1
|
Bellido-Quispe DK, Arcce IML, Pinzón-Osorio CA, Campos VF, Remião MH. Chemical activation of mammalian oocytes and its application in camelid reproductive biotechnologies: A review. Anim Reprod Sci 2024; 266:107499. [PMID: 38805838 DOI: 10.1016/j.anireprosci.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Mammalian oocyte activation is a critical process occurring post-gamete fusion, marked by a sequence of cellular events initiated by an upsurge in intracellular Ca2+. This surge in calcium orchestrates the activation/deactivation of specific kinases, leading to the subsequent inactivation of MPF and MAPK activities, alongside PKC activation. Despite various attempts to induce artificial activation using distinct chemical compounds as Ca2+ inducers and/or Ca2+-independent agents, the outcomes have proven suboptimal. Notably, incomplete suppression of MPF and MAPK activities persists, necessitating a combination of different agents for enhanced efficiency. Moreover, the inherent specificity of activation methods for each species precludes straightforward extrapolation between them. Consequently, optimization of protocols for each species and for each technique, such as PA, ICSI, and SCNT, is required. Despite recent strides in camelid biotechnologies, the field has seen little advancement in chemical activation methods. Only a limited number of chemical agents have been explored, and the effects of many remain unknown. In ICSI, despite obtaining blastocysts with different chemical compounds that induce Ca2+ and calcium-independent increases, viable offspring have not been obtained. However, SCNT has exhibited varying outcomes, successfully yielding viable offspring with a reduced number of chemical activators. This article comprehensively reviews the current understanding of the physiological activation of oocytes and the molecular mechanisms underlying chemical activation in mammals. The aim is to transfer and apply this knowledge to camelid reproductive biotechnologies, with emphasis on chemical activation in PA, ICSI, and SCNT.
Collapse
Affiliation(s)
| | | | - César Augusto Pinzón-Osorio
- Laboratório de Fisiopatologia e Biotécnicas da Reprodução Animal (FiBRA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
2
|
Ortega MS, Lockhart KN, Spencer TE. Impact of Sire on Embryo Development and Pregnancy. Vet Clin North Am Food Anim Pract 2024; 40:131-140. [PMID: 37704462 DOI: 10.1016/j.cvfa.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The use of in vitro embryo production (IVP) has increased globally, particularly in the United States. Although maternal factors influencing embryo development have been extensively studied, the influence of the sire is not well understood. Sperm plays a crucial role in embryo development providing DNA, triggering oocyte maturation, and aiding in mitosis. Current sire fertility measurements do not consistently align with embryo production outcomes. Low-fertility sires may perform well in IVP systems but produce fewer pregnancies. Testing sires in vitro could identify characteristics affecting embryo development and pregnancy loss risk in IVP and embryo transfer programs.
Collapse
Affiliation(s)
- M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive.
| | - Kelsey N Lockhart
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
4
|
Yang R, Ji CL, Zhang M, Zhang J, Yuan HJ, Luo MJ, Jiao GZ, Tan JH. Role of calcium-sensing receptor in regulating activation susceptibility of postovulatory aging mouse oocytes. J Reprod Dev 2023; 69:185-191. [PMID: 37245986 PMCID: PMC10435528 DOI: 10.1262/jrd.2023-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
The mechanisms underlying postovulatory oocyte aging (POA) remain largely unknown. The expression of the calcium-sensing receptor (CaSR) in mouse oocytes and its role in POA need to be explored. Our objective was to observe CaSR expression and its role in the susceptibility to activating stimuli (STAS) in POA mouse oocytes. The results showed that, although none of the newly ovulated oocytes were activated, 40% and 94% of the oocytes recovered 19 and 25 h after human chorionic gonadotropin (hCG) injection were activated, respectively, after ethanol treatment. The level of the CaSR functional dimer protein in oocytes increased significantly from 13 to 25 h post hCG. Thus, the CaSR functional dimer level was positively correlated with the STAS of POA oocytes. Aging in vitro with a CaSR antagonist suppressed the elevation of STAS, and cytoplasmic calcium in oocytes recovered 19 h post hCG, whereas aging with a CaSR agonist increased STAS, and cytoplasmic calcium of oocytes recovered 13 h post hCG. Furthermore, the CaSR was more important than the Na-Ca2+ exchanger in regulating oocyte STAS, and T- and L-type calcium channels were inactive in aging oocytes. We conclude that the CaSR is involved in regulating STAS in POA mouse oocytes, and that it is more important than the other calcium channels tested in this connection.
Collapse
Affiliation(s)
- Rui Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
- Laboratory Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P. R. China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
- Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City 264000, Shandong Province, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong, P. R. China
| |
Collapse
|
5
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Yuan LM, Chen YL, Shi XH, Wu XX, Liu XJ, Liu SP, Chen N, Sai WJF. PLCζ can stably regulate Ca2+ fluctuations in early embryo. Theriogenology 2022; 191:16-21. [DOI: 10.1016/j.theriogenology.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
|
7
|
Effect of A23187 ionophore treatment on human blastocyst development-a sibling oocyte study. J Assist Reprod Genet 2022; 39:1225-1232. [PMID: 35357606 DOI: 10.1007/s10815-022-02467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To investigate whether treatment with commercially available ready-to-use A23187 ionophore (GM508-CultActive) improves embryo development outcome in patients with a history of embryo developmental problems. METHODS This is a uni-center prospective study in which sibling oocytes of patients with embryos of poor quality on day 5 in the previous cycle were treated or not with CultActive. RESULTS Two hundred forty-seven metaphase II (MII) oocytes from 19 cycles performed between 2016 and 2019 were included in the study. After ICSI, the sibling oocytes were assigned to the treatment group or to the control group, following an electronically generated randomization list. A number of 122 MII were treated with CultActive and 125 MII had no treatment and were assigned to the control group. No difference in fertilization rate (p = 0.255) or in the capacity of embryos to reach good quality on day 5 (p = 0.197) was observed between the two groups. The utilization rates defined as the number of embryos transferred or cryopreserved per mature oocyte (p = 0.438) or per fertilized oocytes (p = 0.299) were not significantly different between the treated group and the control group. CONCLUSION The results of the current study do not support the use of CultActive in cases with embryo developmental problems.
