1
|
Reddy V, Hwang C, Reddy GPV, Kim SH. A Novel Role of Prostate-Specific Membrane Antigen in Telomere Stability in Prostate Cancer Cells. Mol Cancer Res 2023; 21:1176-1185. [PMID: 37477641 DOI: 10.1158/1541-7786.mcr-23-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Prostate-specific membrane antigen (PSMA) expression increases with prostate cancer grade and progression; however, the role of PSMA in prostate cancer progression remains poorly understood. Telomere stability is essential for the survival and genome stability of cancer cells. We found massive telomere DNA damage in PSMA-negative prostate cancer cells (PC-3 and DU145) compared with PSMA-positive prostate cancer (LNCaP) cells. The ectopic expression of PSMA suppressed telomere DNA damage in PC3 cells. PSMA inhibitor, 2-PMPA, and PSMA knockdown induced telomere DNA damage in PSMA-positive LNCaP cells but not in PSMA-negative PC-3 cells, suggesting that PSMA plays a critical role in telomere stability in prostate cancer cells. In addition, we observed that inhibition of PSMA or inhibition of glutamate receptor, which mediates PSMA-dependent activation of AKT, suppressed AKT phosphorylation, and caused telomere DNA damage. Furthermore, 2-PMPA-induced telomere DNA damage in LNCaP cells was associated with telomere aberrations, such as telomere-telomere fusions, sister-chromatid telomere fusions, and telomere breakages. AKT is reported to promote cell growth by stabilizing telomere association with telomere-binding proteins TRF1 and TPP1. We observed that TRF1 and TPP1 transfection of LNCaP cells attenuated the inhibitory effect of 2-PMPA on cell growth and telomere DNA damage. Together, these observations indicate that PSMA role in maintaining telomere stability in prostate cancer cells is mediated by AKT. Thus, these studies reveal an important role of PSMA in maintaining telomere stability that can promote cell survival and, thereby, prostate cancer progression. IMPLICATIONS Role of PSMA in telomere stability suggests a strong correlation between PSMA expression and prostate cancer progression.
Collapse
Affiliation(s)
- Vidyavathi Reddy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health, Detroit, Michigan
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Health, Detroit, Michigan
| | - G Prem-Veer Reddy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health, Detroit, Michigan
| | - Sahn-Ho Kim
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health, Detroit, Michigan
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
2
|
Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-Acetyltransferase 10 Suppresses the Progression of Prostate Cancer through Regulation of DNA Replication. Int J Mol Sci 2022; 23:ijms23126573. [PMID: 35743017 PMCID: PMC9223896 DOI: 10.3390/ijms23126573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer suppression through the inhibition of N-acetyltransferase 10 (NAT10) by its specific inhibitor Remodelin has been demonstrated in a variety of human cancers. Here, we report the inhibitory effects of Remodelin on prostate cancer (PCa) cells and the possible associated mechanisms. The prostate cancer cell lines VCaP, LNCaP, PC3, and DU145 were used. The in vitro proliferation, migration, and invasion of cells were measured by a cell proliferation assay, colony formation, wound healing, and Transwell assays, respectively. In vivo tumor growth was analyzed by transplantation into nude mice. The inhibition of NAT10 by Remodelin not only suppressed growth, migration, and invasion in vitro, but also the in vivo cancer growth of prostate cancer cells. The involvement of NAT10 in DNA replication was assessed by EdU labeling, DNA spreading, iPOND, and ChIP-PCR assays. The inhibition of NAT10 by Remodelin slowed DNA replication. NAT10 was detected in the prereplication complex, and it could also bind to DNA replication origins. Furthermore, the interaction between NAT10 and CDC6 was analyzed by Co-IP. The altered expression of NAT10 was measured by immunofluorescence staining and Western blotting. Remodelin markedly reduced the levels of CDC6 and AR. The expression of NAT10 could be altered under either castration or noncastration conditions, and Remodelin still suppressed the growth of in vitro-induced castration-resistant prostate cancers. The analysis of a TCGA database revealed that the overexpression of NAT10, CDC6, and MCM7 in prostate cancers were correlated with the Gleason score and node metastasis. Our data demonstrated that Remodelin, an inhibitor of NAT10, effectively inhibits the growth of prostate cancer cells under either no castration or castration conditions, likely by impairing DNA replication.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-10-82802627
| |
Collapse
|
3
|
Offermann A, Joerg V, Becker F, Roesch MC, Kang D, Lemster AL, Tharun L, Behrends J, Merseburger AS, Culig Z, Sailer V, Brägelmann J, Kirfel J, Perner S. Inhibition of Cyclin-Dependent Kinase 8/Cyclin-Dependent Kinase 19 Suppresses Its Pro-Oncogenic Effects in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:813-823. [PMID: 35181333 DOI: 10.1016/j.ajpath.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Progression of prostate cancer (PCa) is characterized by metastasis and castration resistance after response to androgen deprivation. Therapeutic options are limited, causing high morbidity and lethality. Recent work reported pro-oncogenic implications of the Mediator subunits cyclin-dependent kinase (CDK) 8 and 19 for the progression of PCa. The current study explored the underlying molecular mechanisms of CDK8/CDK19 and tested effects of novel CDK8/CDK19 inhibitors. PC3, DU145, LNCaP, and androgen-independent LNCaP Abl were used for in vitro experiments. Two inhibitors and CDK19 overexpression were used to modify CDK8/CDK19 activity. MTT assay, propidium iodide staining, wound healing assay, Boyden chamber assay, and adhesion assay were used to investigate cell viability, cell cycle, migration, and adhesion, respectively. Peptide-kinase screen using the PamGene platform was conducted to identify phosphorylated targets. Combining CDK8/CDK19 inhibitors with anti-androgens led to synergistic antiproliferative effects and sensitized androgen-independent cells to bicalutamide. CDK8/CDK19 inhibition resulted in reduced migration and increased collagen I-dependent adhesion. Phosphorylation of multiple peptides linked to cancer progression was identified to be dependent on CDK8/CDK19. In summary, this study substantially supports recent findings on CDK8/CDK19 in PCa progression. These findings contribute to a better understanding of underlying pro-oncogenic effects, which is needed to develop CDK8/CDK19 as a therapeutic target in PCa.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Vincent Joerg
