1
|
Sbrana F, Chellini F, Tani A, Parigi M, Garella R, Palmieri F, Zecchi-Orlandini S, Squecco R, Sassoli C. Label-free three-dimensional imaging and quantitative analysis of living fibroblasts and myofibroblasts by holotomographic microscopy. Microsc Res Tech 2024; 87:2757-2773. [PMID: 38984377 DOI: 10.1002/jemt.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Holotomography (HT) is a cutting-edge fast live-cell quantitative label-free imaging technique. Based on the principle of quantitative phase imaging, it combines holography and tomography to record a three-dimensional map of the refractive index, used as intrinsic optical and quantitative imaging contrast parameter of biological samples, at a sub-micrometer spatial resolution. In this study HT has been employed for the first time to analyze the changes of fibroblasts differentiating towards myofibroblasts - recognized as the main cell player of fibrosis - when cultured in vitro with the pro-fibrotic factor, namely transforming growth factor-β1. In parallel, F-actin, vinculin, α-smooth muscle actin, phospho-myosin light chain 2, type-1 collagen, peroxisome proliferator-activated receptor-gamma coactivator-1α expression and mitochondria were evaluated by confocal laser scanning microscopy. Plasmamembrane passive properties and transient receptor potential canonical channels' currents were also recorded by whole-cell patch-clamp. The fluorescence images and electrophysiological results have been compared to the data obtained by HT and their congruence has been discussed. HT turned out to be a valid approach to morphologically distinguish fibroblasts from well differentiated myofibroblasts while obtaining objective measures concerning volume, surface area, projection area, surface index and dry mass (i.e., the mass of the non-aqueous content inside the cell including proteins and subcellular organelles) of the entire cell, nuclei and nucleoli with the major advantage to monitor outer and inner features in living cells in a non-invasive, rapid and label-free approach. HT might open up new research opportunities in the field of fibrotic diseases. RESEARCH HIGHLIGHTS: Holotomography (HT) is a label-free laser interferometric imaging technology exploiting the intrinsic optical property of cells namely refractive index (RI) to enable a direct imaging and analysis of whole cells or intracellular organelles. HT turned out a valid approach to distinguish morphological features of living unlabeled fibroblasts from differentiated myofibroblasts. HT provided quantitative information concerning volume, surface area, projection area, surface index and dry mass of the entire fibroblasts/myofibroblasts, nuclei and nucleoli.
Collapse
Affiliation(s)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Huang C, Zhong Q, Lian W, Kang T, Hu J, Lei M. Ankrd1 inhibits the FAK/Rho-GTPase/F-actin pathway by downregulating ITGA6 transcriptional to regulate myoblast functions. J Cell Physiol 2024; 239:e31359. [PMID: 38988048 DOI: 10.1002/jcp.31359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiqi Zhong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingting Kang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Pig Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
3
|
Pampanella L, Petrocelli G, Abruzzo PM, Zucchini C, Canaider S, Ventura C, Facchin F. Cytochalasins as Modulators of Stem Cell Differentiation. Cells 2024; 13:400. [PMID: 38474364 DOI: 10.3390/cells13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Cinzia Zucchini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
4
|
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C. HIF-1α/MMP-9 Axis Is Required in the Early Phases of Skeletal Myoblast Differentiation under Normoxia Condition In Vitro. Cells 2023; 12:2851. [PMID: 38132171 PMCID: PMC10742321 DOI: 10.3390/cells12242851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| |
Collapse
|
5
|
Melzener L, Spaans S, Hauck N, Pötgens AJG, Flack JE, Post MJ, Doğan A. Short-Stranded Zein Fibers for Muscle Tissue Engineering in Alginate-Based Composite Hydrogels. Gels 2023; 9:914. [PMID: 37999004 PMCID: PMC10671123 DOI: 10.3390/gels9110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Cultivated meat is a nascent technology that aims to create an environmentally and animal-friendly alternative to conventional meat. Producing skeletal muscle tissue in an animal-free system allowing for high levels of myofusion and maturation is important for the nutritional and sensorial value of cultivated meat. Alginate is an attractive biomaterial to support muscle formation as it is food-safe, sustainable and cheap and can be crosslinked using non-toxic methods. Although alginate can be functionalized to promote cell attachment, limitations in its mechanical properties, including form, viscosity, and stress relaxation, hinder the cellular capacity for myogenic differentiation and maturation in alginate-based hydrogels. Here, we show that the addition of electrospun short-stranded zein fibers increased hydrogel degradation, resulting in faster compaction, improved cell-gel interaction, and enhanced alignment of bovine muscle precursor cells. We conclude that fiber-hydrogel composites are a promising approach to support optimal formation of 3D constructs, by improving tissue stability and thus prolonging culture duration. Together, this improves muscle-related protein content by facilitating myogenic differentiation and priming muscle organoids for maturation.
Collapse
Affiliation(s)
- Lea Melzener
- Department of Physiology, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.M.); (M.J.P.)
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Sergio Spaans
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Nicolas Hauck
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - André J. G. Pötgens
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Joshua E. Flack
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Mark J. Post
- Department of Physiology, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.M.); (M.J.P.)