Collapse
|
8
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
9
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Balestrini PA, Sanchez-Cardenas C, Luque GM, Baro Graf C, Sierra JM, Hernández-Cruz A, Visconti PE, Krapf D, Darszon A, Buffone MG. Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB J 2021; 35:e21478. [PMID: 33991146 DOI: 10.1096/fj.202002333rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Baro Graf
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Jessica M Sierra
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Maturation conditions, post-ovulatory age, medium pH, and ER stress affect [Ca 2+]i oscillation patterns in mouse oocytes. J Assist Reprod Genet 2021; 38:1373-1385. [PMID: 33914207 DOI: 10.1007/s10815-021-02100-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Insufficiency of oocyte activation impairs the subsequent embryo development in assisted reproductive technology (ART). Intracellular Ca2+ concentration ([Ca2+]i) oscillations switch the oocytes to resume the second meiosis and initiate embryonic development. However, the [Ca2+]i oscillation patterns in oocytes are poorly characterized. In this study, we investigated the effects of various factors, such as the oocytes age, pH, cumulus cells, in vitro or in vivo maturation, and ER stress on [Ca2+]i oscillation patterns and pronuclear formation after parthenogenetic activation of mouse oocytes. Our results showed that the oocytes released to the oviduct at 17 h post-human chorionic gonadotrophin (hCG) displayed a significantly stronger [Ca2+]i oscillation, including higher frequency, shorter cycle, and higher peak, compared with oocytes collected at earlier or later time points. [Ca2+]i oscillations in acidic conditions (pH 6.4 and 6.6) were significantly weaker than those in neutral and mildly alkaline conditions (pH from 6.8 to 7.6). In vitro-matured oocytes showed reduced frequency and peak of [Ca2+]i oscillations compared with those matured in vivo. In vitro-matured oocytes from the cumulus-oocyte complexes (COCs) showed a significantly higher frequency, shorter cycle, and higher peak compared with the denuded oocytes (DOs). Finally, endoplasmic reticulum stress (ER stress) severely affected the parameters of [Ca2+]i oscillations, including elongated cycles and lower frequency. The pronuclear (PN) rate of oocytes after parthenogenetic activation was correlated with [Ca2+]i oscillation pattern, decreasing with oocyte aging, cumulus removal, acidic pH, and increasing ER stress. These results provide fundamental but critical information for the mechanism of how these factors affect oocyte activation.
Collapse
|
12
|
Eum JH, Park M, Yoon JA, Yoon SY. Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization. Dev Reprod 2021; 24:297-306. [PMID: 33537516 PMCID: PMC7837419 DOI: 10.12717/dr.2020.24.4.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Repetitive changes in the intracellular calcium concentration
([Ca2+]i) triggers egg activation, including cortical
granule exocytosis, resumption of second meiosis, block to polyspermy, and
initiating embryonic development. [Ca2+]i oscillations that
continue for several hours, are required for the early events of egg activation
and possibly connected to further development to the blastocyst stage. The
sources of Ca2+ ion elevation during [Ca2+]i
oscillations are Ca2+ release from endoplasmic reticulum
through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion
influx through Ca2+ channel on the plasma membrane.
Ca2+ channels have been characterized into
voltage-dependent Ca2+ channels (VDCCs), ligand-gated
Ca2+ channel, and leak-channel. VDCCs expressed on muscle
cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their
activation threshold or their sensitivity to peptide toxins isolated from cone
snails and spiders. The present study was aimed to investigate the localization
pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and
the role in fertilization. [Ca2+]i oscillation was observed in
a Ca2+ contained medium with sperm factor or adenophostin A
injection but disappeared in Ca2+ free medium.
Ca2+ influx was decreased by Lat A. N-VDCC specific
inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i
oscillation profiles in SrCl2 treatment. N or P/Q type VDC were
distributed on the plasma membrane in cortical cluster form, not in the
cytoplasm. Ca2+ influx is essential for
[Ca2+]i oscillation during mammalian fertilization. This
Ca2+ influx might be controlled through the N or P/Q type
VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization
failure or low fertilization eggs in subfertility women.
Collapse
Affiliation(s)
- Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| |
Collapse
|
13
|
Martínez M, Durban M, Santaló J, Rodríguez A, Vassena R. Assisted oocyte activation effects on the morphokinetic pattern of derived embryos. J Assist Reprod Genet 2021; 38:531-537. [PMID: 33405007 PMCID: PMC7884506 DOI: 10.1007/s10815-020-02025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Assisted oocyte activation (AOA) can restore fertilization rates after IVF/ICSI cycles with fertilization failure. AOA is an experimental technique, and its downstream effects remain poorly characterized. Clarifying the relationship between AOA and embryo, morphokinetics could offer complementary insights into the quality and viability of the embryos obtained with this technique. The aim of this study is to compare the preimplantation morphokinetic development of embryos derived from ICSI-AOA (experimental group) vs. ICSI cycles (control group). METHODS A retrospective cohort study was carried out with 141 embryos from fresh oocyte donation cycles performed between 2013 and 2017; 41 embryos were derived from 7 ICSI-AOA cycles and 100 embryos from 18 ICSI cycles. Morphokinetic development of all embryos was followed using a time-lapse system. RESULTS We show that embryos from both groups develop similarly for most milestones, with the exception of the time of second polar body extrusion (tPB2) and the time to second cell division (t3). CONCLUSIONS We conclude that ionomycin mediated AOA does not seem to affect the morphokinetic pattern of preimplantation embryo development, despite the alterations found in tPB2 and t3, which could directly reflect the use of a Ca2+ ionophore as a transient and quick non-physiologic increase of free intracytoplasmic Ca2+.
Collapse
Affiliation(s)
- M Martínez
- Eugin, Calle Balmes 236, 08006, Barcelona, Spain
| | - M Durban
- Eugin, Calle Balmes 236, 08006, Barcelona, Spain
| | - J Santaló
- Departamento de Biología Celular, Fisiología en Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - A Rodríguez
- Eugin, Calle Balmes 236, 08006, Barcelona, Spain
| | - R Vassena
- Eugin, Calle Balmes 236, 08006, Barcelona, Spain.
| |
Collapse
|
14
|
Ferrer-Vaquer A, Barragán M, Rodríguez A, Vassena R. Altered cytoplasmic maturation in rescued in vitro matured oocytes. Hum Reprod 2020; 34:1095-1105. [PMID: 31119269 DOI: 10.1093/humrep/dez052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do culture conditions affect cytoplasmic maturation in denuded immature non-GV oocytes? SUMMARY ANSWER The maturation rate of denuded non-GV oocytes is not affected by culture media, but in vitro maturation seems to alter the mitochondrial membrane potential, endoplasmic reticulum (ER) and actin cytoskeleton compared with in vivo maturation. WHAT IS KNOWN ALREADY In vitro maturation of denuded immature non-GV oocytes benefits cycles with poor in vivo MII oocyte collection, but maturation levels of non-GV oocytes are only scored by polar body extrusion. Since oocyte maturation involves nuclear as well as cytoplasmic maturation for full meiotic competence, further knowledge is needed about cytoplasmic maturation in in vitro culture. STUDY DESIGN, SIZE, DURATION This basic research study was carried out between January 2017 and September 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 339 denuded immature non-GV oocytes were cultured in SAGE 1-Step (177) or G-2 PLUS (162) for 6-8 h after retrieval, and 72 in vivo matured MII oocytes were used as controls. Cultured immature non-GV oocytes were scored for polar body extrusion and analysed for mitochondrial membrane potential (ΔΨm), ER clusters, cortical granules number and distribution, spindle morphology and actin cytoskeleton organization. The obtained parameter values were compared to in vivo matured MII oocyte parameter values. MAIN RESULTS AND THE ROLE OF CHANCE The maturation rates of oocytes cultured in G-2 PLUS and SAGE 1-Step were similar (65% vs 64.2%; P = 0.91). The differences observed in cortical granule density were not statistically significant. Also spindle morphometric parameters were mostly similar between in vitro and in vivo matured MII oocytes. However, the number of ER clusters, the ΔΨm and the cortical actin thickness showed significant differences between in vivo MII oocytes and denuded immature non-GV oocytes cultured in vitro until meiosis completion. LIMITATIONS, REASONS FOR CAUTION Frozen-thawed oocytes together with fresh oocytes were used as controls. Due to technical limitations (fixation method and fluorochrome overlap), only one or two parameters could be studied per oocyte. Thus, a global view of the maturation status for each individual oocyte could not be obtained. WIDER IMPLICATIONS OF THE FINDINGS Characterization of in vitro matured oocytes at the cellular level will help us to understand the differences observed in the clinical outcomes reported with rescue IVM compared to in vivo MII oocytes and to improve the culture methods applied. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clinica Eugin and by the Torres Quevedo Program to A.F.-V. from the Spanish Ministry of Economy and Competitiveness. No competing interests are declared.
