1
|
Lam SK, Yan S, Xu S, Ho JCM. Targeting polyamine as a novel therapy in xenograft models of malignant pleural mesothelioma. Lung Cancer 2020; 148:138-148. [PMID: 32911426 DOI: 10.1016/j.lungcan.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Inhalation of asbestos fibers is the key culprit in malignant pleural mesothelioma (MPM). Although the import and use of asbestos have been restricted, the incidence of MPM continues to increase globally due to the prolonged lag time in malignant transformation. The development of a novel adjuvant therapy for the minority of individuals with resectable early-stage disease and effective treatment for those with unresectable MPM are urgently needed. Our preliminary data revealed that ornithine decarboxylase (ODC) is highly expressed in MPM xenografts. This study aimed to determine the treatment effects of α-difluoromethylornithine (DFMO), a specific ODC inhibitor, in MPM xenografts. RESULTS In an "extended adjuvant DFMO treatment" setting, nude mice were fed with DFMO for 7 days prior to inoculation of 200,000 cells. DFMO suppressed tumor growth and increased median survival in both xenografts. In H226 xenograft, 43 % of treated mice had not reached the humane endpoint by day 132, mimicking long-term survival. DFMO decreased spermidine, increased nitrotyrosine and activated apoptosis in both xenografts. Furthermore, increase in nitrosocysteine, intratumoral IL-6, keratinocyte chemoattractant and TNFα, DNA lesion and inhibition of the Akt/mTOR pathway were induced by DFMO in H226 xenograft. In "DFMO treatment" setting, 107 cells were inoculated into nude mice and DFMO treatment commenced when tumor size reached ∼50-100 mm3. DFMO also suppressed tumor growth by similar mechanisms. Supplementation with spermidine reversed the therapeutic effect of DFMO. DFMO increased actin nitration at tyrosine 53 and inhibited actin polymerization. CONCLUSION DFMO is preclinically effective in treating MPM.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Sheng Yan
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Shi Xu
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
2
|
Urbanek AN, Allwood EG, Smith AP, Booth WI, Ayscough KR. Distinct Actin and Lipid Binding Sites in Ysc84 Are Required during Early Stages of Yeast Endocytosis. PLoS One 2015; 10:e0136732. [PMID: 26312755 PMCID: PMC4552428 DOI: 10.1371/journal.pone.0136732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/08/2015] [Indexed: 11/18/2022] Open
Abstract
During endocytosis in S. cerevisiae, actin polymerization is proposed to provide the driving force for invagination against the effects of turgor pressure. In previous studies, Ysc84 was demonstrated to bind actin through a conserved N-terminal domain. However, full length Ysc84 could only bind actin when its C-terminal SH3 domain also bound to the yeast WASP homologue Las17. Live cell-imaging has revealed that Ysc84 localizes to endocytic sites after Las17/WASP but before other known actin binding proteins, suggesting it is likely to function at an early stage of membrane invagination. While there are homologues of Ysc84 in other organisms, including its human homologue SH3yl-1, little is known of its mode of interaction with actin or how this interaction affects actin filament dynamics. Here we identify key residues involved both in Ysc84 actin and lipid binding, and demonstrate that its actin binding activity is negatively regulated by PI(4,5)P2. Ysc84 mutants defective in their lipid or actin-binding interaction were characterized in vivo. The abilities of Ysc84 to bind Las17 through its C-terminal SH3 domain, or to actin and lipid through the N-terminal domain were all shown to be essential in order to rescue temperature sensitive growth in a strain requiring YSC84 expression. Live cell imaging in strains with fluorescently tagged endocytic reporter proteins revealed distinct phenotypes for the mutants indicating the importance of these interactions for regulating key stages of endocytosis.
Collapse
Affiliation(s)
- Agnieszka N. Urbanek
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, United Kingdom
| | - Ellen G. Allwood
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, United Kingdom
| | - Adam P. Smith
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, United Kingdom
| | - Wesley I. Booth
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, United Kingdom
| | - Kathryn R. Ayscough
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Slochower DR, Wang YH, Tourdot RW, Radhakrishnan R, Janmey PA. Counterion-mediated pattern formation in membranes containing anionic lipids. Adv Colloid Interface Sci 2014; 208:177-88. [PMID: 24556233 DOI: 10.1016/j.cis.2014.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from -1 for the most abundant anionic lipids such as phosphatidylserine, to near -7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control.
