1
|
Zhao G, Pan AY, Feng Y, Rasko JE, Bailey CG, Lovicu FJ. Sprouty and Spred temporally regulate ERK1/2-signaling to suppress TGFβ-induced lens EMT. Exp Eye Res 2022; 219:109070. [DOI: 10.1016/j.exer.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
2
|
ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131:792-805. [PMID: 34634357 DOI: 10.1016/j.neubiorev.2021.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The extracellular regulated kinase/microtubule-associated protein kinase (ERK/MAPK) signalling pathway transduces signals that cause an alteration in the ongoing metabolic pathways and modifies gene expression patterns; thus, influencing cellular behaviour. ERK/MAPK signalling is essential for the proper development of the nervous system from neural progenitor cells derived from the embryonic mesoderm. Several signalling molecules that regulate the well-coordinated process of neurodevelopment transduce developmental information through the ERK/MAPK signalling pathway. The ERK/MAPK is a potential novel therapeutic target in several neurodevelopmental disorders, however, despite years of study, there is still significant uncertainty about the exact mechanism by which the ERK/MAPK signalling pathway elicits specific responses in neurodevelopment. Here, we will review the evidence highlighting the role of ERK/MAPK signalling in neurodevelopment. We will also discuss the structural implication and behavioural deficits associated with perturbed ERK/MAPK signalling pathway in cortical development, whilst examining its contribution to the neuropathology of several neurodevelopmental disorders, such as Autism Spectrum Disorder, Schizophrenia, Fragile X, and Attention Deficit Hyperactive Disorder.
Collapse
|
3
|
Sokolov DI, Kozyreva AR, Markova KL, Mikhailova VA, Korenevskii AV, Miliutina YP, Balabas OA, Chepanov SV, Selkov SA. Microvesicles produced by monocytes affect the phenotype and functions of endothelial cells. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Bharti S, Vadlamudi HC. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J Recept Signal Transduct Res 2020; 41:105-116. [PMID: 32787477 DOI: 10.1080/10799893.2020.1805626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a very common pilosebaceous inflammatory disease occurring primarily on the face and also rare on the upper arms, trunk, and back, which is caused by Propionibacterium, Staphylococcus, Corynebacterium, and other species. Pathophysiology of acne comprises of irregular keratinocyte proliferation, differentiation, increased sebum output, bacterial antigens and cytokines induced inflammatory response. Treatment of acne requires proper knowledge on the pathophysiology then only the clinician can come out with a proper therapeutic dosage regimen. Understanding the pathophysiology not only includes the mechanism but also involvement of receptors. Thus, this review is framed in such a way that the authors have focused on the disease acne vulgaris, pathophysiology, transcription factors viz. the Forkhead Box O1 (FoxO1) Transcription Factor, hormones like androgens and receptors such as Histamine receptors, Retinoic receptor, Fibroblast growth factor receptors, Toll like receptor, Androgen receptor, Liver X-receptor, Melanocortin receptor, Peroxisome proliferator-activated receptor and epidermal growth factor receptors involvement in the progression of acne vulgaris.
Collapse
Affiliation(s)
- Sneha Bharti
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bangalore, India
| | | |
Collapse
|
5
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Increased expression of miR-27 predicts poor prognosis and promotes tumorigenesis in human multiple myeloma. Biosci Rep 2019; 39:BSR20182502. [PMID: 30837325 PMCID: PMC6454019 DOI: 10.1042/bsr20182502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by abnormal infiltration of plasma cells in the bone marrow. MicroRNAs (miRNAs) have emerged as crucial regulators in human tumorigenesis and tumor progression. miR-27, a novel cancer-related miRNA, has been confirmed to be implicated in multiple types of human tumors; however, its biological role in MM remains largely unknown. The present study aimed to characterize the biological role of miR-27 in MM and elucidate the potential molecular mechanisms. Here we found that miR-27 was significantly up-regulated in MM samples compared with normal bone marrow samples from healthy donors. Moreover, the log-rank test and Kaplan-Meier survival analysis displayed that MM patients with high miR-27 expression experienced a significantly shorter overall survival than those with low miR-27 expression. In the current study, we transfected MM cells with miR-27 mimics or miR-27 inhibitor to manipulate its expression. Functional studies demonstrated that miR-27 overexpression promoted MM cell proliferation, facilitated cell cycle progression, and expedited cell migration and invasion; whereas miR-27 knockdown inhibited cell proliferation, induced cell cycle arrest, and slowed down cell motility. Mechanistic studies revealed that Sprouty homolog 2 (SPRY2) was a direct target of miR-27 and that rescuing SPRY2 expression reversed the promoting effects of miR-27 on MM cell proliferation, migration, and invasion. Besides, miR-27 ablation suppressed tumorigenecity of MM cells in mouse xenograft models. Collectively, our data indicate that miR-27 exerts its oncogenic functions in MM by targetting SPRY2 and that miR-27 may be used as a promising candidate target in MM treatment.