Collapse
|
15
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
16
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
17
|
Liu C, Liu H, Luo Y, Lu T, Fu X, Cui S, Zhu S, Hou Y. The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II. Mol Reprod Dev 2020; 87:598-606. [PMID: 32017318 DOI: 10.1002/mrd.23322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.
Collapse
Affiliation(s)
- Cong Liu
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huage Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Cui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Saleh A, Kashir J, Thanassoulas A, Safieh-Garabedian B, Lai FA, Nomikos M. Essential Role of Sperm-Specific PLC-Zeta in Egg Activation and Male Factor Infertility: An Update. Front Cell Dev Biol 2020; 8:28. [PMID: 32064262 PMCID: PMC7000359 DOI: 10.3389/fcell.2020.00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus responsible for generating calcium (Ca2+) oscillations that induce egg activation and early embryonic development during mammalian fertilization. In the mammalian testis, PLCζ expression is detected at spermiogenesis following elongated spermatid differentiation. Sperm-delivered PLCζ induces Ca2+ release via the inositol 1,4,5-trisphosphate (InsP3) signaling pathway. PLCζ is the smallest known mammalian PLC isoform identified to date, with the simplest domain organization. However, the distinctive biochemical properties of PLCζ compared with other PLC isoforms contribute to its unique potency in stimulating cytosolic Ca2+ oscillations within mammalian eggs. Moreover, studies describing PLCζ “knockout” mouse phenotypes confirm the supreme importance of PLCζ at egg activation and monospermic fertilization in mice. Importantly, a number of clinical reports have highlighted the crucial importance of PLCζ in human fertilization by associating PLCζ deficiencies with certain forms of male factor infertility. Herein, we give an update on recent advances that have refined our understanding of how sperm PLCζ triggers Ca2 + oscillations and egg activation in mammals, while also discussing the nature of a potential “alternative” sperm factor. We summarise PLCζ localization in mammalian sperm, and the direct links observed between defective PLCζ protein in sperm and documented cases of male infertility. Finally, we postulate how this sperm protein can be used as a potential diagnostic marker, and also as a powerful therapeutic agent for treatment of certain types of male infertility due to egg activation failure or even in more general cases of male subfertility.
Collapse
Affiliation(s)
- Alaaeldin Saleh
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - F Anthony Lai
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Michail Nomikos
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
20
|
Adachi C, Kakinuma N, Jo SH, Ishii T, Arai Y, Arai S, Kitaguchi T, Takeda S, Inoue T. Sonic hedgehog enhances calcium oscillations in hippocampal astrocytes. J Biol Chem 2019; 294:16034-16048. [PMID: 31506300 DOI: 10.1074/jbc.ra119.007883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (SHH) is important for organogenesis during development. Recent studies have indicated that SHH is also involved in the proliferation and transformation of astrocytes to the reactive phenotype. However, the mechanisms underlying these are unknown. Involvement of SHH signaling in calcium (Ca) signaling has not been extensively studied. Here, we report that SHH and Smoothened agonist (SAG), an activator of the signaling receptor Smoothened (SMO) in the SHH pathway, activate Ca oscillations in cultured murine hippocampal astrocytes. The response was rapid, on a minute time scale, indicating a noncanonical pathway activity. Pertussis toxin blocked the SAG effect, indicating an involvement of a Gi coupled to SMO. Depletion of extracellular ATP by apyrase, an ATP-degrading enzyme, inhibited the SAG-mediated activation of Ca oscillations. These results indicate that SAG increases extracellular ATP levels by activating ATP release from astrocytes, resulting in Ca oscillation activation. We hypothesize that SHH activates SMO-coupled Gi in astrocytes, causing ATP release and activation of Gq/11-coupled P2 receptors on the same cell or surrounding astrocytes. Transcription factor activities are often modulated by Ca patterns; therefore, SHH signaling may trigger changes in astrocytes by activating Ca oscillations. This enhancement of Ca oscillations by SHH signaling may occur in astrocytes in the brain in vivo because we also observed it in hippocampal brain slices. In summary, SHH and SAG enhance Ca oscillations in hippocampal astrocytes, Gi mediates SAG-induced Ca oscillations downstream of SMO, and ATP-permeable channels may promote the ATP release that activates Ca oscillations in astrocytes.
Collapse
Affiliation(s)
- Chihiro Adachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Soo Hyun Jo
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Takayuki Ishii
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Yusuke Arai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Satoshi Arai
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Research Institute for Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 2268503, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| |
Collapse
|
21
|
Yang R, Sun HH, Ji CL, Zhang J, Yuan HJ, Luo MJ, Liu XY, Tan JH. Role of calcium-sensing receptor in regulating spontaneous activation of postovulatory aging rat oocytes. Biol Reprod 2019; 98:218-226. [PMID: 29267849 DOI: 10.1093/biolre/iox178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/17/2017] [Indexed: 11/14/2022] Open
Abstract
Mechanisms for postovulatory aging (POA) of oocytes and for spontaneous activation (SA) of rat oocytes are largely unknown. Expression of calcium-sensing receptor (CaSR) in rat oocytes and its role in POA remain unexplored. In this study, expression of CaSR in rat oocytes aging for different times was detected by immunofluorescence microscopy, and western blotting and the role of CaSR in POA was determined by observing the effects of regulating its activity on SA susceptibility and cytoplasmic calcium levels. The results showed that CaSR was expressed in rat oocytes. Oocytes recovered 19 h post human chorionic gonadotropin (hCG) injection were more susceptible to SA and expressed more functional CaSR than oocytes recovered 13 h after hCG injection, although both expressed the same level of total CaSR protein. Treatment with CaSR antagonist significantly suppressed cytoplasmic calcium elevation and SA of oocytes. Activation of Na-Ca2+ exchanger with NaCl inhibited SA to a greater extent than suppression of CaSR with NPS-2143, suggesting that calcium sources other than CaSR-controlled channels contributed to the elevation of cytoplasmic calcium. Treatment with T- or L-type calcium channel blockers significantly reduced SA. Suppression of all calcium channels tested reduced SA to minimum. It is concluded that the level of CaSR functional dimer protein, but not that of the total CaSR protein, was positively correlated with the SA susceptibility during POA of rat oocytes confirming that CaSR is involved in POA regulation. Blocking multiple calcium channels might be a better choice for efficient control of SA in rat oocytes.