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Arın Doğan
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| |
Collapse
|
6
|
Pierucci F, Chirco A, Meacci E. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells. Int J Mol Sci 2023; 24:10548. [PMID: 37445724 DOI: 10.3390/ijms241310548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| |
Collapse
|
7
|
Mechanotransduction for Muscle Protein Synthesis via Mechanically Activated Ion Channels. Life (Basel) 2023; 13:life13020341. [PMID: 36836698 PMCID: PMC9962945 DOI: 10.3390/life13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Cell mechanotransduction, the ability to detect physical forces and convert them into a series of biochemical events, is important for a wide range of physiological processes. Cells express an array of mechanosensors transducing physical forces into intracellular signaling cascades, including ion channels. Ion channels that can be directly activated by mechanical cues are known as mechanically activated (MA), or stretch-activated (SA), channels. In response to repeated exposures to mechanical stimulation in the form of resistance training, enhanced protein synthesis and fiber hypertrophy are elicited in skeletal muscle, whereas a lack of mechanical stimuli due to inactivity/mechanical unloading leads to reduced muscle protein synthesis and fiber atrophy. To date, the role of MA channels in the transduction of mechanical load to intracellular signaling pathways regulating muscle protein synthesis is poorly described. This review article will discuss MA channels in striated muscle, their regulation, and putative roles in the anabolic processes in muscle cells/fibers in response to mechanical stimuli.
Collapse
|
8
|
Chai W, Xu J, Qu H, Ma Q, Zhu M, Li M, Zhan Y, Wang T, Gao J, Yao H, Li Z, Wang C. Differential proteomic analysis to identify potential biomarkers associated with quality traits of Dezhou donkey meat using a data-independent acquisition (DIA) strategy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Amantini C, Maggi F, Rossi de Vermandois JA, Gubbiotti M, Giannantoni A, Mearini E, Nabissi M, Tomassoni D, Santoni G, Morelli MB. The Prognostic Value of the Circulating Tumor Cell-Based Four mRNA Scoring System: A New Non-Invasive Setting for the Management of Bladder Cancer. Cancers (Basel) 2022; 14:3118. [PMID: 35804889 PMCID: PMC9264990 DOI: 10.3390/cancers14133118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Bladder cancer (BC) is one of the most expensive lifetime cancers to treat because of the high recurrence rate, repeated surgeries, and long-term cystoscopy monitoring and treatment. The lack of an accurate classification system predicting the risk of recurrence or progression leads to the search for new biomarkers and strategies. Our pilot study aimed to identify a prognostic gene signature in circulating tumor cells (CTCs) isolated by ScreenCell devices from muscle invasive and non-muscle invasive BC patients. Through the PubMed database and Cancer Genome Atlas dataset, a panel of 15 genes modulated in BC with respect to normal tissues was selected. Their expression was evaluated in CTCs and thanks to the univariate and multivariate Cox regression analysis, EGFR, TRPM4, TWIST1, and ZEB1 were recognized as prognostic biomarkers. Thereafter, by using the risk score model, we demonstrated that this 4-gene signature significantly grouped patients into high- and low-risk in terms of recurrence free survival (HR = 2.704, 95% CI = 1.010−7.313, Log-rank p < 0.050). Overall, we identified a new prognostic signature that directly impacted the prediction of recurrence, improving the choice of the best treatment for BC patients.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (D.T.)
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (D.T.)
| | | | | | - Antonella Giannantoni
- Department of Medical and Surgical Sciences, University of Siena, 53100 Siena, Italy;
- Neurosciences, Functional and Surgical Urology Unit, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| | - Ettore Mearini
- Urologic and Andrologic Clinics, University of Perugia, 05100 Perugia, Italy; (J.A.R.d.V.); (E.M.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.N.); (G.S.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (D.T.)
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.N.); (G.S.)
| | | |
Collapse
|
10
|
Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Embryo Muscle of Chicken. Animals (Basel) 2022; 12:ani12101274. [PMID: 35625120 PMCID: PMC9137640 DOI: 10.3390/ani12101274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic muscle development determines the state of muscle development and muscle morphological structure size. Recent studies have found that long non-coding RNAs (lncRNAs) could influence numerous cellular processes and regulated growth and development of flora and fauna. A total of 1056 differentially expressed lncRNAs were identified by comparing the different time points during embryonic muscle development, which included 874 new lncRNAs. Here, we found that there were different gene expression patterns on the 12th day of embryo development (E12). Herein, WGCNA and correlation analyses were used to predict lncRNA function on E12 through the screening and identification of lncRNAs related to muscle development in the embryo leg muscles of Chengkou mountain chickens at different times. GO and KEGG functional enrichment analysis was performed on target genes involved in cis-regulation and trans-regulation. An interaction network diagram was constructed based on the muscle development pathways, such as Wnt, FoxO, and PI3K-AKT signaling pathways, to determine the interaction between mRNAs and lncRNAs. This study preliminarily determined the lncRNA expression pattern of muscle development during the middle and late embryonic stages of Chengkou mountain chickens, and provided a basis to analyze the molecular mechanism of muscle development.
Collapse
|
11
|
Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022; 7:23. [PMID: 35393412 PMCID: PMC8991236 DOI: 10.1038/s41536-022-00216-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Although skeletal muscle repairs itself following small injuries, genetic diseases or severe damages may hamper its ability to do so. Induced pluripotent stem cells (iPSCs) can generate myogenic progenitors, but their use in combination with bioengineering strategies to modulate their phenotype has not been sufficiently investigated. This review highlights the potential of this combination aimed at pushing the boundaries of skeletal muscle tissue engineering. First, the overall organization and the key steps in the myogenic process occurring in vivo are described. Second, transgenic and non-transgenic approaches for the myogenic induction of human iPSCs are compared. Third, technologies to provide cells with biophysical stimuli, biomaterial cues, and biofabrication strategies are discussed in terms of recreating a biomimetic environment and thus helping to engineer a myogenic phenotype. The embryonic development process and the pro-myogenic role of the muscle-resident cell populations in co-cultures are also described, highlighting the possible clinical applications of iPSCs in the skeletal muscle tissue engineering field.