Collapse
|
7
|
Jia J, Guo X, Feng L, Yin X, Zhu L, Li J, Yu D, Fang Y, Jiang Z, Yu M, Xia H, Shi L, Ju L, Zhang M, Xiao Y, Lu CA, Shi W, Zhang X, Lou J. Genome-wide profiling reveals novel microRNAs in hand-spinning-specific chrysotile exposure. Epigenomics 2019; 11:511-525. [DOI: 10.2217/epi-2018-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: We aimed to explore miRNA expression profiles in hand-spinning chrysotile exposed workers and their potential influencing factors. Methods: miRNA array technique was applied to screen differentially expressed miRNAs between plasma samples from three exposed workers and three controls. Then, seven selected miRNAs were validated in 143 workers and 100 controls, and the potential influencing factors were revealed by multiple linear regression. Finally, the expression levels of those seven miRNAs were evaluated in human mesothelial cells (Met-5A) that were exposed to chrysotile at 5 μg·cm-2 for 8, 24 and 48 h, respectively. Results & conclusion: Hand-spinning chrysotile exposure can result in differential expression of miRNAs. Several of those miRNAs have positive correlations with asbestos exposure.
Collapse
Affiliation(s)
- Junlin Jia
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Xinnian Guo
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Lingfang Feng
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Xianhong Yin
- Jiading District Center for Disease Control & Prevention, Shanghai, PR China
| | - Lijin Zhu
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Jinhao Li
- Department of Molecular Environmental Biology, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Dandan Yu
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Yuan Fang
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Zhaoqiang Jiang
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Min Yu
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Hailing Xia
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Li Shi
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Li Ju
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Min Zhang
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Yun Xiao
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Chensheng A Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wei Shi
- Department of Surgery, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Xing Zhang
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Jianlin Lou
- Department of Pneumoconiosis, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, PR China
| |
Collapse
|
8
|
Walker DJ, Land SC. Regulation of vascular signalling by nuclear Sprouty2 in fetal lung epithelial cells: Implications for co-ordinated airway and vascular branching in lung development. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:105-114. [PMID: 29409968 PMCID: PMC6078907 DOI: 10.1016/j.cbpb.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/14/2018] [Accepted: 01/24/2018] [Indexed: 11/25/2022]
Abstract
Sprouty2 (Spry2) acts as a central regulator of tubular growth and branch patterning in the developing mammalian lung by controlling both magnitude and duration of growth factor signalling. To determine if this protein coordinates airway and vascular growth factor signalling, we tested the hypothesis that Spry2 links the primary cue for airway outgrowth, fibroblast growth factor-10 (FGF-10), to genomic events underpinning the expression and release of vascular endothelial growth factor-A (VEGF-A). Using primary fetal distal lung epithelial cells (FDLE) from rat, and immortalised human bronchial epithelial cells (16HBE14o-), we identified a nuclear sub-population of Spry2 which interacted with regions of the rat and human VEGF-A promoter spanning the hypoxia response element (HRE) and adjacent 3' sites. In FDLE cultured at the PO2 of the fetal lung, FGF-10 relieved the Spry2 interaction at the HRE region by promoting clearance of a 39 kDa form and this was accompanied by histone-3 S10K14 phosphoacetylation, promoter de-methylation, hypoxia inducible factor-1α activation and VEGF-A expression. This repressive characteristic of nuclear Spry2 was relieved in 16HBE14o- by shRNA knockdown, and stable expression of mutants (C218A; C221A) that do not interact with the VEGF-A promoter HRE region. We conclude that nuclear Spry2 acts as a molecular link which co-ordinates airway and vascular growth of the cardiopulmonary system. This identifies Spry2 as a contributing determinant of design optimality in the mammalian lung.