Collapse
Affiliation(s)
- Rui Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Huan-Huan Sun
- College of Life Science, Northeast Agricultural University, Harbin, P. R. China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| | - Xin-Yong Liu
- Center for Reproductive Medicine, Tai'an City Central Hospital, Tai'an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, P. R. China
| |
Collapse
|
22
|
Yoon SY. Role of Type 1 Inositol 1,4,5-triphosphate Receptors in Mammalian Oocytes. Dev Reprod 2019; 23:1-9. [PMID: 31049467 PMCID: PMC6487317 DOI: 10.12717/dr.2019.23.1.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
Abstract
The ability of oocytes to undergo normal fertilization and embryo development is
acquired during oocyte maturation which is transition from the germinal vesicle
stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII).
Part of this process includes redistribution of inositol 1,4, 5-triphosphate
receptor (IP3R), a predominant Ca2+ channel on the endoplasmic
reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes
dominantly. At GV stage, IP3R1 are arranged as a network throughout the
cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1
diffuses to the entire cytoplasm in a more reticular manner, and obvious
clusters of IP3R1 are observed at the cortex of the egg. This structural
reorganization provides acquisition of [Ca2+]i oscillatory
activity during fertilization. In this review, general properties of IP3R1 in
somatic cells and mammalian oocyte are introduced.
Collapse
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
| |
Collapse
|
23
|
Reyes JM, Silva E, Chitwood JL, Schoolcraft WB, Krisher RL, Ross PJ. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum Reprod 2018; 32:2199-2208. [PMID: 29025019 DOI: 10.1093/humrep/dex284] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What effect does maternal age have on the human oocyte's molecular response to in vitro oocyte maturation? SUMMARY ANSWER Although polyadenylated transcript abundance is similar between young and advanced maternal age (AMA) germinal vesicle (GV) oocytes, metaphase II (MII) oocytes exhibit a divergent transcriptome resulting from a differential response to in vitro oocyte maturation. WHAT IS KNOWN ALREADY Microarray studies considering maternal age or maturation stage have shown that either of these factors will affect oocyte polyadenylated transcript abundance in human oocytes. However, studies considering both human oocyte age and multiple stages simultaneously are limited to a single study that examined transcript levels for two genes by qPCR. Thus, polyadenylated RNA sequencing (RNA-Seq) could provide novel insight into age-associated aberrations in gene expression in GV and MII oocytes. STUDY DESIGN, SIZE, DURATION The effect of maternal age (longitudinal analysis) on polyadenylated transcript abundance at different stages was analyzed by examining single GV and single in vitro matured MII oocytes derived from five young (YNG; < 30 years; average age 26.8; range 20-29) and five advanced maternal age (AMA; ≥40 years; average age 41.6 years; range 40-43 years) patients. Thus, a total of 10 YNG (5 GV and 5 MII) and 10 AMA (5 GV and 5 MII) oocytes were individually processed for RNA-Seq analysis. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Patients undergoing infertility treatment at the Colorado Center for Reproductive Medicine (Lone Tree, CO, USA) underwent ovarian stimulation with FSH and received hCG for final follicular maturation prior to ultrasound guided oocyte retrieval. Unused GV oocytes obtained at retrieval were donated for transcriptome analysis. Single oocytes were stored (at -80°C in PicoPure RNA Extraction Buffer; Thermo Fisher Scientific, USA) immediately upon verification of immaturity or after undergoing in vitro oocyte maturation (24 h incubation), representing GV and MII samples, respectively. After isolating RNA and generating single oocyte RNA-Seq libraries (SMARTer Ultra Low Input RNA HV kit; Clontech, USA), Illumina sequencing (100 bp paired-end reads on HiSeq 2500) and bioinformatics analysis (CLC Genomics Workbench, DESeq2, weighted gene correlation network analysis (WGCNA), Ingenuity Pathway Analysis) were performed. MAIN RESULTS AND THE ROLE OF CHANCE A total of 12 770 genes were determined to be expressed in human oocytes (reads per kilobase per million mapped reads (RPKM) > 0.4 in at least three of five replicates for a minimum of one sample type). Differential gene expression analysis between YNG and AMA oocytes (within stage) identified 1 and 255 genes that significantly differed (adjusted P < 0.1 and log2 fold change >1) in polyadenylated transcript abundance for GV and MII oocytes, respectively. These genes included CDK1, NLRP5 and PRDX1, which have been reported to affect oocyte developmental potential. Despite the similarity in transcript abundance between GV oocytes irrespective of age, divergent expression patterns emerged during oocyte maturation. These age-specific differentially expressed genes were enriched (FDR < 0.05) for functions and pathways associated with mitochondria, cell cycle and cytoskeleton. Gene modules generated by WGCNA (based on gene expression) and patient traits related to oocyte quality (e.g. age and blastocyst development) were correlated (P < 0.05) and enriched (FDR < 0.05) for functions and pathways associated with oocyte maturation. LARGE SCALE DATA Raw data from this study can be accessed through GSE95477. LIMITATIONS, REASONS FOR CAUTION The human oocytes used in the current study were obtained from patients with varying causes of infertility (e.g. decreased oocyte quality and oocyte quality-independent factors), possibly affecting oocyte gene expression. Oocytes in this study were retrieved at the GV stage following hCG administration and the MII oocytes were derived by IVM of patient oocytes. Although the approach has the benefit of identifying intrinsic differences between samples, it may not be completely representative of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Transcriptome profiles of YNG and AMA oocytes, particularly at the MII stage, suggest that aberrant transcript abundance may contribute to the age-associated decline in fertility. STUDY FUNDING/COMPETING INTEREST(S) J.M.R. was supported by an Austin Eugene Lyons Fellowship awarded by the University of California, Davis. The Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (awarded to P.J.R.; R01HD070044) and the Fertility Laboratories of Colorado partly supported the research presented in this manuscript.
Collapse
Affiliation(s)
- J M Reyes
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - E Silva
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO 80124, USA
| | - J L Chitwood
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO 80124, USA
| | - R L Krisher
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO 80124, USA
| | - P J Ross
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
24
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
25
|
Ahn C, Lee MJ, Jeung EB. Expression and Localization of Equine Tissue-Specific Divalent Ion-Transporting Channel Proteins. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv Biol Regul 2017; 67:148-162. [PMID: 29108881 DOI: 10.1016/j.jbior.2017.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Oocyte activation is a fundamental event at mammalian fertilisation, initiated by a series of characteristic calcium (Ca2+) oscillations in mammals. This characteristic pattern of Ca2+ release is induced in a species-specific manner by a sperm-specific enzyme termed phospholipase C zeta (PLCζ). Reduction or absence of functional PLCζ within sperm underlies male factor infertility in humans, due to mutational inactivation or abrogation of PLCζ protein expression. Underlying such clinical implications, a significant body of evidence has now been accumulated that has characterised the unique biochemical and biophysical properties of this enzyme, further aiding the unique clinical opportunities presented. Herein, we present and discuss evidence accrued over the past decade and a half that serves to support the identity of PLCζ as the mammalian sperm factor. Furthermore, we also discuss the potential novel avenues that have yet to be examined regarding PLCζ mechanism of action in both the oocyte, and the sperm. Finally, we discuss the advances that have been made regarding the clinical therapeutic and diagnostic applications of PLCζ in potentially treating male infertility as a result of oocyte activation deficiency (OAD), and also possibly more general cases of male subfertility.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia.