Collapse
Affiliation(s)
- Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, 40054, Vigorso di Budrio (BO), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy
| |
Collapse
|
12
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
13
|
Vilen Z, Joeh E, Critcher M, Parker CG, Huang ML. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. ACS Chem Biol 2021; 16:1994-2003. [PMID: 34181849 DOI: 10.1021/acschembio.1c00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myogenic differentiation, the irreversible developmental process where precursor myoblast muscle stem cells become contractile myotubes, is heavily regulated by glycosylation and glycan-protein interactions at the cell surface and the extracellular matrix. The glycan-binding protein galectin-1 has been found to be a potent activator of myogenic differentiation. While it is being explored as a potential therapeutic for muscle repair, a precise understanding of its glycoprotein interactors is lacking. These gaps are due in part to the difficulties of capturing glycan-protein interactions in live cells. Here, we demonstrate the use of a proximity tagging strategy coupled with quantitative mass-spectrometry-based proteomics to capture, enrich, and identify the glycan-mediated glycoprotein interactors of galectin-1 in cultured live mouse myoblasts. Our interactome dataset can serve as a resource to aid the determination of mechanisms through which galectin-1 promotes myogenic differentiation. Moreover, it can also facilitate the determination of the physiological glycoprotein counter-receptors of galectin-1. Indeed, we identify several known and novel glycan-mediated ligands of galectin-1 as well as validate that galectin-1 binds the native CD44 glycoprotein in a glycan-mediated manner.
Collapse
Affiliation(s)
- Zak Vilen
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Eugene Joeh
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Christopher G. Parker
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| | - Mia L. Huang
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
- Department of Chemistry, Scripps Research, 120 Scripps Way, Jupiter, Florida 33458-5284, United States
| |
Collapse
|
14
|
Cell instructive Liquid Crystalline Networks for myotube formation. iScience 2021; 24:103077. [PMID: 34568797 PMCID: PMC8449234 DOI: 10.1016/j.isci.2021.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 08/29/2021] [Indexed: 02/04/2023] Open
Abstract
Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.
Collapse
|
15
|
S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019; 20:ijms20246364. [PMID: 31861214 PMCID: PMC6941007 DOI: 10.3390/ijms20246364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), and the signaling pathways triggered by its binding to specific G protein-coupled receptors play a critical regulatory role in many pathophysiological processes, including skeletal muscle and nervous system degeneration. The signaling transduced by S1P binding appears to be much more complex than previously thought, with important implications for clinical applications and for personalized medicine. In particular, the understanding of S1P/S1P receptor signaling functions in specific compartmentalized locations of the cell is worthy of being better investigated, because in various circumstances it might be crucial for the development or/and the progression of neuromuscular diseases, such as Charcot-Marie-Tooth disease, myasthenia gravis, and Duchenne muscular dystrophy.
Collapse
|
16
|
Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 2019; 380:155-172. [PMID: 31820147 DOI: 10.1007/s00441-019-03133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine released in injured and contracting skeletal muscles. In this study, we examined cellular expression of proteins associated with cytoskeleton organization and cell migration, chosen on the basis of microRNA profiling, in rat primary skeletal muscle cells (RSkMC) treated with IL-6 (1 ng/ml) for 11 days. MiRNA microarray analysis and qRT-PCR revealed increased expression of miR-154-3p and miR-338-3p in muscle cells treated with IL-6. Pacsin3 was downregulated post-transcriptionally by IL-6, but not by IGF-I. Ephrin4A protein was increased both in IL-6- and IGF-I-treated myocytes. IL-6, but not IGF-I, stimulated migratory ability of RSkMC, examined in wound healing assay. Alpha-actinin protein was slightly augmented in RSKMC treated with IL-6, similarly to IGF-I. IL-6, but not IGF-I, upregulated desmin in differentiating RSkMC. IL-6 supplementation caused accumulation of alpha-actinin and desmin in near-nuclear area of muscle cells, which was manifested by increased ratio: mean near-nuclear fluorescence/mean peripheral cytoplasm fluorescence of these proteins. We concluded that IL-6, a known proinflammatory cytokine and a physical activity-associated myokine, acting during differentiation of primary skeletal muscle cells, alters expression of nonmuscle-specific miRNAs. This cytokine causes differential effects on pacsin-3 and ephrinA4, through post-transcriptional inhibition and stimulation, respectively. IL-6-exerted modifications of cytoskeletal proteins in muscle cells include both transcriptional (desmin and dynein heavy chain 5) and post-transcriptional activation (alpha-actinin). Moreover, IL-6 augments near-nuclear distribution of cytoskeletal proteins, alpha-actinin and desmin and promotes migration of myocytes. Such effects suggest that IL-6 plays a role during skeletal muscle regeneration, acting through mechanisms independent of regulation of myogenic program.
Collapse
Affiliation(s)
- Marta Milewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Maciej Błaszczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
17
|
Da Y, Mou Y, Wang M, Yuan X, Yan F, Lan W, Zhang F. Mechanical stress promotes biological functions of C2C12 myoblasts by activating PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2019; 21:470-477. [PMID: 31746379 DOI: 10.3892/mmr.2019.10808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 10/17/2019] [Indexed: 11/05/2022] Open
Abstract
The PI3K/AKT signaling pathway regulates cell proliferation and differentiation in multiple types of cells. The present study aimed to investigate the effects of mechanical stress on C2C12 cell proliferation and to explore the associated mechanisms. A cyclic mechanical stress model of C2C12 myoblasts was established. Reverse transcription‑quantitative PCR and western blotting assay were used to examine the PI3K signaling pathways involved in the progress of cell differentiation. Cell counting kit‑8 (CCK‑8) assay was used to evaluate the proliferation of C2C12 cells. Flow cytometry was employed to evaluate apoptosis following mechanical stress. The results demonstrated that mechanical stress activated the PI3K signaling pathway in C2C12 myoblasts. Mechanical stress significantly promoted phosphorylation (p‑) of AKT and expression of mammalian target of rapamycin (mTOR) compared with the normal group. Mechanical stress significantly promoted 4E‑binding protein 1 (4EBP1) expression in C2C12 cells compared with the normal group. The PI3K specific inhibitor LY294002 significantly decreased 4EBP1 expression and reduced p‑AKT and p‑mTOR expression compared with the mechanical stress group. Mechanical stress promoted C2C12 cell proliferation. Apoptosis of C2C12 significantly decreased in the mechanical stress group compared with the normal group. Cyclin D levels significantly increased in the mechanical stress group compared with the normal group. In conclusion, mechanical stress promoted biological functions of C2C12 cells by activating the PI3K/AKT signaling pathway. These results may contribute to a better understanding of the effects of mechanical stress on cells.