Collapse
Affiliation(s)
- David J Walker
- D'Arcy Thomson Unit, Biological and Biomedical Science Education, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | - Stephen C Land
- D'Arcy Thomson Unit, Biological and Biomedical Science Education, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, UK..
| |
Collapse
|
9
|
Bowles KR, Stone T, Holmans P, Allen ND, Dunnett SB, Jones L. SMAD transcription factors are altered in cell models of HD and regulate HTT expression. Cell Signal 2017; 31:1-14. [PMID: 27988204 PMCID: PMC5310119 DOI: 10.1016/j.cellsig.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023]
Abstract
Transcriptional dysregulation is observable in multiple animal and cell models of Huntington's disease, as well as in human blood and post-mortem caudate. This contributes to HD pathogenesis, although the exact mechanism by which this occurs is unknown. We therefore utilised a dynamic model in order to determine the differential effect of growth factor stimulation on gene expression, to highlight potential alterations in kinase signalling pathways that may be in part responsible for the transcriptional dysregulation observed in HD, and which may reveal new therapeutic targets. We demonstrate that cells expressing mutant huntingtin have a dysregulated transcriptional response to epidermal growth factor stimulation, and identify the transforming growth factor-beta pathway as a novel signalling pathway of interest that may regulate the expression of the Huntingtin (HTT) gene itself. The dysregulation of HTT expression may contribute to the altered transcriptional phenotype observed in HD.
Collapse
Affiliation(s)
- K R Bowles
- The MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK.
| | - T Stone
- The MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK.
| | - P Holmans
- The MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK.
| | - N D Allen
- Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - S B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - L Jones
- The MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ, UK.
| |
Collapse
|
10
|
Tan X, Zhu Y, Chen C, Chen X, Qin Y, Qu B, Luo L, Lin H, Wu M, Chen W, Liu Y. Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways. PLoS One 2016; 11:e0159275. [PMID: 27415760 PMCID: PMC4944964 DOI: 10.1371/journal.pone.0159275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a key role in the pathogenesis of anterior subcapsular cataract (ASC) and capsule opacification. In mouse lens, Sprouty2 (Spry2) has a negative regulatory role on TGFβ signaling. However, the regulation of Spry2 during ASC development and how Spry2 modulates TGFβ signaling pathway in human LECs have not been characterized. Here, we demonstrate that Spry2 expression level is decreased in anterior capsule LECs of ASC patients. Spry2 negatively regulates TGFβ2-induced EMT and migration of LECs through inhibition of Smad2 and ERK1/2 phosphorylation. Also, blockade of Smad2 or ERK1/2 activation suppresses EMT caused by Spry2 downregulation. Collectively, our results for the first time show in human LECs that Spry2 has an inhibitory role in TGFβ signaling pathway. Our findings in human lens tissue and epithelial cells suggest that Spry2 may become a novel therapeutic target for the prevention and treatment of ASC and capsule opacification.
Collapse
Affiliation(s)
- Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
12
|
Hu L, Cong L. Fibroblast growth factor 19 is correlated with an unfavorable prognosis and promotes progression by activating fibroblast growth factor receptor 4 in advanced-stage serous ovarian cancer. Oncol Rep 2015; 34:2683-91. [PMID: 26323668 DOI: 10.3892/or.2015.4212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been confirmed to be associated with the progression and prognosis of ovarian cancer, while the underlying mechanism has not been well elucidated and the clinical significance of its ligand, fibroblast growth factor 19 (FGF19), has not been explored. To study the clinical significance of FGF19 in advanced‑stage serous ovarian cancer, we detected the expression of FGF19 and FGFR4 by immunohistochemistry (IHC), evaluated the correlation between FGF19 and clinicopathological factors by Chi-square (χ2) test, and analyzed the association between FGF19, FGFR4 and the overall survival rate using the Kaplan‑Meier method. As a result, we demonstrated that high expression of FGF19 and FGFR4 both predicted unfavorable prognosis (P=0.033 and 0.018, respectively), whereas FGF19-FGFR4 double high expression was a more sensitive prognostic factor of advanced-stage serous ovarian cancer (P<0.001). With experiments in vitro, we demonstrated that both recombinant FGF19 and secreted FGF19 promoted ovarian cancer proliferation and invasion by activating FGFR4 and the subsequent AKT-MAPK signaling pathway, suggesting that FGF19-FGFR4 signaling may auto-activate in a paracrine or autocrine manner. In conclusion, FGF19-FGFR4 double high expression was a more sensitive prognostic factor than FGF19 or FGFR4 alone in advanced-stage serous ovarian cancer. The FGF19-FGFR4 signaling pathway can promote ovarian cancer proliferation and invasion by the AKT-MAPK signaling pathway, indicating that FGF19 could be a potential therapeutic drug target of advanced-stage serous ovarian cancer.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Lanxiang Cong
- Department of Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
13