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
27
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|
28
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
30
|
Abstract
A series of intracellular oscillations in the free cytosolic Ca(2+) concentration is responsible for activating mammalian eggs at fertilization, thus initiating embryo development. It has been proposed that the sperm causes these Ca(2+) oscillations after membrane fusion by delivering a soluble protein into the egg cytoplasm. We previously identified sperm-specific phospholipase C (PLC)-ζ as a protein that can trigger the same pattern of Ca(2+) oscillations in eggs seen at fertilization. PLCζ appears to be the elusive sperm factor mediating egg activation in mammals. It has potential therapeutic use in infertility treatments to improve the rate of egg activation and early embryo development after intra-cytoplasmic sperm injection. A stable form of recombinant human PLCζ could be a prototype for use in such in vitro fertilization (IVF) treatments. We do not yet understand exactly how PLCζ causes inositol 1,4,5-trisphosphate (InsP3) production in eggs. Sperm PLCζ is distinct among mammalian PI-specific PLCs in that it is far more potent in triggering Ca(2+) oscillations in eggs than other PLCs, but it lacks a PH domain that would otherwise be considered essential for binding to the phosphatidylinositol 4,5-bisphosphate (PIP2) substrate. PLCζ is also unusual in that it does not appear to interact with or hydrolyse plasma membrane PIP2. We consider how other regions of PLCζ may mediate its binding to PIP2 in eggs and how interaction of PLCζ with egg-specific factors could enable the hydrolysis of internal sources of PIP2.
Collapse
|
31
|
Zambrano F, Aguila L, Arias ME, Sánchez R, Felmer R. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology 2016; 86:1489-1497. [PMID: 27325573 DOI: 10.1016/j.theriogenology.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
In cattle, intracytoplasmic sperm injection (ICSI) has a low efficiency. The acrosome content may be responsible for this effect because of the large amount of hydrolytic enzymes that are released within the oocyte. With the aim of removing the acrosome and destabilize the membranes, cryopreserved bovine spermatozoa were treated with lysolecithin (LL) and Triton X-100 (TX) at different concentrations. We evaluated the membrane integrity, the acrosome integrity, DNA integrity, and the variation of phospholipase C zeta. The rates of development (cleavage and blastocysts) were also evaluated along with pronuclear formation and the embryo quality. Spermatozoa incubated with LL and TX (0.01%, 0.02%, 0.03%, and 0.04%) decreased (P < 0.0001) sperm viability in a dose-dependent manner. The acrosome reaction was also increased (P < 0.0001) in all tested concentrations of LL and TX achieving 100% at 0.05% concentration in both treatments. Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay reported an increase (P < 0.05) in DNA fragmentation only with the highest concentration of LL (0.06%), whereas all concentrations assessed of TX reported an increased respect to the control. Phospholipase C zeta expression decreased (P < 0.05) in spermatozoa treated with LL and TX at all concentrations tested. A higher cleavage rate was observed in ICSI-TX (66%) and ICSI-LL (65%) groups compared with the untreated control group (51%) and the blastocyst formation rate significantly increased in the ICSI-LL group (29%) compared with the control (21%). No differences were observed in the pronuclear formation and quality of the embryos. In conclusion, the destabilization of the plasma membrane and the release of the acrosomal content with LL and TX before ICSI improve the rate of embryonic development, without affecting the quality of the embryos produced by this technique.
Collapse
Affiliation(s)
- Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - María E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
32
|
The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci Rep 2016; 6:22772. [PMID: 26987302 PMCID: PMC4796984 DOI: 10.1038/srep22772] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/12/2016] [Indexed: 01/30/2023] Open
Abstract
Upon activation, mammalian eggs release billions of zinc ions in an exocytotic event termed the “zinc spark.” The zinc spark is dependent on and occurs coordinately with intracellular calcium transients, which are tightly associated with embryonic development. Thus, we hypothesized that the zinc spark represents an early extracellular physicochemical marker of the developmental potential of the zygote. To test this hypothesis, we monitored zinc exocytosis in individual mouse eggs following parthenogenetic activation or in vitro fertilization (IVF) and tracked their development. Retrospective analysis of zinc spark profiles revealed that parthenotes and zygotes that developed into blastocysts released more zinc than those that failed to develop. Prospective selection of embryos based on their zinc spark profile significantly improved developmental outcomes and more than doubled the percentage of embryos that reached the blastocyst stage. Moreover, the zinc spark profile was also associated with embryo quality as the total cell number in the resulting morulae and blastocysts positively correlated with the zinc spark amplitude (R = 0.9209). Zinc sparks can thus serve as an early biomarker of zygote quality in mouse model.
Collapse
|
33
|
Abstract
The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca2+ concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca2+ observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca2+ increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca2+ increase by initiating Ca2+ release from intracellular Ca2+ stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca2+ oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca2+ oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.
Collapse
Affiliation(s)
- Karl Swann
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Anthony Lai
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
34
|
Jiao GZ, Cui W, Yang R, Lin J, Gong S, Lian HY, Sun MJ, Tan JH. Optimized Protocols for In Vitro Maturation of Rat Oocytes Dramatically Improve Their Developmental Competence to a Level Similar to That of Ovulated Oocytes. Cell Reprogram 2015; 18:17-29. [PMID: 26679437 DOI: 10.1089/cell.2015.0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The developmental capacity of in vitro-matured (IVM) oocytes is markedly lower than that of their in vivo-matured (IVO) counterparts, suggesting the need for optimization of IVM protocols in different species. There are few studies on IVM of rat oocytes, and there are even fewer attempts to improve ooplasmic maturation compared to those reported in other species. Furthermore, rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct; however, whether IVM rat oocytes have lower SA rates than IVO oocytes and can potentially be used for nuclear transfer is unknown. In this study, we investigated the effects of maturation protocols on cytoplasmic maturation of IVM rat oocytes and observed the possibility to reduce SA by using IVM rat oocytes. Ooplasmic maturation was assessed using multiple markers, including pre- and postimplantation development, meiotic progression, CG redistribution, redox state, and the expression of developmental potential- and apoptosis-related genes. The results showed that the best protocol consisting of modified Tissue Culture Medium-199 (TCM-199) supplemented with cysteamine/cystine and the cumulus cell monolayer dramatically improved the developmental competence of rat oocytes and supported both pre- and postimplantation development and other ooplasmic maturation makers to levels similar to that observed in ovulated oocytes. Rates of SA were significantly lower in IVM oocytes than in IVO oocytes when observed at the same intervals after nuclear maturation. In conclusion, we have optimized protocols for IVM of rat oocytes that sustain ooplasmic maturation to a level similar to ovulated oocytes. The results suggest that IVM rat oocytes might be used to reduce SA for rat cloning.