Collapse
Affiliation(s)
- Yu Da
- Department of Stomatology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 211102, P.R. China
| | - Yongbin Mou
- Department of Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Mengjia Wang
- Department of Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fuhua Yan
- Department of Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Weidong Lan
- Department of Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fang Zhang
- Department of Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
18
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
19
|
Patel A, Vendrell-Gonzalez S, Haas G, Marcinczyk M, Ziemkiewicz N, Talovic M, Fisher JS, Garg K. Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. Biores Open Access 2019; 8:129-138. [PMID: 31367477 PMCID: PMC6664826 DOI: 10.1089/biores.2019.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle has a remarkable regenerative capacity in response to mild injury. However, when muscle is severely injured, muscle regeneration is impaired due to the loss of muscle-resident stem cells, known as satellite cells. Fibrotic tissue, primarily comprising collagen I (COL), is deposited with this critical loss of muscle. In recent studies, supplementation of laminin (LM)-111 has been shown to improve skeletal muscle regeneration in several models of disease and injury. Additionally, electrical stimulation (E-stim) has been investigated as a possible rehabilitation therapy to improve muscle's functional recovery. This study investigated the role of E-stim and substrate in regulating myogenic response. C2C12 myoblasts were allowed to differentiate into myotubes on COL- and LM-coated polydimethylsiloxane molds. The myotubes were subjected to E-stim and compared with nonstimulated controls. While E-stim resulted in increased myogenic activity, irrespective of substrate, LM supported increased proliferation and uniform distribution of C2C12 myoblasts. In addition, C2C12 myoblasts cultured on LM showed higher Sirtuin 1, mammalian target of rapamycin, desmin, nitric oxide, and vascular endothelial growth factor expression. Taken together, these results suggest that an LM substrate is more conducive to myoblast growth and differentiation in response to E-stim in vitro.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Sara Vendrell-Gonzalez
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jonathan S Fisher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
20
|
Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intrinsic cellular properties of several types of cells are dramatically altered as the culture condition shifts from two-dimensional (2D) to three-dimensional (3D) environment. Currently, several lines of evidence have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) in regenerative medicine. MSCs not only replenish the lost cells, they also promote the regeneration of impaired tissues by modulating the immune responses. Following the development of 3D cell culture, the enhanced therapeutic efficacy of spheroid-forming MSCs have been identified in several animal disease models by promoting differentiation or trophic factor secretion, as compared to planar-cultured MSCs. Due to the complicated and multifunctional applications in the medical field, MSCs are recently named as medicinal signaling cells. In this review, we summarize the predominant differences of cell–environment interactions for the MSC spheroids formed by chitosan-based substrates and other scaffold-free approaches. Furthermore, several important physical and chemical factors affecting cell behaviors in the cell spheroids are discussed. Currently, the understanding of MSCs spheroid interactions is continuously expanding. Overall, this article aims to review the broad advantages and perspectives of MSC spheroids in regenerative medicine and in future healthcare.
Collapse
|
21
|
Prevedello L, Michielin F, Balcon M, Savio E, Pavan P, Elvassore N. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip. Ann Biomed Eng 2018; 47:231-242. [PMID: 30218223 DOI: 10.1007/s10439-018-02121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 11/27/2022]
Abstract
Mechanical stress has been proven to be an important factor interfering with many biological functions through mechano-sensitive elements within the cells. Despite the current interest in mechano-transduction, the development of suitable experimental tools is still characterized by the strife to design a compact device that allows high-magnification real-time imaging of the stretched cells, thus enabling to follow the dynamics of cellular response to mechanical stimulations. Here we present a microfluidic multi-layered chip that allows mechanical deformation of adherent cells maintaining a fixed focal plane, while allowing independent control of the soluble microenvironment. The device was optimized with the aid of FEM simulation and fully characterized in terms of mechanical deformation. Different cell lines were exposed to tunable mechanical strain, which results in continuous area deformation up to 20%. Thanks to the coupling of chemical glass etching, 2-dimensional deformation of a thin elastomeric membrane and microfluidic cell culture, the developed device allows a unique combination of cell mechanical stimulation, in line imaging and accurate control of cell culture microenvironment.
Collapse
Affiliation(s)
- Lia Prevedello
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy
| | - Federica Michielin
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Manuel Balcon
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy
| | - Enrico Savio
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy
| | - Piero Pavan
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering (DII), University of Padova, Padua, Italy. .,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy. .,Great Ormond Street Institute of Child Health, University College London, London, UK. .,Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Pierucci F, Frati A, Battistini C, Matteini F, Iachini MC, Vestri A, Penna F, Costelli P, Meacci E. Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3598-3614. [PMID: 30279138 DOI: 10.1016/j.bbadis.2018.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Francesca Matteini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Maria Chiara Iachini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy.
