
Collapse
Affiliation(s)
- Rossella Monteforte
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, via Vivaldi, 43-81100, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
22
|
D'Aniello A. d-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. ACTA ACUST UNITED AC 2007; 53:215-34. [PMID: 17118457 DOI: 10.1016/j.brainresrev.2006.08.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 07/14/2006] [Accepted: 08/04/2006] [Indexed: 12/01/2022]
Abstract
D-Aspartic acid (d-Asp), an endogenous amino acid present in vertebrates and invertebrates, plays an important role in the neuroendocrine system, as well as in the development of the nervous system. During the embryonic stage of birds and the early postnatal life of mammals, a transient high concentration of d-Asp takes place in the brain and in the retina. d-Asp also acts as a neurotransmitter/neuromodulator. Indeed, this amino acid has been detected in synaptosomes and in synaptic vesicles, where it is released after chemical (K(+) ion, ionomycin) or electric stimuli. Furthermore, d-Asp increases cAMP in neuronal cells and is transported from the synaptic clefts to presynaptic nerve cells through a specific transporter. In the endocrine system, instead, d-Asp is involved in the regulation of hormone synthesis and release. For example, in the rat hypothalamus, it enhances gonadotropin-releasing hormone (GnRH) release and induces oxytocin and vasopressin mRNA synthesis. In the pituitary gland, it stimulates the secretion of the following hormones: prolactin (PRL), luteinizing hormone (LH), and growth hormone (GH) In the testes, it is present in Leydig cells and is involved in testosterone and progesterone release. Thus, a hypothalamus-pituitary-gonads pathway, in which d-Asp is involved, has been formulated. In conclusion, the present work is a summary of previous and current research done on the role of d-Asp in the nervous and endocrine systems of invertebrates and vertebrates, including mammals.
Collapse
Affiliation(s)
- Antimo D'Aniello
- Laboratory of Neurobiology, Stazione Zoologica A Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
23
|
Santillo A, Monteforte R, Raucci F, D'Aniello A, Baccari GC. Occurrence ofD-Aspartate in the harderian gland ofPodarcis s. sicula and its effect on gland secretion. ACTA ACUST UNITED AC 2006; 305:610-9. [PMID: 16721806 DOI: 10.1002/jez.a.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High concentrations of free D-aspartate (D-Asp), an amino acid well known for its neuroexcitatory activity, are endogeneously present in the Harderian gland (HG) of the lizard Podarcis s. sicula. This orbital gland consists of two different parts: the medial part, which is prevalently a mucous acinar gland, and the lateral part, which is a serous tubulo-acinar gland. To determine the physiological effect of D-Asp on exocrine secretion in HG, D-Asp (2.0 micromol/g b.w.) was injected intraperitoneally into lizards. We found that highest accumulations of exogenous D-Asp in HGs occurred 15 hr after the injection. Specifically, exogenous D-Asp prevalently stimulated serous secretion from the lateral portion of the gland, where immunohistochemical analysis revealed a major accumulation. Similarly, in the medial part of the gland, highly sulfated mucosubstances were observed after D-Asp injection. Further, in both parts of the HG, the electron microscope revealed euchromatic nuclei, a prominent rough endoplasmic reticulum, as well as numerous secretory granules within the acinar cells. Thus, following D-Asp injection, a 60% increase in HG total protein was detected. In addition, exogenous D-Asp induced changes in the electrophoretic pattern of HG. In conclusion, although further investigations are still needed to clarify the molecular pathway induced by D-Asp in exocrine secretion, this study does indicate that free D-Asp plays a significant role in the secretory activity of this gland.
Collapse
Affiliation(s)
- A Santillo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy
| | | | | | | | | |
Collapse
|
24
|
Homma H. Biochemistry of D-aspartate in mammalian cells. Amino Acids 2006; 32:3-11. [PMID: 16755369 DOI: 10.1007/s00726-006-0354-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 01/10/2006] [Indexed: 12/23/2022]
Abstract
Recent investigations have shown that D-aspartate (D-Asp) plays an important physiological role(s) in the mammalian body. Here, several recent studies of free D-Asp metabolism in mammals, focusing on cellular localization in tissues, intracellular localization, biosynthesis, efflux, uptake and degradation are reviewed. D-Asp in mammalian tissues is present in specific cells, indicating the existence of specific molecular components that regulate D-Asp levels and localization in tissues. In the rat pheochromocytoma cell line (PC12) and its subclones, D-Asp is synthesized intracellularly, most likely by Asp racemase(s). Endogenous D-Asp apparently has two different intracellular localization patterns: cytoplasmic and vesicular. In PC12 cells, D-Asp release can occur through three distinct pathways: 1) spontaneous, continuous release of cytoplasmic D-Asp, which is not associated with a specific stimulus; 2) release of cytoplasmic D-Asp via a volume-sensitive organic anion channel that connects the cytoplasm and extracellular space; 3) exocytotic discharge of vesicular D-Asp. Under certain conditions, D-Asp can be released via a mechanism that involves the L-Glu transporter. D-Asp is thus apparently in dynamic flux at the cellular level to carry out its physiological function(s) in mammals.