Collapse
Affiliation(s)
- Guang-Zhong Jiao
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work.,3 Present address: Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University , Yuhuangding Hospital of Yantai, Yantai, Shandong, China . Post code: 264000
| | - Wei Cui
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work
| | - Rui Yang
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Juan Lin
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Shuai Gong
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Hua-Yu Lian
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Ming-Ju Sun
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Jing-He Tan
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| |
Collapse
|
35
|
Shi Z, Zhao C, Yang Y, Teng H, Guo Y, Ma M, Guo X, Zhou Z, Huo R, Zhou Q. Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs. Cell Mol Life Sci 2015; 72:3575-86. [PMID: 25894693 PMCID: PMC11113936 DOI: 10.1007/s00018-015-1905-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
In mammals, pronucleus formation, a landmark event for egg activation and fertilization, is critical for embryonic development. However, the mechanisms underlying pronucleus formation remain unclear. Increasing evidence has shown that the transition from a mature egg to a developing embryo and the early steps of development are driven by the control of maternal cytoplasmic factors. Herein, a two-dimensional-electrophoresis-based proteomic approach was used in metaphase II and parthenogenetically activated mouse eggs to search for maternal proteins involved in egg activation, one of which was poly(rC)-binding protein 1 (PCBP1). Phosphoprotein staining indicated that PCBP1 displayed dephosphorylation in parthenogenetically activated egg, which possibly boosts its ability to bind to mRNAs. We identified 75 mRNAs expressed in mouse eggs that contained the characteristic PCBP1-binding CU-rich sequence in the 3'-UTR. Among them, we focused on H2a.x mRNA, as it was closely related to pronucleus formation in Xenopus oocytes. Further studies suggested that PCBP1 could bind to H2a.x mRNA and enhance its stability, thus promoting mouse pronucleus formation during parthenogenetic activation of murine eggs, while the inhibition of PCBP1 evidently retarded pronucleus formation. In summary, these data propose that PCBP1 may serve as a novel maternal factor that is required for determining the normal timing of pronucleus formation.
Collapse
Affiliation(s)
- Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Hui Teng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Minyue Ma
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| |
Collapse
|
36
|
Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, Wolfner MF. Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci U S A 2015; 112:791-6. [PMID: 25564670 PMCID: PMC4311822 DOI: 10.1073/pnas.1420589112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egg activation is the process by which a mature oocyte becomes capable of supporting embryo development. In vertebrates and echinoderms, activation is induced by fertilization. Molecules introduced into the egg by the sperm trigger progressive release of intracellular calcium stores in the oocyte. Calcium wave(s) spread through the oocyte and induce completion of meiosis, new macromolecular synthesis, and modification of the vitelline envelope to prevent polyspermy. However, arthropod eggs activate without fertilization: in the insects examined, eggs activate as they move through the female's reproductive tract. Here, we show that a calcium wave is, nevertheless, characteristic of egg activation in Drosophila. This calcium rise requires influx of calcium from the external environment and is induced as the egg is ovulated. Pressure on the oocyte (or swelling by the oocyte) can induce a calcium rise through the action of mechanosensitive ion channels. Visualization of calcium fluxes in activating eggs in oviducts shows a wave of increased calcium initiating at one or both oocyte poles and spreading across the oocyte. In vitro, waves also spread inward from oocyte pole(s). Wave propagation requires the IP3 system. Thus, although a fertilizing sperm is not necessary for egg activation in Drosophila, the characteristic of increased cytosolic calcium levels spreading through the egg is conserved. Because many downstream signaling effectors are conserved in Drosophila, this system offers the unique perspective of egg activation events due solely to maternal components.
Collapse
Affiliation(s)
- Taro Kaneuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Caroline V Sartain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Satomi Takeo
- Faculty of Life and Environmental Sciences and Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8572, Japan
| | - Vanessa L Horner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan;
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
37
|
Zhang CX, Cui W, Zhang M, Zhang J, Wang TY, Zhu J, Jiao GZ, Tan JH. Role of Na+/Ca2+ exchanger (NCX) in modulating postovulatory aging of mouse and rat oocytes. PLoS One 2014; 9:e93446. [PMID: 24695407 PMCID: PMC3973580 DOI: 10.1371/journal.pone.0093446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
We studied the role of the Na+/Ca2+ exchanger (NCX) in modulating oocyte postovulatory aging by observing changes in NCX contents and activities in aging mouse and rat oocytes. Whereas the NCX activity was measured by observing oocyte activation following culture with NCX inhibitor or activator, the NCX contents were determined by immunohistochemical quantification. Although NCX was active in freshly-ovulated rat oocytes recovered 13 h post hCG injection and in aged oocytes recovered 19 h post hCG in both species, it was not active in freshly-ovulated mouse oocytes. However, NCX became active when the freshly-ovulated mouse oocytes were activated with ethanol before culture. Measurement of cytoplasmic Ca2+ revealed Ca2+ increases always before NCX activation. Whereas levels of the reactive oxygen species (ROS) and the activation susceptibility increased, the density of NCX member 1 (NCX1) decreased significantly with oocyte aging in both species. While culture with H2O2 decreased the density of NCX1 significantly, culture with NaCl supplementation sustained the NCX1 density in mouse oocytes. It was concluded that (a) the NCX activity was involved in the modulation of oocyte aging and spontaneous activation; (b) ROS and Na+ regulated the NCX activity in aging oocytes by altering its density as well as functioning; and (c) cytoplasmic Ca2+ elevation was essential for NCX activation in the oocyte.
Collapse
Affiliation(s)
- Chuan-Xin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
- * E-mail:
| |
Collapse
|
38
|
Absalón-Medina VA, Butler WR, Gilbert RO. Preimplantation embryo metabolism and culture systems: experience from domestic animals and clinical implications. J Assist Reprod Genet 2014; 31:393-409. [PMID: 24682781 PMCID: PMC3969471 DOI: 10.1007/s10815-014-0179-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 01/17/2014] [Indexed: 01/09/2023] Open
Abstract
Despite advantages of in vitro embryo production in many species, widespread use of this technology is limited by generally lower developmental competence of in vitro derived embryos compared to in vivo counterparts. Regardless, in vivo or in vitro gametes and embryos face and must adjust to multiple microenvironments especially at preimplantation stages. Moreover, the embryo has to be able to further adapt to environmental cues in utero to result in the birth of live and healthy offspring. Enormous strides have been made in understanding and meeting stage-specific requirements of preimplantation embryos, but interpretation of the data is made difficult due to the complexity of the wide array of culture systems and the remarkable plasticity of developing embryos that seem able to develop under a variety of conditions. Nevertheless, a primary objective remains meeting, as closely as possible, the preimplantation embryo requirements as provided in vivo. In general, oocytes and embryos develop more satisfactorily when cultured in groups. However, optimization of individual culture of oocytes and embryos is an important goal and area of intensive current research for both animal and human clinical application. Successful culture of individual embryos is of primary importance in order to avoid ovarian superstimulation and the associated physiological and psychological disadvantages for patients. This review emphasizes stage specific shifts in embryo metabolism and requirements and research to optimize in vitro embryo culture conditions and supplementation, with a view to optimizing embryo culture in general, and culture of single embryos in particular.