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Finn Becker
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Marie C Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Duan Kang
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany; Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany; Mildred Scheel School of Oncology, Cologne, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
4
|
Tien AH, Sadar MD. Cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ralaniten analogues for the treatment of androgen receptor-positive prostate and breast cancers. Mol Cancer Ther 2021; 21:294-309. [PMID: 34815359 DOI: 10.1158/1535-7163.mct-21-0411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) has essential roles in the growth of prostate cancer and some breast cancers. Inhibition of AR transcriptional activity by targeting its N-terminal domain with ralaniten or an analogue such as EPI-7170 causes accumulation of cells in the G1 phase of the cell cycle. Inhibition of cyclin-dependent kinases 4/6 with palbociclib also leads to accumulation of cells in the G1 phase. Here a combination of EPI-7170 with palbociclib attenuated the in vivo growth of human castration-resistant prostate cancer xenografts that are resistant to antiandrogens. Cell-cycle tracing experiments in cultured cells revealed that EPI-7170 targeted cells in S phase, possibly through inducing DNA damage or impairing the DNA damage response, whereas palbociclib targeted the G1-S transition to delay the cell cycle. Combination treatment prevented cells in G1 and G2/M from progressing in the cell cycle and caused a portion of cells in S phase to arrest which contributed to a two-fold increase in doubling time to >63 hours compared to 25 hours in control cells. Importantly, sequential combination treatments with palbociclib administered first then followed by EPI-7170, resulted in more cells accumulating in G1 and less cells in S phase than concomitant combination which was presumably because each inhibitor has a unique mechanism in modulating the cell cycle in cancer cells. Together these data support that the combination therapy was more effective than individual monotherapies to reduce tumor growth by targeting different phases of the cell cycle.
Collapse
|
5
|
Reddy V, Iskander A, Hwang C, Divine G, Menon M, Barrack ER, Reddy GPV, Kim SH. Castration-resistant prostate cancer: Androgen receptor inactivation induces telomere DNA damage, and damage response inhibition leads to cell death. PLoS One 2019; 14:e0211090. [PMID: 31083651 PMCID: PMC6513077 DOI: 10.1371/journal.pone.0211090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/20/2019] [Indexed: 11/20/2022] Open
Abstract
Telomere stability is important for cell viability, as cells with telomere DNA damage that is not repaired do not survive. We reported previously that androgen receptor (AR) antagonist induces telomere DNA damage in androgen-sensitive LNCaP prostate cancer cells; this triggers a DNA damage response (DDR) at telomeres that includes activation of ATM, and blocking ATM activation prevents telomere DNA repair and leads to cell death. Remarkably, AR antagonist induces telomere DNA damage and triggers ATM activation at telomeres also in 22Rv1 castration-resistant prostate cancer (CRPC) cells that are not growth inhibited by AR antagonist. Treatment with AR antagonist enzalutamide (ENZ) or ATM inhibitor (ATMi) by itself had no effect on growth in vitro or in vivo, but combined treatment with ENZ plus ATMi significantly inhibited cell survival in vitro and tumor growth in vivo. By inducing telomere DNA damage and activating a telomere DDR, an opportunity to inhibit DNA repair and promote cell death was created, even in CRPC cells. 22Rv1 cells express both full-length AR and AR splice variant AR-V7, but full-length AR was found to be the predominant form of AR associated with telomeres and required for telomere stability. Although 22Rv1 growth of untreated 22Rv1 cells appears to be driven by AR-V7, it is, ironically, expression of full-length AR that makes them sensitive to growth inhibition by combined treatment with ENZ plus ATMi. Notably, this combined treatment approach to induce telomere DNA damage and inhibit the DDR was effective in inducing cell death also in other CRPC cell lines (LNCaP/AR and C4-2B). Thus, the use of ENZ in combination with a DDR inhibitor, such as ATMi, may be effective in prolonging disease-free survival of patients with AR-positive metastatic CRPC, even those that co-express AR splice variant.
Collapse
Affiliation(s)
- Vidyavathi Reddy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Asm Iskander
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Clara Hwang
- Department of Oncology and Hematology, Henry Ford Hospital, Detroit, MI, United States of America
| | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States of America
| | - Mani Menon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Evelyn R. Barrack
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - G. Prem-Veer Reddy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Sahn-Ho Kim
- Department of Urology, Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, Lindner DJ, Liu X, Campbell MJ, Shukla GC. MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Res 2019; 79:1844-1856. [PMID: 30808676 DOI: 10.1158/0008-5472.can-18-2993] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is defined by tumor microenvironment heterogeneity affecting intrinsic cellular mechanisms including dysregulated androgen signaling, aerobic glycolysis (Warburg effect), and aberrant activation of transcription factors including androgen receptor (AR) and c-Myc. Using in vitro, in vivo, and animal models, we find a direct correlation between miR-644a downregulation and dysregulation of essential cellular processes. MiR-644a downregulated expression of diverse tumor microenvironment drivers including c-Myc, AR coregulators, and antiapoptosis factors Bcl-xl and Bcl2. Moreover, miR-644a modulates epithelial-mesenchymal transition (EMT) by directly targeting EMT-promoting factors ZEB1, cdk6, and Snail. Finally, miR-644a expression suppresses the Warburg effect by direct targeting of c-Myc, Akt, IGF1R, and GAPDH expression. RNA sequencing analysis revealed an analogous downregulation of these factors in animal tumor xenografts. These data demonstrate miR-644a mediated fine-tuning of oncogenesis, stimulating pathways and resultant potentiation of enzalutamide therapy in CRPC patients. SIGNIFICANCE: This study demonstrates that miR-644a therapeutically influences the CRPC tumor microenvironment by suppressing androgen signaling and additional genes involved in metabolism, proliferation, Warburg effect, and EMT, to potentiate the enzalutamide therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/1844/F1.large.jpg.