Collapse
Affiliation(s)
- David R Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Hsiu Wang
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard W Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Physiology and Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Counterion-mediated cluster formation by polyphosphoinositides. Chem Phys Lipids 2014; 182:38-51. [PMID: 24440472 DOI: 10.1016/j.chemphyslip.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
Polyphosphoinositides (PPI) and in particular PI(4,5)P2, are among the most highly charged molecules in cell membranes, are important in many cellular signaling pathways, and are frequently targeted by peripheral polybasic proteins for anchoring through electrostatic interactions. Such interactions between PIP2 and proteins containing polybasic stretches depend on the physical state and the lateral distribution of PIP2 within the inner leaflet of the cell's lipid bilayer. The physical and chemical properties of PIP2 such as pH-dependent changes in headgroup ionization and area per molecule as determined by experiments together with molecular simulations that predict headgroup conformations at various ionization states have revealed the electrostatic properties and phase behavior of PIP2-containing membranes. This review focuses on recent experimental and computational developments in defining the physical chemistry of PIP2 and its interactions with counterions. Ca(2+)-induced changes in PIP2 charge, conformation, and lateral structure within the membrane are documented by numerous experimental and computational studies. A simplified electrostatic model successfully predicts the Ca(2+)-driven formation of PIP2 clusters but cannot account for the different effects of Ca(2+) and Mg(2+) on PIP2-containing membranes. A more recent computational study is able to see the difference between Ca(2+) and Mg(2+) binding to PIP2 in the absence of a membrane and without cluster formation. Spectroscopic studies suggest that divalent cation- and multivalent polyamine-induced changes in the PIP2 lateral distribution in model membrane are also different, and not simply related to the net charge of the counterion. Among these differences is the capacity of Ca(2+) but not other polycations to induce nm scale clusters of PIP2 in fluid membranes. Recent super resolution optical studies show that PIP2 forms nanoclusters in the inner leaflet of a plasma membrane with a similar size distribution as those induced by Ca(2+) in model membranes. The mechanisms by which PIP2 forms nanoclusters and other structures inside a cell remain to be determined, but the unique electrostatic properties of PIP2 and its interactions with multivalent counterions might have particular physiological relevance.
Collapse
|
5
|
Liu HW, Shi RF, Wang XF, Pan YX, Zang GY, Ma ZY. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense. GENETICS AND MOLECULAR RESEARCH 2012; 11:3367-78. [PMID: 22869083 DOI: 10.4238/2012.july.13.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sea Island cotton (Gossypium barbadense) is highly valued for its superior fiber qualities, especially fiber strength. Based on a transcript-derived fragment originated from transcriptome QTL mapping, a fiber strength related candidate gene of phosphatidylinositol 4-kinase cDNA, designated as GbPI4K, was first cloned, and its expression was characterized in the secondary cell wall thickening stage of G. barbadense fibers. The ORF of GbPI4K was found to be 1926 bp in length and encoded a predicted protein of 641 amino acid residues. The putative protein contained a clear PI3/4K kinase catalytic domain and fell into the plant type II PI4K cluster in phylogenetic analysis. In this study, the expression of cotton PI4K protein was also induced in Escherichia coli BL21 (DE3) as a fused protein. Semi-quantitative RT-PCR analysis showed that the gene expressed in the root, hypocotyl and leaf of the cotton plants. Real-time RT-PCR indicated that this gene in Sea Island cotton fibers expressed 10 days longer than that in Upland cotton fibers, and the main expression difference of PI4K between Sea Island cotton and Upland cotton in fibers was located in the secondary cell wall thickening stage of the fiber. Further analysis indicated that PI4K is a crucial factor in the ability of Rac proteins to regulate phospholipid signaling pathways.
Collapse
Affiliation(s)
- H W Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | | | | | | | | | | |
Collapse
|
6
|
Su R, Han ZY, Fan JP, Zhang YL. A possible role of myristoylated alanine-rich C kinase substrate in endocytic pathway of Alzheimer's disease. Neurosci Bull 2010; 26:338-44. [PMID: 20651816 DOI: 10.1007/s12264-010-0131-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is believed that amyloid-beta peptide (Abeta) plays a central role in the pathogenesis of Alzheimer's disease (AD). Thus, the process of amyloid precursor protein (APP) cleavage is a key event and has raised much attention in the field of AD research. It is proposed that APP, beta- and gamma-secretases are all located on the lipid raft, and the meeting of them is an indispensable step for Abeta generation. Endocytosis can lead to clustering of APP, beta- and gamma-secretases from separate smaller lipid rafts into a larger one. On the other hand, for myristoylated alanine-rich C kinase substrate (MARCKS), phosphorylation by protein kinase C (PKC) or interaction with Ca(2+) can lead to its release from membrane into cytoplasm. This process induces the release of actins and phosphatidylinositol 4, 5-bisphosphate (PIP2), which are important factors for endocytosis. Thus, the present review proposes that MARCKS may be implicated in Abeta generation, by modulating free PIP2 level and actin movement, causing endocytosis.
Collapse
Affiliation(s)
- Rui Su
- China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | |
Collapse
|
7
|
Kanerva K, Mäkitie LT, Bäck N, Andersson LC. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp Cell Res 2010; 316:1896-906. [PMID: 20188728 DOI: 10.1016/j.yexcr.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
8
|
Coburn RF. Polyamine effects on cell function: Possible central role of plasma membrane PI(4,5)P2. J Cell Physiol 2009; 221:544-51. [DOI: 10.1002/jcp.21899] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Abstract
As an important metabolic pathway, phosphatidylinositol metabolism generates both constitutive and signalling molecules that are crucial for plant growth and development. Recent studies using genetic and molecular approaches reveal the important roles of phospholipid molecules and signalling in multiple processes of higher plants, including root growth, pollen and vascular development, hormone effects and cell responses to environmental stimuli plants. The present review summarizes the current progress in our understanding of the functional mechanism of phospholipid signalling, with an emphasis on the regulation of Ins(1,4,5)P3-Ca2+ oscillation, the second messenger molecule phosphatidic acid and the cytoskeleton.
Collapse
|