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
14
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
15
|
Salazar L, Kashiwada T, Krejci P, Meyer AN, Casale M, Hallowell M, Wilcox WR, Donoghue DJ, Thompson LM. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer. PLoS One 2014; 9:e86470. [PMID: 24466111 PMCID: PMC3900522 DOI: 10.1371/journal.pone.0086470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022] Open
Abstract
Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1). Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3) tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Adhesion
- Cell Proliferation
- Gene Expression Profiling
- Humans
- Immunoprecipitation
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligonucleotide Array Sequence Analysis
- Peptide Fragments
- Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
- Tyrosine/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Lisa Salazar
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Tamara Kashiwada
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Pavel Krejci
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Institute of Experimental Biology, Masaryk University and Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i., Brno, Czech Republic
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Matthew Hallowell
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - William R. Wilcox
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Leslie Michels Thompson
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
16
|
Friedmacher F, Gosemann JH, Fujiwara N, Alvarez LAJ, Corcionivoschi N, Puri P. Spatiotemporal alterations in Sprouty-2 expression and tyrosine phosphorylation in nitrofen-induced pulmonary hypoplasia. J Pediatr Surg 2013; 48:2219-25. [PMID: 24210189 DOI: 10.1016/j.jpedsurg.2013.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND/PURPOSE Pulmonary hypoplasia (PH) is a life-threatening condition of newborns presenting with congenital diaphragmatic hernia (CDH). Sprouty-2 functions as a key regulator of fibroblast growth factor receptor (FGFR) signalling in developing foetal lungs. It has been reported that FGFR-mediated alveolarization is disrupted in nitrofen-induced PH. Sprouty-2 knockouts show severe defects in lung morphogenesis similar to nitrofen-induced PH. Upon FGFR stimulation, Sprouty-2 is tyrosine-phosphorylated, which is essential for its physiological function during foetal lung development. We hypothesized that Sprouty-2 expression and tyrosine phosphorylation are altered in nitrofen-induced PH. METHODS Time-pregnant rats received either nitrofen or vehicle on gestation day 9 (D9). Foetal lungs were dissected on D18 and D21. Pulmonary Sprouty-2 gene and protein expression levels were analyzed by qRT-PCR, Western blotting and immunohistochemical staining. RESULTS Relative mRNA expression of Sprouty-2 was significantly decreased in hypoplastic lungs without CDH (0.1050±0.01 vs. 0.3125±0.01; P<.0001) and with CDH (0.1671±0.01 vs. 0.3125±0.01; P<.0001) compared to controls on D18. Protein levels of Sprouty-2 were markedly decreased in hypoplastic lungs on D18 with decreased tyrosine phosphorylation levels on D18 and D21 detected at the molecular weight of Sprouty-2 consistent with Sprouty-2 tyrosine phosphorylation. Sprouty-2 immunoreactivity was markedly decreased in hypoplastic lungs on D18 and D21. CONCLUSION Spatiotemporal alterations in pulmonary Sprouty-2 expression and tyrosine phosphorylation during the late stages of foetal lung development may interfere with FGFR-mediated alveolarization in nitrofen-induced PH.
Collapse
Affiliation(s)
- Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
17
|
Harrison H, Simões BM, Rogerson L, Howell SJ, Landberg G, Clarke RB. Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Res 2013; 15:R21. [PMID: 23497505 PMCID: PMC3672803 DOI: 10.1186/bcr3396] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
Introduction Although oestrogen is essential for the development of the normal breast, adult mammary stem cells are known to be oestrogen receptor alpha (ER) negative and rely on paracrine signals in the mammary epithelium for mediation of developmental cues. However, little is known about how systemic oestrogen regulates breast cancer stem cell (CSC) activity. Methods Here, we tested the effects of oestrogen on CSC activity in vitro and in vivo and investigated which paracrine signalling pathways locally mediate oestrogen effects. Results CSC-enriched populations (ESA+CD44+CD24low) sorted from ER positive patient derived and established cell lines have low or absent ER expression. However, oestrogen stimulated CSC activity demonstrated by increased mammosphere and holoclone formation in vitro and tumour formation in vivo. This effect was abrogated by the anti-oestrogen tamoxifen or ER siRNA. These data suggest that the oestrogen response is mediated through paracrine signalling from non-CSCs to CSCs. We have, therefore, investigated both epidermal growth factor (EGF) and Notch receptor signals downstream of oestrogen. We demonstrate that gefitinib (epidermal growth factor receptor (EGFR) inhibitor) and gamma secretase inhibitors (Notch inhibitor) block oestrogen-induced CSC activity in vitro and in vivo but GSIs more efficiently reduce CSC frequency. Conclusions These data establish that EGF and Notch receptor signalling pathways operate downstream of oestrogen in the regulation of ER negative CSCs.