Collapse
Affiliation(s)
- Jey S Ebron
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Jagjit Singh
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Kavleen Sikand
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Crystal M Weyman
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Daniel J Lindner
- Translational Hematology and Oncology Research, Taussig Cancer Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Girish C Shukla
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio. .,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio.,Department of Cancer Biology, Learner Research institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
7
|
Karanika S, Karantanos T, Li L, Wang J, Park S, Yang G, Zuo X, Song JH, Maity SN, Manyam GC, Broom B, Aparicio AM, Gallick GE, Troncoso P, Corn PG, Navone N, Zhang W, Li S, Thompson TC. Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling. Cell Rep 2017; 18:1970-1981. [PMID: 28228262 DOI: 10.1016/j.celrep.2017.01.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 11/11/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
Cell division cycle 6 (CDC6), an androgen receptor (AR) target gene, is implicated in regulating DNA replication and checkpoint mechanisms. CDC6 expression is increased during prostate cancer (PCa) progression and positively correlates with AR in PCa tissues. AR or CDC6 knockdown, together with AZD7762, a Chk1/2 inhibitor, results in decreased TopBP1-ATR-Chk1 signaling and markedly increased ataxia-telangiectasia-mutated (ATM) phosphorylation, a biomarker of DNA damage, and synergistically increases treatment efficacy. Combination treatment with the AR signaling inhibitor enzalutamide (ENZ) and the Chk1/2 inhibitor AZD7762 demonstrates synergy with regard to inhibition of AR-CDC6-ATR-Chk1 signaling, ATM phosphorylation induction, and apoptosis in VCaP (mutant p53) and LNCaP-C4-2b (wild-type p53) cells. CDC6 overexpression significantly reduced ENZ- and AZD7762-induced apoptosis. Additive or synergistic therapeutic activities are demonstrated in AR-positive animal xenograft models. These findings have important clinical implications, since they introduce a therapeutic strategy for AR-positive, metastatic, castration-resistant PCa, regardless of p53 status, through targeting AR-CDC6-ATR-Chk1 signaling.
Collapse
Affiliation(s)
- Styliani Karanika
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Theodoros Karantanos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianxiang Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Zuo
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju C Manyam
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Bradley Broom
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Ana M Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuhua Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Koushyar S, Economides G, Zaat S, Jiang W, Bevan CL, Dart DA. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells. Oncogenesis 2017; 6:e333. [PMID: 28504694 PMCID: PMC5523065 DOI: 10.1038/oncsis.2017.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/16/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing.
Collapse
Affiliation(s)
- S Koushyar
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - G Economides
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - S Zaat
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - W Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - C L Bevan
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - D A Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
9
|
Wu X, Deng F, Li Y, Daniels G, Du X, Ren Q, Wang J, Wang LH, Yang Y, Zhang V, Zhang D, Ye F, Melamed J, Monaco ME, Lee P. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 2016; 6:44849-63. [PMID: 26636648 PMCID: PMC4792596 DOI: 10.18632/oncotarget.6438] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022] Open
Abstract
Increases in fatty acid metabolism have been demonstrated to promote the growth and survival of a variety of cancers, including prostate cancer (PCa). Here, we examine the expression and function of the fatty acid activating enzyme, long-chain fatty acyl-CoA synthetase 4 (ACSL4), in PCa. Ectopic expression of ACSL4 in ACSL4-negative PCa cells increases proliferation, migration and invasion, while ablation of ACSL4 in PCa cells expressing endogenous ACSL4 reduces cell proliferation, migration and invasion. The cell proliferative effects were observed both in vitro, as well as in vivo. Immunohistochemical analysis of human PCa tissue samples indicated ACSL4 expression is increased in malignant cells compared with adjacent benign epithelial cells, and particularly increased in castration-resistant PCa (CRPC) when compared with hormone naive PCa. In cell lines co-expressing both ACSL4 and AR, proliferation was independent of exogenous androgens, suggesting that ACSL4 expression may lead to CRPC. In support for this hypothesis, ectopic ACSL4 expression induced resistance to treatment with Casodex, via decrease in apoptosis. Our studies further indicate that ACSL4 upregulates distinct pathway proteins including p-AKT, LSD1 and β-catenin. These results suggest ACSL4 could serve as a biomarker and potential therapeutic target for CRPC.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fangming Deng
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Yirong Li
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Garrett Daniels
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xinxin Du
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jinhua Wang
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA.,NYU Cancer Institute, New York University School of Medicine, New York, NY, USA.,NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Ling Hang Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Yang Yang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Valerio Zhang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - David Zhang
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - Fei Ye
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Marie E Monaco
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,VA New York Harbor Healthcare System, New York University School of Medicine, New York, NY, USA
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,NYU Cancer Institute, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA.,VA New York Harbor Healthcare System, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Kim YC, Chen C, Bolton EC. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS One 2015; 10:e0138286. [PMID: 26372468 PMCID: PMC4570807 DOI: 10.1371/journal.pone.0138286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/29/2015] [Indexed: 12/19/2022] Open
Abstract
The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Congcong Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eric C. Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Reddy V, Wu M, Ciavattone N, McKenty N, Menon M, Barrack ER, Reddy GPV, Kim SH. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction. J Biol Chem 2015; 290:25522-33. [PMID: 26336104 DOI: 10.1074/jbc.m115.671404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Vidyavathi Reddy
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Min Wu
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Nicholas Ciavattone
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Nathan McKenty
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Mani Menon
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Evelyn R Barrack
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - G Prem-Veer Reddy
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| | - Sahn-Ho Kim
- From the Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
12
|
Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:724658. [PMID: 24959190 PMCID: PMC4052177 DOI: 10.1155/2014/724658] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/26/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
Abstract
The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.