| |
Collapse
|
23
|
Zhang X, Yang L, Chien S, Lv Y. Suspension state promotes metastasis of breast cancer cells by up-regulating cyclooxygenase-2. Am J Cancer Res 2018; 8:3722-3736. [PMID: 30083255 PMCID: PMC6071525 DOI: 10.7150/thno.25434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Hematogenous metastasis requires tumor cells to detach from primary tumor into blood/lymphatic circulation and extravasate. Tumor cells in the blood circulation system, named circulating tumor cells (CTCs), are in a suspension state, with unique cytoskeletal structure and molecular phenotype different from primary tumor cells. The aim of this study is to assess the impact of suspension state on the metastatic potential of breast cancer cells (BCCs) and study its underlying mechanism. Methods: BCCs were cultured on low-adhesion plates to mimic the suspension state. Conventional adherent culture BCCs were used as the control. This study examined the metastatic potential of adherent and suspension BCCs in vitro and in vivo. RNA sequencing analysis, siRNA, and inhibitors were used to determine the underlying molecular mechanism. Results: The suspension state significantly increased the metastatic potential of BCCs, but slightly suppressed their tumor growth. RNA sequencing analysis revealed that the suspension state resulted in an acquisition of unique molecular signature enriched in pro-metastatic and tumor-suppressive genes. Specifically, prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes protein cyclooxygenase-2 (COX-2), was identified as a highly up-regulated gene in suspension state compared with adherent cultured BCCs. Inhibition of the catalytic activity of COX-2 by celecoxib markedly suppressed suspension-increased migration and invasion of BCCs. In addition, knock-down of COX-2 by siRNA reduced the experimental lung metastasis formation of suspension cultured BCCs, which was associated with a remarkable decrease in retention and survival of BCCs in lungs of mice in the early stage of metastasis. Activation of Ca2+/calcineurin (CaN)/nuclear factor of activated T cells (NFAT) pathway and disruption of cytoskeleton contributed to the COX-2 up-expression by suspension state. Conclusions: Our results demonstrate that suspension state plays an important role in the metastatic potential of CTCs, and suggest a potential application of COX-2 inhibitor for anti-metastasis.
Collapse
|
24
|
Wang H, Li J, Zhang X, Ning T, Ma D, Ge Y, Xu S, Hao Y, Wu B. Priming integrin alpha 5 promotes the osteogenic differentiation of human periodontal ligament stem cells due to cytoskeleton and cell cycle changes. J Proteomics 2018; 179:122-130. [PMID: 29545170 DOI: 10.1016/j.jprot.2018.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/09/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
Abstract
To seek a potential target for periodontal tissue regeneration, this study aimed to explore the role of Integrin alpha 5 (ITGA5) in human periodontal ligament stem cells (PDLSCs). Transwell assay, Cell Counting Kit 8 (CCK8) assay, cell cycle assay, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot were used to investigate the effects of ITGA5 on PDLSC migration, proliferation and osteogenic differentiation. The in vivo effect was investigated by nude mice subcutaneous transplantation with cell and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) complex. The involved mechanism was explored by the iTRAQ proteomic technique and validated by western blot and immunofluorescence. We found that ITGA5forced expression enhanced the proliferation, migration, and osteogenic capacity of PDLSCs, while inhibited ITGA5 expression had the opposite effects. The phosphorylation of focal adhesion kinase (FAK), phosphatidylinositide 3-kinases/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinases 1 and 2 (MEK1/2/ERK1/2) were crucial in this process. Forced expression of ITGA5 in PDLSCs increased osteoid and PDL-like tissue formation in vivo. Proteomic and bioinformatic analysis revealed that cytoskeleton and cell cycle changes were involved. Keratin, type II cytoskeletal 6B (KRT6B) and desmin (DES) may distinguish this process and serve as new markers of PDLSC differentiation. SIGNIFICANCE Periodontitis is highly prevalent and can impair PDL and teeth functioning. One of the most promising therapies to periodontitis therapies is PDL regeneration by utilizing PDLSCs. While many obstacles remain to be resolved, the regulation of PDLSC osteogenic differentiation is a main concern. The present study demonstrated the potential clinical value of an ITGA5 priming peptide, which may be utilized in PDL tissue repair and regeneration. The mechanism elucidated in this study would help to fuel its application.
Collapse
Affiliation(s)
- He Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiaoyi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Tingting Ning
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Dandan Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Shuaimei Xu
- Department of Endodontics and Operative Dentistry, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Avenue, Guangzhou 510280, China
| | - Yilin Hao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China.