Collapse
|
18
|
Peier M, Walpen T, Christofori G, Battegay E, Humar R. Sprouty2 expression controls endothelial monolayer integrity and quiescence. Angiogenesis 2012; 16:455-68. [PMID: 23232625 DOI: 10.1007/s10456-012-9330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/02/2012] [Indexed: 12/12/2022]
Abstract
Vascular integrity is fundamental to the formation of mature blood vessels and depends on a functional, quiescent endothelial monolayer. However, how endothelial cells enter and maintain quiescence in the presence of angiogenic factors is still poorly understood. Here we identify the fibroblast growth factor (FGF) antagonist Sprouty2 (Spry2) as a key player in mediating endothelial quiescence and barrier integrity in mouse aortic endothelial cells (MAECs): Spry2 knockout MAECs show spindle-like shapes and are incapable of forming a functional, impermeable endothelial monolayer in the presence of FGF2. Whereas dense wild type cells exhibit contact inhibition and stop to proliferate, Spry2 knockout MAECs remain responsive to FGF2 and continue to proliferate even at high cell densities. Importantly, the anti-proliferative effect of Spry2 is absent in sparsely plated cells. This cell density-dependent Spry2 function correlates with highly increased Spry2 expression in confluent wild type MAECs. Spry2 protein expression is barely detectable in single cells but steadily increases in cells growing to high cell densities, with hypoxia being one contributing factor. At confluence, Spry2 expression correlates with intact cell-cell contacts, whereas disruption of cell-cell contacts by EGTA, TNFα and thrombin decreases Spry2 protein expression. In confluent cells, high Spry2 levels correlate with decreased extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. In contrast, dense Spry2 knockout MAECs exhibit enhanced signaling by Erk1/2. Moreover, inhibiting Erk1/2 activity in Spry2 knockout cells restores wild type cobblestone monolayer morphology. This study thus reveals a novel Spry2 function, which mediates endothelial contact inhibition and barrier integrity.
Collapse
Affiliation(s)
- Martin Peier
- Division of Internal Medicine, University Hospital Zurich, Gloriastrasse 30, GLO30 J14, 8091, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Gadd S, Beezhold P, Jennings L, George D, Leuer K, Huang CC, Huff V, Tognon C, Sorensen PHB, Triche T, Coffin CM, Perlman EJ. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study. J Pathol 2012; 228:119-30. [PMID: 22374738 DOI: 10.1002/path.4010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 12/27/2022]
Abstract
Infantile fibrosarcoma (IFS; also known as cellular congenital mesoblastic nephroma, CMN, when in the kidney) is a rare, undifferentiated tumour often characterized by the ETV6-NTRK3 fusion transcript. Our goal was to identify downstream pathways, diagnostic markers and potential therapeutic targets for IFS/CMN. Global gene expression, reverse-phase protein array and ETV6-NTRK3 fusion analyses were performed on 14 IFS/CMN and compared with 41 other paediatric renal tumours. These analyses confirm significant receptor tyrosine kinase (RTK) activation, with evidence of PI3-Akt, MAPK and SRC activation. In particular, GAB2 docking protein, STAT5-pTyr-694, STAT3-pSer-729 and YAP-pSer-127 were elevated, and TAZ-pSer-89 was decreased. This provides mRNA and proteomic evidence that GAB2, STAT activation and phosphorylation of the Hippo pathway transcription co-activators YAP and TAZ contribute to the RTK signal transduction in IFS/CMN. All IFS/CMN tumours displayed a distinctive gene expression pattern that may be diagnostically useful. Unexpectedly, abundant ETV6-NTRK3 transcript copies were present in only 7/14 IFS, with very low copy number in 3/14. An additional 4/14 were negative by RT-PCR and absence of ETV6-NTRK3 was confirmed by FISH for both ETV6 and NTRK3. Therefore, molecular mechanisms other than ETV6-NTRK3 fusion are responsible for the development of some IFS/CMNs and the absence of ETV6-NTRK3 fusion products should not exclude IFS/CMN as a diagnosis.