Collapse
|
13
|
Zhang ZY, Zhu YH, Zhou CH, Liu Q, Lu HL, Ge YJ, Wang MW. Development of β-amino-carbonyl compounds as androgen receptor antagonists. Acta Pharmacol Sin 2014; 35:664-73. [PMID: 24786235 DOI: 10.1038/aps.2013.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/18/2013] [Indexed: 01/21/2023] Open
Abstract
AIM Androgen receptor (AR) antagonists have proven to be useful in the early control of prostate cancer. The aim of this study was to identify and characterize a novel β-amino-carbonyl-based androgen receptor antagonist. METHODS Different isomers of the β-amino-carbonyl compounds were obtained by chiral separation. The bioactivities of the isomers were evaluated by AR nuclear translocation, mammalian two-hybrid, competitive receptor binding and cell proliferation assays. The expression of genes downstream of AR was analyzed with real-time PCR. The therapeutic effects on tumor growth in vivo were observed in male SCID mice bearing LNCaP xenografts. RESULTS Compound 21 was previously identified as an AR modulator by the high-throughput screening of a diverse compound library. In the present study, the two isomers of compound 21, termed compounds 21-1 and 21-2, were characterized as partial AR agonists in terms of androgen-induced AR nuclear translocation, prostate-specific antigen expression and cell proliferation. Further structural modifications led to the discovery of a androgen receptor antagonist (compound 6012), which blocked androgen receptor nuclear translocation, androgen-responsive gene expression and androgen-dependent LNCaP cell proliferation. Four stereoisomers of compound 6012 were isolated, and their bioactivities were assessed. The pharmacological effects of 6012, including AR binding, androgen-induced AR translocation, NH2- and COOH-terminal interaction, growth inhibition of LNCaP cells in vitro and LNCaP xenograft growth in nude mice, were mainly restricted to isomer 6012-4 (1R, 3S). CONCLUSION Compound 6012-4 was determined to be a novel androgen receptor antagonist with prostate cancer inhibitory activities comparable to bicalutamide both in vitro and in vivo.
Collapse
|
14
|
Zhou J, Richardson M, Reddy V, Menon M, Barrack ER, Reddy GPV, Kim SH. Structural and functional association of androgen receptor with telomeres in prostate cancer cells. Aging (Albany NY) 2013; 5:3-17. [PMID: 23363843 PMCID: PMC3616228 DOI: 10.18632/aging.100524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Telomeres protect the ends of linear chromosomes from being recognized as damaged DNA, and telomere stability is required for genome stability. Here we demonstrate that telomere stability in androgen receptor (AR)-positive LNCaP human prostate cancer cells is dependent on AR and androgen, as AR inactivation by AR antagonist bicalutamide (Casodex), AR-knockdown, or androgen-depletion caused telomere dysfunction, and the effect of androgen-depletion or Casodex was blocked by the addition of androgen. Notably, neither actinomycin D nor cycloheximide blocked the DNA damage response to Casodex, indicating that the role of AR in telomere stability is independent of its role in transcription. We also demonstrate that AR is a component of telomeres, as AR-bound chromatin contains telomeric DNA, and telomeric chromatin contains AR. Importantly, AR inactivation by Casodex caused telomere aberrations, including multiple abnormal telomere signals, remindful of a fragile telomere phenotype that has been described previously to result from defective telomere DNA replication. We suggest that AR plays an important role in telomere stability and replication of telomere DNA in prostate cancer cells, and that AR inactivation-mediated telomere dysfunction may contribute to genomic instability and progression of prostate cancer cells.
Collapse
Affiliation(s)
- Junying Zhou
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tesei A, Leonetti C, Di Donato M, Gabucci E, Porru M, Varchi G, Guerrini A, Amadori D, Arienti C, Pignatta S, Paganelli G, Caraglia M, Castoria G, Zoli W. Effect of small molecules modulating androgen receptor (SARMs) in human prostate cancer models. PLoS One 2013; 8:e62657. [PMID: 23667504 PMCID: PMC3648536 DOI: 10.1371/journal.pone.0062657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/25/2013] [Indexed: 01/03/2023] Open
Abstract
The management of hormone-refractory prostate cancer represents a major challenge in the therapy of this tumor, and identification of novel androgen receptor antagonists is needed to render treatment more effective. We analyzed the activity of two novel androgen receptor antagonists, (S)-11 and (R)-9, in in vitro and in vivo experimental models of hormone-sensitive or castration-resistant prostate cancer (CRPC). In vitro experiments were performed on LNCaP, LNCaP-AR, LNCaP-Rbic and VCaP human prostate cancer cells. Cytotoxic activity was assessed by SRB and BrdU uptake, AR transactivation by luciferase reporter assay and PSA levels by Real Time RT-PCR and ELISA assays. Cell cycle progression-related markers were evaluated by western blot. In vivo experiments were performed on SCID mice xenografted with cells with different sensitivity to hormonal treatment. In hormone-sensitive LNCaP and LNCaP-AR cells, the latter expressing high androgen receptor levels, (R)-9 and (S)-11 exhibited a higher cytotoxic effect compared to that of the reference compound ((R)-bicalutamide), also in the presence of the synthetic androgen R1881. Furthermore, the cytotoxic effect produced by (R)-9 was higher than that of (S)-11 in the two hormone-resistant LNCaP-AR and VCaP cells. A significant reduction in PSA levels was observed after exposure to both molecules. Moreover, (S)-11 and (R)-9 inhibited DNA synthesis by blocking the androgen-induced increase in cyclin D1 protein levels. In vivo studies on the toxicological profile of (R)-9 did not reveal the presence of adverse events. Furthermore, (R)-9 inhibited tumor growth in various in vivo models, especially LNCaP-Rbic xenografts, representative of recurrent disease. Our in vitro results highlight the antitumor activity of the two novel molecules (R)-9 and (S)-11, making them a potentially attractive option for the treatment of CRPC.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
- * E-mail: (AT); (CL)
| | - Carlo Leonetti
- Department of Experimental Oncology, Laboratory of Experimental Preclinical Chemotherapy, National Cancer Institute “Regina Elena”, Rome, Italy
- * E-mail: (AT); (CL)
| | - Marzia Di Donato
- Department of General Pathology, II University of Naples, Naples, Italy
| | - Elisa Gabucci
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Manuela Porru
- Department of Experimental Oncology, Laboratory of Experimental Preclinical Chemotherapy, National Cancer Institute “Regina Elena”, Rome, Italy