| |
Collapse
|
25
|
Li EW, McKee-Muir OC, Gilbert PM. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol 2018; 126:125-176. [DOI: 10.1016/bs.ctdb.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Zhang Q, Liu J, Chen S, Liu J, Liu L, Liu G, Wang F, Jiang W, Zhang C, Wang S, Yuan X. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis 2016; 21:432-42. [PMID: 26801321 DOI: 10.1007/s10495-016-1217-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Jianing Liu
- Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Shulan Chen
- Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Jing Liu
- Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Lijuan Liu
- People's of Weifang Hospital, Weifang, 261041, Shandong, People's Republic of China
| | - Guirong Liu
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Fang Wang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Wenxin Jiang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Caixia Zhang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China
| | - Shuangyu Wang
- Department of Stomatology, People's Hospital in Qingdao Shibei District, Qingdao, 266011, Shandong, People's Republic of China
| | - Xiao Yuan
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
28
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
29
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
30
|
Squecco R, Tani A, Zecchi-Orlandini S, Formigli L, Francini F. Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium. Eur J Pharmacol 2015; 758:40-52. [PMID: 25843408 DOI: 10.1016/j.ejphar.2015.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Big efforts have been dedicated up to now to identify novel targets for cancer treatment. The peculiar biophysical profile and the atypical ionic channels activity shown by diverse types of human cancers suggest that ion channels may be possible targets in cancer therapy. Earlier studies have shown that melatonin exerts an oncostatic action on different tumors. In particular, it was shown that melatonin was able to inhibit growth/viability and proliferation, to reduce the invasiveness and metastatic properties of human estrogen-sensitive breast adenocarcinoma MCF-7 cell line cultured in growth medium, with substantial impairments of epidermal growth factor (EGF) and Notch-1-mediated signaling. The purpose of this work was to evaluate on MCF-7 cells the possible effects of melatonin on the biophysical features known to have a role in proliferation and differentiation, by using the patch-clamp technique. Our results show that in cells cultured in growth as well as in differentiation medium melatonin caused a hyperpolarization of resting membrane potential paralleled by significant changes of the inward Ca(2+) currents (T- and L-type), outward delayed rectifier K(+) currents and cell capacitance. All these effects are involved in MCF-7 growth and differentiation. These findings strongly suggest that melatonin, acting as a modulator of different voltage-dependent ion channels, might be considered a new promising tool for specifically disrupting cell viability and differentiation pathways in tumour cells with possible beneficial effects on cancer therapy.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
31
|
Khodabukus A, Baar K. Glucose Concentration and Streptomycin Alter In Vitro Muscle Function and Metabolism. J Cell Physiol 2015; 230:1226-34. [DOI: 10.1002/jcp.24857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Alastair Khodabukus
- Division of Neurobiology; Physiology and Behavior; University of California Davis; Davis California
| | - Keith Baar
- Division of Neurobiology; Physiology and Behavior; University of California Davis; Davis California
| |
Collapse
|
32
|
Ledda M, D'Emilia E, Giuliani L, Marchese R, Foletti A, Grimaldi S, Lisi A. Nonpulsed Sinusoidal Electromagnetic Fields as a Noninvasive Strategy in Bone Repair: The Effect on Human Mesenchymal Stem Cell Osteogenic Differentiation. Tissue Eng Part C Methods 2015; 21:207-17. [DOI: 10.1089/ten.tec.2014.0216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico D'Emilia
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
| | - Livio Giuliani
- Dipartimento Insediamenti produttivi ed Interazione con l'Ambiente (INAIL-DIPIA), Rome, Italy
- INAIL Florence, Rome, Italy
| | | | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
33
|
Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation. J Anat 2014; 227:717-31. [PMID: 25382217 DOI: 10.1111/joa.12243] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/18/2022] Open
Abstract
Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed.
Collapse
Affiliation(s)
- Andrew J Steward
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel J Kelly
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Donati C, Cencetti F, Bruni P. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol 2013; 4:338. [PMID: 24324439 PMCID: PMC3839259 DOI: 10.3389/fphys.2013.00338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/01/2013] [Indexed: 12/23/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism of sphingomyelin and is produced by sphingosine phosphorylation catalyzed by sphingosine kinase (SK). S1P can act either intracellularly or extracellularly through specific ligation to its five G protein-coupled receptors (GPCR) named S1P receptors (S1PR). Many experimental findings obtained in the last 20 years demonstrate that S1P and its metabolism play a multifaceted role in the regulation of skeletal muscle regeneration. Indeed, this lipid is known to activate muscle-resident satellite cells, regulating their proliferation and differentiation, as well as mesenchymal progenitors such as mesoangioblasts that originate outside skeletal muscle, both involved in tissue repair following an injury or disease. The molecular mechanism of action of S1P in skeletal muscle cell precursors is highly complex, especially because S1P axis is under the control of a number of growth factors and cytokines, canonical regulators of skeletal muscle biology. Moreover, this lipid is crucially involved in the regulation of skeletal muscle contractile properties, responsiveness to insulin, fatigue resistance and tropism. Overall, on the basis of these findings S1P signaling appears to be an appealing pharmacological target for improving skeletal muscle repair. Nevertheless, further understanding is required on the regulation of S1P downstream signaling pathways and the expression of S1PR. This article will resume our current knowledge on S1P signaling in skeletal muscle, hopefully stimulating further investigation in the field, aimed at individuating novel molecular targets for ameliorating skeletal muscle regeneration and reducing fibrosis of the tissue after a trauma or due to skeletal muscle diseases.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, University of Florence Florence, Italy ; Istituto Interuniversitario di Miologia Italy
| | | | | |
Collapse
|
35
|
Song Y, Ju Y, Morita Y, Song G. Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells. J Biosci Bioeng 2013; 116:509-15. [DOI: 10.1016/j.jbiosc.2013.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
36
|
Iorio R, Bennato F, Mancini F, Colonna RC. ELF-MF transiently increases skeletal myoblast migration: possible role of calpain system. Int J Radiat Biol 2013; 89:548-61. [PMID: 23367877 DOI: 10.3109/09553002.2013.771825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Cell migration is crucial for myogenesis since it is required for the alignment and fusion of myoblast. Ca(2+) signals are involved in regulating myoblast migration and an extremely low frequency (ELF) magnetic field (MF) increases intracellular calcium levels in C2C12 myoblast. This study was aimed at investigating whether ELF-MF could affect myoblast migration. As calpains contribute to the regulation of myoblast motility, the effect of ELF-MF on μ- and m-calpain was also investigated. MATERIALS AND METHODS The effect of ELF-MF (1 mT; 50 Hz) on C2C12 cell motility was observed by wound-healing assay. Protein expression of calpains, calpastatin, myristoylated alanine-rich C-kinase substrate (MARCKS) and vinculin were examined by Western blot analysis. Casein zymography and immunofluorescence analysis were carried out to evaluate, respectively, activity levels of calpains and intracellular distribution of calpains, calpastatin and actin. RESULTS Exposure to ELF-MF resulted in a transient but significant increase of myoblast migration. This stimulatory effect was associated with a marked increase of μ- and m-calpain activity followed by the concomitant variation in their subcellular localization. No significant changes in intracellular distribution and protein levels of calpastatin were detected. Finally, a significant decrease of MARCKS expression and modifications of actin dynamics were reported. CONCLUSIONS This study clearly outlines an involvement of calpains in ELF-MF-mediated myoblast migration.