Collapse
Affiliation(s)
- V. A. Absalón-Medina
- Department of Animal Science, College of Agricultural Life Sciences, Cornell University, Ithaca, NY 14853 USA
| | - W. R. Butler
- Department of Animal Science, College of Agricultural Life Sciences, Cornell University, Ithaca, NY 14853 USA
| | - R. O. Gilbert
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
39
|
Bánsághi S, Golenár T, Madesh M, Csordás G, RamachandraRao S, Sharma K, Yule DI, Joseph SK, Hajnóczky G. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. J Biol Chem 2014; 289:8170-81. [PMID: 24469450 DOI: 10.1074/jbc.m113.504159] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) stimulate cytoplasmic [Ca(2+)] ([Ca(2+)]c) signaling, but the exact role of the IP3 receptors (IP3R) in this process remains unclear. IP3Rs serve as a potential target of ROS produced by both ER and mitochondrial enzymes, which might locally expose IP3Rs at the ER-mitochondrial associations. Also, IP3Rs contain multiple reactive thiols, common molecular targets of ROS. Therefore, we have examined the effect of superoxide anion (O2) on IP3R-mediated Ca(2+) signaling. In human HepG2, rat RBL-2H3, and chicken DT40 cells, we observed [Ca(2+)]c spikes and frequency-modulated oscillations evoked by a O2 donor, xanthine (X) + xanthine oxidase (XO), dose-dependently. The [Ca(2+)]c signal was mediated by ER Ca(2+) mobilization. X+XO added to permeabilized cells promoted the [Ca(2+)]c rise evoked by submaximal doses of IP3, indicating that O2 directly sensitizes IP3R-mediated Ca(2+) release. In response to X+XO, DT40 cells lacking two of three IP3R isoforms (DKO) expressing either type 1 (DKO1) or type 2 IP3Rs (DKO2) showed a [Ca(2+)]c signal, whereas DKO expressing type 3 IP3R (DKO3) did not. By contrast, IgM that stimulates IP3 formation, elicited a [Ca(2+)]c signal in every DKO. X+XO also facilitated the Ca(2+) release evoked by submaximal IP3 in permeabilized DKO1 and DKO2 but was ineffective in DKO3 or in DT40 lacking every IP3R (TKO). However, X+XO could also facilitate the effect of suboptimal IP3 in TKO transfected with rat IP3R3. Although in silico studies failed to identify a thiol missing in the chicken IP3R3, an X+XO-induced redox change was documented only in the rat IP3R3. Thus, ROS seem to specifically sensitize IP3Rs through a thiol group(s) within the IP3R, which is probably inaccessible in the chicken IP3R3.
Collapse
Affiliation(s)
- Száva Bánsághi
- From the MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Hatching of in vitro fertilized human embryos is influenced by fertilization method. Fertil Steril 2013; 100:1277-82. [DOI: 10.1016/j.fertnstert.2013.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
41
|
Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 2013; 28:284-99. [PMID: 24444815 DOI: 10.1016/j.rbmo.2013.10.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022]
Abstract
Assisted reproduction technology (ART) has become an attractive option for infertility treatment and holds tremendous promise. However, at present, there is still room for improvement in its success rates. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. To better understand the mechanism underlying oocyte maturation and for the future improvement of assisted reproduction technology, this review focuses on the complex processes of cytoplasmic organelles and the dynamic alterations of the cytoskeleton that occur during oocyte maturation. Ovarian stimulation and in-vitro maturation are the major techniques used in assisted reproduction technology and their influence on the organelles of oocytes is also discussed. Since the first birth by assisted reproduction treatment was achieved in 1978, numerous techniques involved in assisted reproduction have been developed and have become attractive options for infertility treatment. However, the unsatisfactory success rate remains as a main challenge. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. Oocyte maturation includes both nuclear and cytoplasmic maturation. Nuclear maturation primarily involves chromosomal segregation, which has been well studied, whereas cytoplasmic maturation involves a series of complicated processes, and there are still many parts of this process that remain controversial. Ovarian stimulation and in-vitro maturation (IVM) are the major techniques of assisted reproduction. The effect of ovarian stimulation or IVM on the behaviour of cell organelles of the oocyte has been postulated as the reason for the reduced developmental potential of in-vitro-produced embryos. To further understanding of the mechanism of oocyte maturation and future improvement of assisted reproduction treatment, the complex events of cytoplasmic organelles and the cytoskeleton that occur during oocyte maturation and the influence of ovarian stimulation and IVM on these organelles are described in this review.
Collapse
|
42
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
43
|
Tůmová L, Petr J, Žalmanová T, Chmelíková E, Kott T, Tichovská H, Kučerová-Chrpová V, Hošková K, Jílek F. Calcineurin expression and localisation during porcine oocyte growth and meiotic maturation. Anim Reprod Sci 2013; 141:154-63. [PMID: 23972328 DOI: 10.1016/j.anireprosci.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 06/05/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The processes of oocyte growth, acquisition of meiotic competence and meiotic maturation are regulated by a large number of molecules. One of them could be calcineurin consisting of catalytic subunit A (Aα, Aβ, Aγ isoforms) and regulatory subunit B (B1, B2 isoforms). Calcineurin is involved in the meiotic maturation of oocytes in invertebrates or in lower vertebrates. In the mammalian oocytes, the possible role of calcineurin in the regulation of oocyte meiosis has not been clarified to date. In this study, to investigate the role of calcineurin during porcine oocyte growth, acquisition of meiotic competence and meiotic maturation, we analysed the expression and localisation of calcineurin subunits and the mRNA expression of calcineurin isoforms. Calcineurin was expressed in growing porcine oocytes, in fully grown oocytes and during their in vitro meiotic maturation. We found both subunits of calcineurin. Calcineurin A and calcineurin B were localised mainly in the cortex in all porcine oocytes. The changes in the intracellular localisation of separate calcineurin subunits during meiotic maturation were determined. We detected mRNA for calcineurin isoforms Aβ, Aγ, B2 in oocytes and mRNA for calcineurin isoforms Aβ, Aγ, B1, and B2 in cumular cells. To our knowledge, this is the first confirmation of calcineurin presence in porcine oocytes.