| | - Greta Varchi
- Italian National Research Council, Institute for Organic Chemistry and Photoreactivity, Bologna, Italy
| | - Andrea Guerrini
- Italian National Research Council, Institute for Organic Chemistry and Photoreactivity, Bologna, Italy
| | - Dino Amadori
- Department of Medical Oncology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Giulia Paganelli
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | | | - Wainer Zoli
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| |
Collapse
|
16
|
Murthy S, Wu M, Bai VU, Hou Z, Menon M, Barrack ER, Kim SH, Reddy GPV. Role of androgen receptor in progression of LNCaP prostate cancer cells from G1 to S phase. PLoS One 2013; 8:e56692. [PMID: 23437213 PMCID: PMC3577675 DOI: 10.1371/journal.pone.0056692] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022] Open
Abstract
Background The androgen receptor (AR) plays a critical role in the proliferation of prostate cancer cells. However, its mechanism of action in proliferation remains unknown. An understanding of the mechanism of AR action in proliferation may lead to the development of effective strategies for the treatment of prostate cancer. Methodology/Principal Findings In this study we report that pulse treatment of synchronized LNCaP cells with Casodex, an AR-antagonist, for 4 hours in mid-G1 phase was sufficient to prevent cells from entering S phase. Since the assembly of pre-replication complex (pre-RC) in G1 is required for the progression of cells from G1 to S phase, the effect of Casodex during mid-G1 suggested that the role of AR in proliferation might be to regulate the assembly of pre-RC. To test this possibility, we investigated the interaction between AR and Cdc6, an essential component of pre-RC in LNCaP cells. AR co-localized and co-immunoprecipitated with Cdc6, and Casodex treatment disrupted this interaction. AR-immunoprecipitate (AR-IP) also contained cyclin E and cyclin A, which play a critical role in pre-RC assembly and cell cycle entry into S phase, and DNA polymerase-α, PCNA, and ribonucleotide reductase, which are essential for the initiation of DNA synthesis. In addition, in cells in S phase, AR co-sedimented with components of the DNA replication machinery of cells that entered S phase. Conclusions/Significance Together, these observations suggest a novel role of AR as a component of the pre-RC to exert control over progression of LNCaP cells from G1 to S phase through a mechanism that is independent of its role as a transcription factor.
Collapse
Affiliation(s)
- Shalini Murthy
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Min Wu
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - V. Uma Bai
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Zizheng Hou
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Mani Menon
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Evelyn R. Barrack
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Sahn-Ho Kim
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - G. Prem-Veer Reddy
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
17
|
Qu F, Cui X, Hong Y, Wang J, Li Y, Chen L, Liu Y, Gao Y, Xu D, Wang Q. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem 2013; 377:121-30. [PMID: 23417242 DOI: 10.1007/s11010-013-1576-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/24/2013] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that androgen receptor (AR) is involved in the progression of prostate cancer (CaP) by several mechanisms. However, how AR is regulated has not been fully understood. In this study, miR-185 was found to be down-regulated in clinical CaP samples. Targets prediction revealed that AR had putative complementary sequences to miR-185, which was confirmed by the following dual luciferase reporter assay. Overexpression of miR-185 could reduce the expression of AR protein but not mRNA in LNCaP cells. The proliferation of LNCaP cells was inhibited by overexpression of miR-185. Cell cycle analysis revealed cell cycle arrest at G0/G1 phase. The invasive and migration abilities of cells could also be suppressed by miR-185. Furthermore, miR-185 inhibited tumorigenicity in a CaP xenografts model. CDC6, one target of AR and an important regulatory molecule for cell cycle, was found to be down-regulated by overexpression of miR-185. Our findings suggest that miR-185 could function as a tumor-suppressor gene in CaP by directly targeting AR, and act as a potential therapeutic target for CaP.
Collapse
Affiliation(s)
- Fajun Qu
- Department of Urinary Surgery of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Isaacs JT, D'Antonio JM, Chen S, Antony L, Dalrymple SP, Ndikuyeze GH, Luo J, Denmeade SR. Adaptive auto-regulation of androgen receptor provides a paradigm shifting rationale for bipolar androgen therapy (BAT) for castrate resistant human prostate cancer. Prostate 2012; 72:1491-505. [PMID: 22396319 PMCID: PMC3374010 DOI: 10.1002/pros.22504] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 01/29/2023]
Abstract
Cell culture/xenograft and gene arrays of clinical material document that development of castration resistant prostate cancer (CRPC) cells involves acquisition of adaptive auto-regulation resulting in >25-fold increase in Androgen Receptor (AR) protein expression in a low androgen environment. Such adaptive AR increase paradoxically is a liability in castrated hosts, however, when supraphysiologic androgen is acutely replaced. Cell synchronization/anti-androgen response is due to AR binding to replication complexes (RC) at origin of replication sites (ORS) in early G1 associated with licensing/restricting DNA for single round of duplication during S-phase. When CRPC cells are acutely exposed to supraphysiologic androgen, adaptively increased nuclear AR is over-stabilized, preventing sufficient degradation in mitosis, inhibiting DNA re-licensing, and thus death in the subsequent cell cycle. These mechanistic results and the fact that AR/RC binding occurs in metastatic CRPCs directly from patients provides a paradigm shifting rationale for bipolar androgen therapy (BAT) in patient progressing on chronic androgen ablation. BAT involves giving sequential cycles alternating between periods of acute supraphysiologic androgen followed by acute ablation to take advantage of vulnerability produced by adaptive auto-regulation and binding of AR to RC in CRPC cells. BAT therapy is effective in xenografts and based upon positive results has entered clinical testing.
Collapse
Affiliation(s)
- John T Isaacs
- The Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen S, Gulla S, Cai C, Balk SP. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012; 287:8571-83. [PMID: 22275373 DOI: 10.1074/jbc.m111.325290] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.