Collapse
Affiliation(s)
- Roberto Iorio
- Departments of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, 67100 Italy.
| | | | | | | |
Collapse
|
37
|
Donati C, Cencetti F, Bruni P. New insights into the role of sphingosine 1-phosphate and lysophosphatidic acid in the regulation of skeletal muscle cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:176-84. [DOI: 10.1016/j.bbalip.2012.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 12/25/2022]
|
38
|
Abstract
Studies performed in the last fifteen years have clearly established that the bioactive sphingolipid sphingosine 1-phosphate (S1P) affects various different biological properties of myogenic precursor cells as well as physiological features of adult skeletal muscle. Noticeably, in myogenic precursor cells multiple growth factors and cytokines cross-communicate with S1P axis and the engagement of distinct S1P receptor subtypes appears to be crucially implicated in transmitting specific biological effects. This paper summarizes current research findings and discloses the potential for new therapeutics designed to alter S1P signaling with the aim of improving skeletal muscle repair.
Collapse
Affiliation(s)
- Paola Bruni
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy.
| | | |
Collapse
|
39
|
De Carlo F, Ledda M, Pozzi D, Pierimarchi P, Zonfrillo M, Giuliani L, D'Emilia E, Foletti A, Scorretti R, Grimaldi S, Lisi A. Nonionizing Radiation as a Noninvasive Strategy in Regenerative Medicine: The Effect of Ca2+-ICR on Mouse Skeletal Muscle Cell Growth and Differentiation. Tissue Eng Part A 2012; 18:2248-58. [DOI: 10.1089/ten.tea.2012.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Flavia De Carlo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Deleana Pozzi
- Department of Experimental Medicine, University of Rome “La Sapienza,” Regina Elena, Italy
| | | | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Livio Giuliani
- Instituto Superiore per la, Prevenzionie e Sicurezza sul Lavoro, Dipartimento Installazioni de Prodozione e Insediamenti Antropici (ISPESL-DIPIA), Rome, Italy
| | - Enrico D'Emilia
- Instituto Superiore per la, Prevenzionie e Sicurezza sul Lavoro, Dipartimento Installazioni de Prodozione e Insediamenti Antropici (ISPESL-DIPIA), Rome, Italy
| | - Alberto Foletti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Riccardo Scorretti
- Ampère-Lab-UMR 5005 Centre National de la Recherche Scientifique, University of Lyon, Villeurbanne, France
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
40
|
Guolla L, Bertrand M, Haase K, Pelling AE. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J Cell Sci 2012; 125:603-13. [PMID: 22389400 DOI: 10.1242/jcs.088302] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is becoming clear that mechanical stimuli are crucial factors in regulating the biology of the cell, but the short-term structural response of a cell to mechanical forces remains relatively poorly understood. We mechanically stimulated cells transiently expressing actin-EGFP with controlled forces (0-20 nN) in order to investigate the structural response of the cell. Two clear force-dependent responses were observed: a short-term (seconds) local deformation of actin stress fibres and a long-term (minutes) force-induced remodelling of stress fibres at cell edges, far from the point of contact. By photobleaching markers along stress fibres we were also able to quantify strain dynamics occurring along the fibres throughout the cell. The results reveal that the cell exhibits complex heterogeneous negative and positive strain fluctuations along stress fibres in resting cells that indicate localized contraction and stretch dynamics. The application of mechanical force results in the activation of myosin contractile activity reflected in an ~50% increase in strain fluctuations. This approach has allowed us to directly observe the activation of myosin in response to mechanical force and the effects of cytoskeletal crosslinking on local deformation and strain dynamics. The results demonstrate that force application does not result in simplistic isotropic deformation of the cytoarchitecture, but rather a complex and localized response that is highly dependent on an intact microtubule network. Direct visualization of force-propagation and stress fibre strain dynamics have revealed several crucial phenomena that take place and ultimately govern the downstream response of a cell to a mechanical stimulus.
Collapse
Affiliation(s)
- Louise Guolla
- Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | | | | |
Collapse
|
41
|
Akiyama Y, Hoshino T, Hashimoto M, Morishima K. Evaluation of mechanical stimulation effect on cellular orientation under confluence based on 2D-FFT and principal component analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12213-012-0045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Del Favero G, Florio C, Codan B, Sosa S, Poli M, Sbaizero O, Molgó J, Tubaro A, Lorenzon P. The Stretch-Activated Channel Blocker Gd3+ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chem Res Toxicol 2012; 25:1912-20. [DOI: 10.1021/tx300203x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Mark Poli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21701-5011, United States
| | | | - Jordi Molgó
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie
et Développement, CNRS UPR 3294, 91198 Gif sur Yvette cedex,
France
| | | | | |
Collapse
|
43
|
Nguyen BNB, Chetta J, Shah SB. A Novel Technology for Simultaneous Tensile Loading and High-Resolution Imaging of Cells. Cell Mol Bioeng 2012. [DOI: 10.1007/s12195-012-0245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
44
|
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS One 2012; 7:e37218. [PMID: 22606352 PMCID: PMC3351440 DOI: 10.1371/journal.pone.0037218] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/15/2012] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.