Collapse
Affiliation(s)
- Samantha Gadd
- Department of Pathology, Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shin EHH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ. Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med 2012; 18:861-73. [PMID: 22517312 DOI: 10.2119/molmed.2012.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023] Open
Abstract
Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor β (TGFβ), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFβ signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFβ-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFβ-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFβ signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFβ-induced EMT.
Collapse
Affiliation(s)
- Eun Hye H Shin
- Anatomy and Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
21
|
Yun SP, Ryu JM, Han HJ. Involvement of β1-integrin via PIP complex and FAK/paxillin in dexamethasone-induced human mesenchymal stem cells migration. J Cell Physiol 2011; 226:683-92. [PMID: 20717960 DOI: 10.1002/jcp.22383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10(-8) to 10(-6) M, significantly increased migration after a 24 h incubation, and DEX (10(-6) M) increased migration at >12 h. Moreover, DEX (10(-6) M) increased the level of glucocorticoid receptor (GR)-α mRNA and protein expression, but not GR-β mRNA. The increases in DEX-induced migration were inhibited by the GR antagonist mifepristone (10(-7) M). In addition, DEX increased integrin-linked kinase (ILK) and α-parvin expression but did not change PINCH-1/2 expression in lysate. DEX also increased formations of complex with ILK and α-parvin, and ILK and PINCH-1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX-induced migration was blocked by ILK and α-parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α-parvin siRNAs. DEX-induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1-integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX-induced cell migration was inhibited by β1-integrin siRNA. Downregulation of ILK, α-parvin, FAK/paxillin and β1-integrin expression by siRNAs decreased DEX-induced filamentous(F)-actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1-integrin through formation of a PINCH-1/2/ILK/α-parvin complex (PIP complex), and FAK and paxillin expression.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center (BK21), Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
22
|
Barbáchano A, Ordóñez-Morán P, García JM, Sánchez A, Pereira F, Larriba MJ, Martínez N, Hernández J, Landolfi S, Bonilla F, Pálmer HG, Rojas JM, Muñoz A. SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene 2010; 29:4800-13. [PMID: 20543868 DOI: 10.1038/onc.2010.225] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SPROUTY-2 (SPRY2) regulates receptor tyrosine kinase signalling and therefore cell growth and differentiation. In this study, we show that SPRY2 expression in colon cancer cells is inhibited by the active vitamin D metabolite 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) through E-cadherin-dependent and -independent mechanisms. In turn, SPRY2 represses both basal and 1,25(OH)(2)D(3)-induced E-cadherin expression. In line with this, SPRY2 induces ZEB1 RNA and protein, but not that of other epithelial-to-mesenchymal transition inducers that repress the CDH1/E-cadherin promoter. Consistently, SPRY2 and E-cadherin protein levels inversely correlate in colon cancer cell lines and xenografted tumours. Moreover, SPRY2 knockdown by small hairpin RNA increases CDH1/E-cadherin expression and, reciprocally, CDH1/E-cadherin knockdown increases that of SPRY2. In colon cancer patients, SPRY2 is upregulated in undifferentiated high-grade tumours and at the invasive front of low-grade carcinomas. Quantification of protein expression in 34 tumours confirmed an inverse correlation between SPRY2 and E-cadherin. Our data demonstrate a tumourigenic action of SPRY2 that is based on the repression of E-cadherin, probably by the induction of ZEB1, and a reciprocal regulation of SPRY2 and E-cadherin that dictates cell phenotype. We propose SPRY2 as a candidate novel marker for high-grade tumours and a target of therapeutic intervention in colon cancer.