Collapse
Affiliation(s)
- H Homma
- Laboratory of Biomolecular Science, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| |
Collapse
|
25
|
Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D'Aniello E, Rastogi RK, D'Aniello B, Baccari GC, Fisher G, D'Aniello A. D-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 2006; 206:672-81. [PMID: 16222705 DOI: 10.1002/jcp.20513] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the marine mollusk Aplysia limacina, a substantial amount of endogenous D-aspartic acid (D-Asp) was found following its synthesis from L-aspartate by an aspartate racemase. Concentrations of D-Asp between 3.9 and 4.6 micromol/g tissue were found in the cerebral, abdominal, buccal, pleural, and pedal ganglia. In non nervous tissues, D-Asp occurred at a very low concentration compared to the nervous system. Immunohistochemical studies conducted on cultured Aplysia neurons using an anti-D-aspartate antibody demonstrated that D-Asp occurs in the soma, dendrites, and in synaptic varicosities. Synaptosomes and synaptic vesicles from cerebral ganglia were prepared and characterized by electron microscopy. HPLC analysis revealed high concentrations of D-Asp together with L-aspartate and L-glutamate in isolated synaptosomes In addition, D-Asp was released from synaptosomes by K+ depolarization or by ionomycin. D-Asp was one of the principal amino acids present in synaptic vesicles representing about the 25% of total amino acids present in these cellular organelles. Injection of D-Asp into live animals or addition to the incubation media of cultured neurons, caused an increase in cAMP content. Taken as a whole, these findings suggest a possible role of D-Asp in neurotransmission in the nervous system of Aplysia limacina.
Collapse
Affiliation(s)
- Patrizia Spinelli
- Laboratory of Neurobiology, Stazione Zoologica A. Dohrn, Villa Comunale, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miao H, Rubakhin SS, Scanlan CR, Wang L, Sweedler JV. d-Aspartate as a putative cell-cell signaling molecule in theAplysia californicacentral nervous system. J Neurochem 2006; 97:595-606. [PMID: 16539650 DOI: 10.1111/j.1471-4159.2006.03791.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The content, synthesis and transport of D-aspartate (D-Asp) in the CNS of Aplysia californica is investigated using capillary electrophoresis (CE) with both laser-induced fluorescence and radionuclide detection. Millimolar concentrations of D-Asp are found in various regions of the CNS. In the cerebral ganglion, three adjacent neuronal clusters have reproducibly different D-Asp levels; for example, in the F- and C-clusters, up to 85% of the free Asp is present in the D-form. Heterogeneous distribution of D-Asp is also found in the individual identified neurons tested, including the optical ganglion top-layer neurons, metacerebral cells, R2 neurons, and F-, C- and G-cluster neurons. The F-cluster neurons have the highest percentage of D-Asp (approximately 58% of the total Asp), whereas the lowest value of approximately 8% is found in R2 neurons. In pulse-chase experiments with radiolabeled D-Asp, followed by CE with radionuclide detection, the synthesis of D-Asp from L-aspartate (L-Asp) is confirmed. Is D-Asp in the soma, or is it transported to distantly located release sites? D-Asp is clearly detected in the major nerves of A. californica, including the pleuroabdominal and cerebrobuccal connectives and the anterior tentacular nerves, suggesting it is transported long distances. In addition, both D-Asp and L-Asp are transported in the pleuroabdominal connectives in a colchicine-dependent manner, whereas several other amino acids are not. Finally, d-Asp produces electrophysiological effects similar to those induced by L-Asp. These data are consistent with an active role for D-Asp in cell-to-cell communication.
Collapse
Affiliation(s)
- Hai Miao
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | | | |
Collapse
|