Collapse
|
45
|
Sassoli C, Formigli L, Bini F, Tani A, Squecco R, Battistini C, Zecchi-Orlandini S, Francini F, Meacci E. Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction. J Cell Mol Med 2012; 15:2498-511. [PMID: 21199328 PMCID: PMC3822960 DOI: 10.1111/j.1582-4934.2010.01250.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hara M, Tabata K, Suzuki T, Do MKQ, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 2012; 302:C1741-50. [PMID: 22460715 DOI: 10.1152/ajpcell.00068.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures. When applied to 1-h stretch cultures with individual inhibitors for MS and L-VGC channels (GsMTx-4 and nifedipine, respectively) or with a less specific inhibitor (gadolinium chloride, Gd), satellite cell activation and upstream HGF release were abolished, as revealed by bromodeoxyuridine-incorporation assays and Western blotting of conditioned media, respectively. The inhibition was dose dependent with a maximum at 0.1 μM (GsMTx-4), 10 μM (nifedipine), or 100 μM (Gd) and canceled by addition of HGF to the culture media; a potent inhibitor for transient-type VGC channels (NNC55-0396, 100 μM) did not show any significant inhibitory effect. The stretch response was also abolished when calcium-chelator EGTA (1.8 mM) was added to the medium, indicating the significance of extracellular free calcium ions in our present activation model. Finally, cation/calcium channel dependencies were further documented by calcium-imaging analyses on stretched cells; results clearly demonstrated that calcium ion influx was abolished by GsMTx-4, nifedipine, and EGTA. Therefore, these results provide an additional insight that calcium ions may flow in through L-VGC channels by possible coupling with adjacent MS channel gating that promotes the local depolarization of cell membranes to initiate the satellite cell activation cascade.
Collapse
Affiliation(s)
- Minako Hara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: molecular basis for the anticancer effect of these molecules. Eur J Pharmacol 2012; 681:34-43. [PMID: 22532966 DOI: 10.1016/j.ejphar.2012.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melatonin has been shown to inhibit breast cancer cell growth in numerous studies. However, our understanding of the therapeutic effects of this hormone is still marginal and there is little information concerning its combination with other antitumor agents to achieve additional potential benefits. All-trans retinoic acids or somatostatin have been used in combination with melatonin in several pre-clinical and clinical trials, but they have never been combined altogether as an anti-breast cancer treatment. In the present study, we investigated whether the association of melatonin, all-trans retinoic acid and somatostatin leads to an enhanced anticancer activity in MCF-7 breast cancer cells. In such conditions, MCF-7 cells were investigated for cell growth/viability and proliferation, as well as for the expression of cyclin A, and components of the Notch and EGFR pathways, by Western blotting and confocal immunofluorescence. Electrophysiological, morphological, and biochemical analysis were also performed to reveal signs of cell damage and death. We found that melatonin in combination with all-trans retinoic acid and somatostatin potentiated the effects of melatonin alone on MCF-7 cell viability and growth inhibition; this phenomenon was associated with altered conductance through Ca²⁺ and voltage-activated K⁺ (BK) channels, and with substantial impairments of Notch-1 and epidermal growth factor (EGF)-mediated signaling. The combined treatment also caused a marked reduction in mitochondrial membrane potential and intracellular ATP production as well as induction of necrotic cell death. Taken together our results indicate that co-administration of melatonin with all-trans retinoic acid and somatostatin may be of significant therapeutic benefit in breast cancer.
Collapse
|
48
|
Katira P, Zaman MH, Bonnecaze RT. How changes in cell mechanical properties induce cancerous behavior. PHYSICAL REVIEW LETTERS 2012; 108:028103. [PMID: 22324713 DOI: 10.1103/physrevlett.108.028103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 05/20/2023]
Abstract
Tumor growth and metastasis are ultimately mechanical processes involving cell migration and uncontrolled division. Using a 3D discrete model of cells, we show that increased compliance as observed for cancer cells causes them to grow at a much faster rate compared to surrounding healthy cells. We also show how changes in intercellular binding influence tumor malignancy and metastatic potential. These findings suggest that changes in the mechanical properties of cancer cells is the proximate cause of uncontrolled division and migration and various biochemical factors drive cancer progression via this mechanism.
Collapse
Affiliation(s)
- Parag Katira
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
49
|
Lo T, Tsai CF, Shih YRV, Wang YT, Lu SC, Sung TY, Hsu WL, Chen YJ, Lee OK. Phosphoproteomic Analysis of Human Mesenchymal Stromal Cells during Osteogenic Differentiation. J Proteome Res 2011; 11:586-98. [DOI: 10.1021/pr200868p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ting Lo
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chia-Feng Tsai
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Ru V. Shih
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Lu
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ting-Yi Sung
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Lian Hsu
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Oscar K. Lee
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Nikolova-Karakashian MN, Reid MB. Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid Redox Signal 2011; 15:2501-17. [PMID: 21453197 PMCID: PMC3176343 DOI: 10.1089/ars.2011.3940] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Sphingolipids are a class of bioactive lipids that regulate diverse cell functions. Ceramide, sphingosine, and sphingosine-1-phosphate accumulate in tissues such as liver, brain, and lung under conditions of cellular stress, including oxidative stress. The activity of some sphingolipid metabolizing enzymes, chiefly the sphingomyelinases, is stimulated during inflammation and in response to oxidative stress. Ceramide, the sphingomyelinase product, as well as the ceramide metabolite, sphingosine-1-phosphate, can induce the generation of more reactive oxygen species, propagating further inflammation. RECENT ADVANCES This review article summarizes information on sphingolipid biochemistry and signaling pertinent to skeletal muscle and describes the potential influence of sphingolipids on contractile function. CRITICAL ISSUES It encompasses topics related to (1) the pathways for complex sphingolipid biosynthesis and degradation, emphasizing sphingolipid regulation in various muscle fiber types and subcellular compartments; (2) the emerging evidence that implicates ceramide, sphingosine, and sphingosine-1-phosphate as regulators of muscle oxidant activity, and (3) sphingolipid effects on contractile function and fatigue. FUTURE DIRECTIONS We propose that prolonged inflammatory conditions alter ceramide, sphingosine, and sphingosine-1-phosphate levels in skeletal muscle and that these changes promote the weakness, premature fatigue, and cachexia that plague individuals with heart failure, cancer, diabetes, and other chronic inflammatory diseases.
Collapse
|