Collapse
Affiliation(s)
- A Barbáchano
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Freytag J, Wilkins-Port CE, Higgins CE, Higgins SP, Samarakoon R, Higgins PJ. PAI-1 mediates the TGF-beta1+EGF-induced "scatter" response in transformed human keratinocytes. J Invest Dermatol 2010; 130:2179-90. [PMID: 20428185 DOI: 10.1038/jid.2010.106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cooperative interactions between growth factor signaling pathways are important elements in carcinoma progression. A model system combining transforming growth factor-beta1 (TGF-beta1) and EGF was developed to investigate mechanisms underlying induced epithelial-to-mesenchymal transition (EMT) in ras-transformed human (HaCaT II-4) keratinocytes. Dual stimulation with TGF-beta1+EGF resulted in keratinocyte "plasticity" and pronounced colony dispersal. The most highly expressed transcript, identified by mRNA profiling, encoded plasminogen activator inhibitor-1 (PAI-1; SERPINE1). PAI-1 negatively regulates plasmin-dependent matrix degradation, preserving a stromal scaffold permissive for keratinocyte motility. Mitogen-activated extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) and p38 signaling were required for maximal PAI-1 upregulation and TGF-beta1+EGF-stimulated cell locomotion, as pharmacologic disruption of MEK/p38 activity ablated both responses. Moreover, PAI-1 knockdown alone effectively inhibited TGF-beta1+EGF-dependent cell scattering, indicating a functional role for this SERPIN in the dual-growth factor model of induced motility. Moreover, EGFR signaling blockade or EGFR knockdown attenuated TGF-beta1-induced PAI-1 expression, implicating EGFR transactivation in TGF-beta1-stimulated PAI-1 expression, and reduced colony dispersal in TGF-beta1+EGF-treated cultures. Identification of such cooperative signaling networks and their effect on specific invasion-promoting target genes, such as PAI-1, may lead to the development of pathway-specific therapeutics that affect late-stage events in human tumor progression.
Collapse
Affiliation(s)
- Jennifer Freytag
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Fibroblast growth factors and epidermal growth factor cooperate with oocyte-derived members of the TGFbeta superfamily to regulate Spry2 mRNA levels in mouse cumulus cells. Biol Reprod 2009; 81:833-41. [PMID: 19553596 PMCID: PMC2770016 DOI: 10.1095/biolreprod.109.078485] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/20/2009] [Accepted: 06/14/2009] [Indexed: 11/01/2022] Open
Abstract
Mouse oocytes produce members of the transforming growth factor beta (TGFbeta) superfamily, including bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), as well as fibroblast growth factors (FGFs). These growth factors cooperate to regulate cumulus cell function. To identify potential mechanisms involved in these interactions, the ability of fully grown oocytes to regulate expression of BMP or FGF antagonists in cumulus cells was examined. Oocytes promoted cumulus cell expression of transcripts encoding antagonists to TGFbeta superfamily members, including Grem2, Htra1, Htra3, and Nog mRNAs. In contrast, oocytes suppressed cumulus cell expression of Spry2 mRNA, which encodes a regulator of receptor tyrosine kinase signals, such as FGF and epidermal growth factor (EGF) receptor signals. The regulation of Spry2 mRNA levels in cumulus cells was studied further as a model for analysis of potential mechanisms for cooperativity of FGF/EGF signaling with oocyte-derived members of the TGFbeta superfamily. Oocytes suppressed basal and FGF-stimulated Spry2 mRNA levels in cumulus cells but promoted EGF-stimulated levels. Furthermore, recombinant TGFbeta superfamily proteins, including BMP15 and GDF9, mimicked these effects of oocytes. Elevated expression of Spry2 mRNA in cumulus and mural granulosa cells correlated with human chorionic gonadotropin-induced expression of mRNAs encoding EGF-like peptides. Therefore, oocyte-derived members of the TGFbeta superfamily suppress FGF-stimulated Spry2 mRNA levels before the luteinizing hormone surge but promote Spry2 mRNA levels stimulated by EGF receptor-mediated signals after the surge.