Collapse
Affiliation(s)
- Lenka Tůmová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Encoding and decoding cellular information through signaling dynamics. Cell 2013; 152:945-56. [PMID: 23452846 DOI: 10.1016/j.cell.2013.02.005] [Citation(s) in RCA: 537] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/08/2012] [Accepted: 02/06/2013] [Indexed: 11/23/2022]
Abstract
A growing number of studies are revealing that cells can send and receive information by controlling the temporal behavior (dynamics) of their signaling molecules. In this Review, we discuss what is known about the dynamics of various signaling networks and their role in controlling cellular responses. We identify general principles that are emerging in the field, focusing specifically on how the identity and quantity of a stimulus is encoded in temporal patterns, how signaling dynamics influence cellular outcomes, and how specific dynamical patterns are both shaped and interpreted by the structure of molecular networks. We conclude by discussing potential functional roles for transmitting cellular information through the dynamics of signaling molecules and possible applications for the treatment of disease.
Collapse
|
45
|
Cheon B, Lee HC, Wakai T, Fissore RA. Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell 2013; 24:1396-410. [PMID: 23468522 PMCID: PMC3639051 DOI: 10.1091/mbc.e13-01-0065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in Ca2+ homeostasis render oocytes competent to undergo [Ca2+]i oscillations and activation. During mouse oocyte maturation Ca2+ influx and SOCE are down-regulated, whereas [Ca2+]ER content increases. Bypassing the down-regulation of Ca2+ influx disturbs oocyte maturation. In preparation for fertilization, mammalian oocytes undergo optimization of the mechanisms that regulate calcium homeostasis. Among these changes is the increase in the content of the Ca2+ stores ([Ca2+]ER), a process that requires Ca2+ influx. Nevertheless, the mechanism(s) that mediates this influx remains obscure, although is known that [Ca2+]ER can regulate Ca2+ influx via store-operated Ca2+ entry (SOCE). We find that during maturation, as [Ca2+]ER increases, Ca2+ influx decreases. We demonstrate that mouse oocytes/eggs express the two molecular components of SOCE—stromal interaction molecule 1 (Stim1) and Orai1—and expression of human (h) Stim1 increases Ca2+ influx in a manner that recapitulates endogenous SOCE. We observe that the cellular distribution of hStim1 and hOrai1 during maturation undergoes sweeping changes that curtail their colocalization during the later stages of maturation. Coexpression of hStim1 and hOrai1 enhances influx throughout maturation but increases basal Ca2+ levels only in GV oocytes. Further, expression of a constitutive active form of hStim1 plus Orai1, which increases basal Ca2+ throughout maturation, disturbs resumption of meiosis. Taken together, our results demonstrate that Ca2+ influx and SOCE are regulated during maturation and that alteration of Ca2+ homeostasis undermines maturation in mouse oocytes.
Collapse
Affiliation(s)
- Banyoon Cheon
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01002, USA
| | | | | | | |
Collapse
|
46
|
Ya R, Downs SM. Suppression of chemically induced and spontaneous mouse oocyte activation by AMP-activated protein kinase. Biol Reprod 2013; 88:70. [PMID: 23390161 PMCID: PMC4013847 DOI: 10.1095/biolreprod.112.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/04/2012] [Accepted: 02/04/2013] [Indexed: 12/26/2022] Open
Abstract
Oocyte activation is an important process triggered by fertilization that initiates embryonic development. However, parthenogenetic activation can occur either spontaneously or with chemical treatments. The LT/Sv mouse strain is genetically predisposed to spontaneous activation. LT oocytes have a cell cycle defect and are ovulated at the metaphase I stage instead of metaphase II. A thorough understanding of the female meiosis defects in this strain remains elusive. We have reported that AMP-activated protein kinase (PRKA) has an important role in stimulating meiotic resumption and promoting completion of meiosis I while suppressing premature parthenogenetic activation. Here we show that early activation of PRKA during the oocyte maturation period blocked chemically induced activation in B6SJL oocytes and spontaneous activation in LT/SvEiJ oocytes. This inhibitory effect was associated with high levels of MAPK1/3 activity. Furthermore, stimulation of PRKA partially rescued the meiotic defects of LT/Sv mouse oocytes in concert with correction of abnormal spindle pole localization of PRKA and loss of prolonged spindle assembly checkpoint activity. Altogether, these results confirm a role for PRKA in helping sustain the MII arrest in mature oocytes and suggest that dysfunctional PRKA contributes to meiotic defects in LT/SvEiJ oocytes.
Collapse
Affiliation(s)
| | - Stephen M. Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
47
|
Buarpung S, Tharasanit T, Comizzoli P, Techakumphu M. Feline spermatozoa from fresh and cryopreserved testicular tissues have comparable ability to fertilize matured oocytes and sustain the embryo development after intracytoplasmic sperm injection. Theriogenology 2013; 79:149-58. [DOI: 10.1016/j.theriogenology.2012.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/21/2012] [Accepted: 09/30/2012] [Indexed: 11/17/2022]
|
48
|
Kharche SD, Birade HS. Parthenogenesis and activation of mammalian oocytes for <i>in vitro</i> embryo production: A review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Sartain CV, Wolfner MF. Calcium and egg activation in Drosophila. Cell Calcium 2012; 53:10-5. [PMID: 23218670 DOI: 10.1016/j.ceca.2012.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 01/27/2023]
Abstract
In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects' eggs activate as they transit through the female's reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system.
Collapse
Affiliation(s)
- Caroline V Sartain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|
50
|
Chankitisakul V, Am-In N, Tharasanit T, Somfai T, Nagai T, Techakumphu M. Sperm pretreatment with dithiothreitol increases male pronucleus formation rates after intracytoplasmic sperm injection (ICSI) in swamp buffalo oocytes. J Reprod Dev 2012; 59:66-71. [PMID: 23132520 PMCID: PMC3943227 DOI: 10.1262/jrd.2012-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Failure of male pronucleus formation has hampered the success of intracytoplasmic sperm
injection (ICSI) in swamp buffalo. The aim of the present study was to improve male
pronucleus formation by pretreating sperm with various chemicals before ICSI. In
Experiments1 and 2, sperm were treated according to one of the following protocols: (1)
0.1% Triton-X 100 (TX) for 1 min, (2) 10 µM calcium ionophore (CaI) for 20 min, (3)
freezing and thawing (FT) without any cryoprotectant, or (4) no treatment (control). These
sperm treatment groups then either did or did not receive additional sperm treatment with
5 mM dithiothreitol (DTT) for 20 min. Acrosomal integrity (Experiment 1) and DNA
fragmentation (Experiment 2) were evaluated in the sperm before ICSI. In Experiment 3,
oocytes matured in vitro were subjected to ICSI using pretreated sperm as
described above and then were cultured either with or without activation. The TX- and
CaI-treated sperm caused an increase in the number of acrosome-loss sperm, whereas the FT
treatment and control increased the proportion of acrosome-reacted sperm (P<0.05). The
DNA fragmentation did not differ among treatments (P>0.05). At 18 h post-ICSI,
pronucleus (PN) formation was found only in activated oocytes. The majority of the
activated ICSI oocytes contained intact sperm heads. Normal fertilization was observed in
the CaI and FT treatment groups and control group when sperm were treated with DTT before
ICSI. In conclusion, DTT treatment of sperm with reacted acrosomes before ICSI together
with activation of the ICSI oocytes is important for successful male pronucleus
formation.
Collapse
Affiliation(s)
- Vibuntita Chankitisakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|