Collapse
Affiliation(s)
- Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
20
|
Sivanandam A, Murthy S, Chinnakannu K, Bai VU, Kim SH, Barrack ER, Menon M, Reddy GPV. Calmodulin protects androgen receptor from calpain-mediated breakdown in prostate cancer cells. J Cell Physiol 2011; 226:1889-96. [PMID: 21506119 DOI: 10.1002/jcp.22516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival.
Collapse
Affiliation(s)
- Arun Sivanandam
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Quéro L, Giocanti N, Hennequin C, Favaudon V. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells. Prostate 2010; 70:401-11. [PMID: 19902473 DOI: 10.1002/pros.21074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bicalutamide (Casodex) reportedly improves high-risk prostate cancer survival as an adjuvant treatment following radiotherapy. However, biological data for the interaction between bicalutamide and ionizing radiation in concomitant association are lacking. METHODS To explore this issue, androgen-dependent (LNCaP) and -independent (DU145) human prostate cancer cells were exposed for 48 hr to 20, 40, or 80 microM bicalutamide introduced before (neoadjuvant), during (concomitant), or following (adjuvant) radiation. Growth inhibition and cytotoxicity, cell cycle distribution and expression of the prostate serum antigen (PSA) and androgen receptor (AR), were measured as endpoints. RESULTS Bicalutamide-induced cytotoxic and cytostatic effects were found to be correlated with a marked G1 phase arrest and S phase depression. The drug down-regulated PSA and AR proteins and psa mRNA in LNCaP cells. However, transient up-regulation of the expression of ar mRNA was observed in the presence of 40 microM drug. DU145 cells did not express PSA and proved to be comparatively resistant to the drug from both cytostatic and cytotoxic effects. Bicalutamide dose-dependently induced a significant decrease of radiation susceptibility among drug survivors in LNCaP cells, whilst the interaction appeared to be additive in DU145 cells. CONCLUSIONS The antagonistic radiation-drug interaction observed in LNCaP cells is of significance in relation to combined radiotherapy-bicalutamide treatments directed against tumors expressing the AR. The results suggest that bicalutamide is amenable to combined schedule with radiotherapy provided the drug and radiation are not given in close temporal proximity.
Collapse
Affiliation(s)
- Laurent Quéro
- Institut Curie, Bât. 110-112, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
22
|
Jin F, Fondell JD. A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression. Nucleic Acids Res 2009; 37:4826-38. [PMID: 19520769 PMCID: PMC2724301 DOI: 10.1093/nar/gkp510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The androgen receptor (AR) plays a pivotal role in the onset and progression of prostate cancer by promoting cellular proliferation. Recent studies suggest AR is a master regulator of G1-S progression and possibly a licensing factor for DNA replication yet the mechanisms remain poorly defined. Here we report that AR targets the human Cdc6 gene for transcriptional regulation. Cdc6 is an essential regulator of DNA replication in eukaryotic cells and its mRNA expression is inversely modulated by androgen or antiandrogen treatment in androgen-sensitive prostate cancer cells. AR binds at a distinct androgen-response element (ARE) in the Cdc6 promoter that is functionally required for androgen-dependent Cdc6 transcription. We found that peak AR occupancy at the novel ARE occurs during the G1/S phase concomitant with peak Cdc6 mRNA expression. We also identified several of the coactivators and corepressors involved in AR-dependent Cdc6 transcriptional regulation in vivo and further characterized ligand-induced alterations in histone acetylation and methylation at the Cdc6 promoter. Significantly, AR silencing in prostate cancer cells markedly decreases Cdc6 expression and androgen-dependent cellular proliferation. Collectively, our results suggest that Cdc6 is a key regulatory target for AR and provide new insights into the mechanisms of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | - Joseph D. Fondell
- *To whom correspondence should be addressed. Tel: +1 732 235 3348; Fax: +1 732 235 5823;
| |
Collapse
|
23
|
D'Antonio JM, Vander Griend DJ, Isaacs JT. DNA licensing as a novel androgen receptor mediated therapeutic target for prostate cancer. Endocr Relat Cancer 2009; 16:325-32. [PMID: 19240183 PMCID: PMC3072142 DOI: 10.1677/erc-08-0205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During middle G(1) of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication. In both cases, the binding of androgen to the androgen receptor (AR) is required. However, the biochemical cascade involved in such AR-stimulated cell proliferation and DNA synthesis is dramatically different in normal versus malignant prostate cells. In normal prostate, AR-stimulated stromal cell paracrine secretion of andromedins stimulates DNA replication within prostatic epithelial cells, in which AR functions as a tumor suppressor gene by inducing proliferative quiescence and terminal differentiation. By direct contrast, nuclear AR in prostate cancer cells autonomously stimulates continuous growth via incorporation of AR into the pre-RC. Such a gain of function by AR-expressing prostate cancer cells requires that AR be efficiently degraded during mitosis since lack of such degradation leads to re-licensing problems, resulting in S-phase arrest during the subsequent cell cycle. Thus, acquisition of AR as part of the licensing complex for DNA replication represents a paradigm shift in how we view the role of AR in prostate cancer biology, and introduces a novel vulnerability in AR-expressing prostate cancer cells apt for therapeutic intervention.
Collapse
Affiliation(s)
- Jason M D'Antonio
- Department of Urology, Brady Urologic Institute, The Johns Hopkins University School of Medicine, Room 1M43, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
24
|
Mallik I, Davila M, Tapia T, Schanen B, Chakrabarti R. Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1737-44. [DOI: 10.1016/j.bbamcr.2008.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/21/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
25
|
Halvorsen OJ. Molecular and prognostic markers in prostate cancer. APMIS 2008. [DOI: 10.1111/j.1600-0463.2008.0s123.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. NUCLEAR RECEPTOR SIGNALING 2008; 6:e001. [PMID: 18301781 PMCID: PMC2254330 DOI: 10.1621/nrs.06001] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/07/2007] [Indexed: 01/17/2023]
Abstract
The androgen receptor (AR) is a critical effector of prostate cancer development and progression. The dependence of this tumor type on AR activity is exploited in treatment of disseminated prostate cancers, wherein ablation of AR function (achieved either through ligand depletion and/or the use of AR antagonists) is the first line of therapeutic intervention. These strategies are initially effective, and induce a mixed response of cell cycle arrest or apoptosis in prostate cancer cells. However, recurrent, incurable tumors ultimately arise as a result of inappropriately restored AR function. Based on these observations, it is imperative to define the mechanisms by which AR controls cancer cell proliferation. Mechanistic investigation has revealed that AR acts as a master regulator of G1-S phase progression, able to induce signals that promote G1 cyclin-dependent kinase (CDK) activity, induce phosphorylation/inactivation of the retinoblastoma tumor suppressor (RB), and thereby govern androgen-dependent proliferation. These functions appear to be independent of the recently identified TMPRSS2-ETS fusions. Once engaged, several components of the cell cycle machinery actively modulate AR activity throughout the cell cycle, thus indicating that crosstalk between the AR and cell cycle pathways likely modulate the mitogenic response to androgen. As will be discussed, discrete aberrations in this process can alter the proliferative response to androgen, and potentially subvert hormonal control of tumor progression.
Collapse
Affiliation(s)
- Steven P Balk
- Cancer Biology Program-Hematology Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 2007; 67:976-88. [PMID: 17440966 DOI: 10.1002/pros.20586] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lithium is an existing drug for bipolar disorder and its uptake was recently linked to reduced tumor incidence compared to the general population. The major target of lithium action is glycogen synthase kinase 3 (GSK-3). Since GSK-3 expression and activation are associated with prostate cancer progression, the anti-cancer potential of lithium on prostate cancer was investigated in this study. METHODS Multiple prostate cancer cell lines were treated with lithium chloride (LiCl). Cell proliferation and cell cycle distribution were analysed. DNA replication was determined using BrdU labeling assay. Genome-wide screening of gene expression was performed using cDNA microarray assay. GSK-3beta gene-specific silencing was conducted using small interferencing RNA (siRNA) transfection. E2 factor (E2F) transactivation was evaluated using reporter gene assay and E2F-DNA interaction was determined with chromatin-immunoprecipitation assay (ChIP). RESULTS LiCl significantly inhibited cell proliferation, which was associated with reduced DNA replication and S-phase cell cycle arrest. LiCl significantly decreased the expression of multiple DNA replication-related genes, including cell division cycle 6 (cdc6), cyclin A, cyclin E, and cdc25C, which are regulated by E2F factor during cell cycle. A novel GSK-3-specific inhibitor TDZD-8 and GSK-3beta siRNA also suppressed the expression of these E2F target genes, indicating that LiCl-induced anti-cancer effect was associated with GSK-3beta inhibition. Furthermore, LiCl suppressed E2F transactivation by interrupting the interaction of E2F1 factor with its target gene promoter. CONCLUSIONS These data indicated that LiCl suppresses cancer cell proliferation by disrupting E2F-DNA interaction and subsequent E2F-mediated gene expression in prostate cancer.
Collapse
Affiliation(s)
- Aijing Sun
- Department of Pathology, Shaoxing People's Hospital and the First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Replication of nuclear DNA in eukaryotes presents a tremendous challenge, not only due to the size and complexity of the genome, but also because of the time constraint imposed by a limited duration of S phase during which the entire genome has to be duplicated accurately and only once per cell division cycle. A challenge of this magnitude can only be met by the close coupling of DNA precursor synthesis to replication. Prokaryotic systems provide evidence for multienzyme and multiprotein complexes involved in DNA precursor synthesis and DNA replication. In addition, fractionation of nuclear proteins from proliferating mammalian cells shows co-sedimentation of enzymes involved in DNA replication with those required for synthesis of deoxynucleoside triphosphates (dNTPs). Such complexes can be isolated only from cells that are in S phase, but not from cells in G(0)/G(1) phases of cell cycle. The kinetics of deoxynucleotide metabolism supporting DNA replication in intact and permeabilized cells reveals close coupling and allosteric interaction between the enzymes of dNTP synthesis and DNA replication. These interactions contribute to channeling and compartmentation of deoxynucleotides in the microvicinity of DNA replication. A multienzyme and multiprotein megacomplex with these unique properties is called "replitase." In this article, we summarize some of the relevant evidence to date that supports the concept of replitase in mammalian cells, which originated from the observations in Dr. Pardee's laboratory. In addition, we show that androgen receptor (AR), which plays a critical role in proliferation and viability of prostate cancer cells, is associated with replitase, and that identification of constituents of replitase in androgen-dependent versus androgen-independent prostate cancer cells may provide insights into androgen-regulated events that control proliferation of prostate cancer cells and potentially offer an effective strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shalini Murthy
- Vattikuti Urology Institute, Henry Ford Health System, One Ford Place 2D, Detroit, MI 48202, USA
| | | |
Collapse
|
29
|
Baker DEC, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007; 25:207-15. [PMID: 17287758 DOI: 10.1038/nbt1285] [Citation(s) in RCA: 473] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The application of human embryonic stem cells (HESCs) to provide differentiated cells for regenerative medicine will require the continuous maintenance of the undifferentiated stem cells for long periods in culture. However, chromosomal stability during extended passaging cannot be guaranteed, as recent cytogenetic studies of HESCs have shown karyotypic aberrations. The observed karyotypic aberrations probably reflect the progressive adaptation of self-renewing cells to their culture conditions. Genetic change that increases the capacity of cells to proliferate has obvious parallels with malignant transformation, and we propose that the changes observed in HESCs in culture reflect tumorigenic events that occur in vivo, particularly in testicular germ cell tumors. Further supporting a link between culture adaptation and malignancy, we have observed the formation of a chromosomal homogeneous staining region in one HESC line, a genetic feature almost a hallmark of cancer cells. Identifying the genes critical for culture adaptation may thus reveal key players for both stem cell maintenance in vitro and germ cell tumorigenesis in vivo.
Collapse
Affiliation(s)
- Duncan E C Baker
- Sheffield Regional Cytogenetics Service, Sheffield Children's Trust, Western Bank, Sheffield S10 2TH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Duensing A, Liu Y, Spardy N, Bartoli K, Tseng M, Kwon JA, Teng X, Duensing S. RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene 2007; 26:215-23. [PMID: 16819507 PMCID: PMC2228273 DOI: 10.1038/sj.onc.1209782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 05/02/2006] [Accepted: 05/26/2006] [Indexed: 01/23/2023]
Abstract
Aberrant centrosome numbers are detected in virtually all human cancers where they can contribute to chromosomal instability by promoting mitotic spindle abnormalities. Despite their widespread occurrence, the molecular mechanisms that underlie centrosome amplification are only beginning to emerge. Here, we present evidence for a novel regulatory circuit involved in centrosome overduplication that centers on RNA polymerase II (pol II). We found that human papillomavirus type 16 E7 (HPV-16 E7)- and hydroxyurea (HU)-induced centriole overduplication are abrogated by alpha-amanitin, a potent and specific RNA pol II inhibitor. In contrast, normal centriole duplication proceeded undisturbed in alpha-amanitin-treated cells. Centriole overduplication was significantly reduced by siRNA-mediated knock down of CREB-binding protein (CBP), a transcriptional co-activator. We identified cyclin A2 as a key transcriptional target of RNA pol II during HU-induced centriole overduplication. Collectively, our results show that ongoing RNA pol II transcription is required for centriole overduplication whereas it may be dispensable for normal centriole duplication. Given that many chemotherapeutic agents function through inhibition of transcription, our results may help to develop strategies to target centrosome-mediated chromosomal instability for cancer therapy and prevention.
Collapse
Affiliation(s)
- A Duensing
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Litvinov IV, Vander Griend DJ, Antony L, Dalrymple S, De Marzo AM, Drake CG, Isaacs JT. Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A 2006; 103:15085-90. [PMID: 17015840 PMCID: PMC1622781 DOI: 10.1073/pnas.0603057103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) protein expression and function are critical for survival and proliferation of androgen-sensitive (AS) prostate cancer cells. Besides its ability to function as a transcription factor, experimental observations suggest that AR becomes a licensing factor for DNA replication in AS prostate cancer cells and thus must be degraded during each cell cycle in these cells to allow reinitiation of DNA replication in the next cell cycle. This possibility was tested by using the AS human prostate cancer cell lines, LNCaP, CWR22Rv1, and LAPC-4. These studies demonstrated that AR levels fluctuate both within and between various phases of the cell cycle in each of these AS lines. Consistent with its licensing ability, AR is degraded during mitosis via a proteasome-dependent pathway in these AS prostate cancer cells. In contrast, proteasome-dependent degradation of AR during mitosis is not observed in AR-expressing but androgen-insensitive human prostate stromal cells, in which AR does not function as a licensing factor for DNA replication. To evaluate mitotic degradation of AR in vivo, the same series of human AS prostate cancers growing as xenografts in nude mice and malignant tissues obtained directly from prostate cancer patients were evaluated by dual Ki-67 and AR immunohistochemistry for AR expression in mitosis. These results document that AR is also down-regulated during mitosis in vivo. Thus, AS prostate cancer cells do not express AR protein during mitosis, either in vitro or in vivo, consistent with AR functioning as a licensing factor for DNA replication in AS prostate cancer cells.
Collapse
Affiliation(s)
- Ivan V. Litvinov
- *Chemical Therapeutics Program
- Cellular and Molecular Medicine Graduate Program
| | - Donald J. Vander Griend
- *Chemical Therapeutics Program
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | | | | | - Angelo M. De Marzo
- Department of Pathology, and the
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Charles G. Drake
- Division of Immunology and Hematopoiesis, The Sidney Kimmel Comprehensive Cancer Center
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - John T. Isaacs
- *Chemical Therapeutics Program
- Cellular and Molecular Medicine Graduate Program
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231
- To whom correspondence should be addressed at:
The Sidney Kimmel Comprehensive Cancer Center, Room 1M43, 1650 Orleans Street, Baltimore, MD 21231. E-mail:
| |
Collapse
|
32
|
Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 2006; 66:7783-92. [PMID: 16885382 DOI: 10.1158/0008-5472.can-05-4472] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) plays a central role in prostate cancer, with most tumors responding to androgen deprivation therapies, but the molecular basis for this androgen dependence has not been determined. Androgen [5alpha-dihydrotestosterone (DHT)] stimulation of LNCaP prostate cancer cells, which have constitutive phosphatidylinositol 3-kinase (PI3K)/Akt pathway activation due to PTEN loss, caused increased expression of cyclin D1, D2, and D3 proteins, retinoblastoma protein hyperphosphorylation, and cell cycle progression. However, cyclin D1 and D2 message levels were unchanged, indicating that the increases in cyclin D proteins were mediated by a post-transcriptional mechanism. This mechanism was identified as mammalian target of rapamycin (mTOR) activation. DHT treatment increased mTOR activity as assessed by phosphorylation of the downstream targets p70 S6 kinase and 4E-BP1, and mTOR inhibition with rapamycin blocked the DHT-stimulated increase in cyclin D proteins. Significantly, DHT stimulation of mTOR was not mediated through activation of the PI3K/Akt or mitogen-activated protein kinase/p90 ribosomal S6 kinase pathways and subsequent tuberous sclerosis complex 2/tuberin inactivation or by suppression of AMP-activated protein kinase. In contrast, mTOR activation by DHT was dependent on AR-stimulated mRNA synthesis. Oligonucleotide microarrays showed that DHT-stimulated rapid increases in multiple genes that regulate nutrient availability, including transporters for amino acids and other organic ions. These results indicate that a critical function of AR in PTEN-deficient prostate cancer cells is to support the pathologic activation of mTOR, possibly by increasing the expression of proteins that enhance nutrient availability and thereby prevent feedback inhibition of mTOR.
Collapse
Affiliation(s)
- Youyuan Xu
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|