Collapse
Affiliation(s)
- Koji Sugiura
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Jin N, Cho SN, Raso MG, Wistuba I, Smith Y, Yang Y, Kurie JM, Yen R, Evans CM, Ludwig T, Jeong JW, DeMayo FJ. Mig-6 is required for appropriate lung development and to ensure normal adult lung homeostasis. Development 2009; 136:3347-56. [PMID: 19710174 DOI: 10.1242/dev.032979] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitogen-inducible gene 6 [Mig-6; Errfi1 (ErbB receptor feedback inhibitor 1); RALT (receptor-associated late transducer); gene 33] is a ubiquitously expressed adaptor protein containing CRIB, SH3 and 14-3-3 interacting domains and has been shown to negatively regulate EGF signaling. Ablation of Mig-6 results in a partial lethal phenotype in which surviving mice acquire degenerative joint diseases and tumors in multiple organs. We have determined that the early lethality in Mig-6(-/-) mice occurs in the perinatal period, with mice displaying abnormal lung development. Histological examination of Mig-6(-/-) lungs (E15.5-P3) revealed reduced septation, airway over-branching, alveolar type II cell hyperplasia, and disturbed vascular formation. In neonatal Mig-6(-/-) lungs, cell proliferation increased in the airway epithelium but apoptosis increased in the blood vessels. Adult Mig-6(-/-) mice developed features of chronic obstructive pulmonary disease (COPD); however, when Mig-6 was inducibly ablated in adult mice (Mig-6(d/d)), the lungs were normal. Knockdown of MIG-6 in H441 human bronchiolar epithelial cells increased phospho-EGFR and phospho-AKT levels as well as cell proliferation, whereas knockdown of MIG-6 in human lung microvascular endothelial (HMVEC-L) cells promoted their apoptosis. These results demonstrate that Mig-6 is required for prenatal and perinatal lung development, in part through the regulation of EGF signaling, as well as for maintaining proper pulmonary vascularization.
Collapse
Affiliation(s)
- Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Melnik BC, Schmitz G, Zouboulis CC. Anti-Acne Agents Attenuate FGFR2 Signal Transduction in Acne. J Invest Dermatol 2009; 129:1868-77. [DOI: 10.1038/jid.2009.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D. miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 2009; 333:238-50. [PMID: 19559694 DOI: 10.1016/j.ydbio.2009.06.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/14/2009] [Accepted: 06/17/2009] [Indexed: 12/19/2022]
Abstract
The miR-17 family of microRNAs has recently been recognized for its importance during lung development. The transgenic overexpression of the entire miR-17-92 cluster in the lung epithelium led to elevated cellular proliferation and inhibition of differentiation, while targeted deletion of miR-17-92 and miR-106b-25 clusters showed embryonic or early post-natal lethality. Herein we demonstrate that miR-17 and its paralogs, miR-20a, and miR-106b, are highly expressed during the pseudoglandular stage and identify their critical functional role during embryonic lung development. Simultaneous downregulation of these three miRNAs in explants of isolated lung epithelium altered FGF10 induced budding morphogenesis, an effect that was rescued by synthetic miR-17. E-Cadherin levels were reduced, and its distribution was altered by miR-17, miR-20a and miR-106b downregulation, while conversely, beta-catenin activity was augmented, and expression of its downstream targets, including Bmp4 as well as Fgfr2b, increased. Finally, we identified Stat3 and Mapk14 as key direct targets of miR-17, miR-20a, and miR-106b and showed that simultaneous overexpression of Stat3 and Mapk14 mimics the alteration of E-Cadherin distribution observed after miR-17, miR-20a, and miR-106b downregulation. We conclude that the mir-17 family of miRNA modulates FGF10-FGFR2b downstream signaling by specifically targeting Stat3 and Mapk14, hence regulating E-Cadherin expression, which in turn modulates epithelial bud morphogenesis in response to FGF10 signaling.
Collapse
Affiliation(s)
- Gianni Carraro
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Melnik BC. Role of FGFR2-signaling in the pathogenesis of acne. DERMATO-ENDOCRINOLOGY 2009; 1:141-56. [PMID: 20436882 PMCID: PMC2835907 DOI: 10.4161/derm.1.3.8474] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/18/2009] [Indexed: 01/10/2023]
Abstract
It is the purpose of this review to extend our understanding of the fibroblast growth factor (FGF) receptor-2b-signaling network in the pathogenesis of acne. A new concept of the role of FGFR2b-signaling in dermal-epithelial interaction for skin appendage formation, pilosebaceous follicle homeostasis, comedogenesis, sebaceous gland proliferation and lipogenesis is presented. The FGFR2-gain-of-function mutations in Apert syndrome and unilateral acneiform nevus are most helpful model diseases pointing the way to androgen-dependent dermalepithelial FGFR2-signaling in acne. Androgen-mediated upregulation of FGFR2b-signaling in acne-prone skin appears to be involved in the pathogenesis of acne vulgaris. In organotypic skin cultures, keratinocyte-derived interleukin-1alpha stimulated fibroblasts to secrete FGF7 which stimulated FGFR2b-mediated keratinocyte proliferation. Postnatal deletion of FGFR2b in mice resulted in severe sebaceous gland atrophy. The importance of FGFR2b in sebaceous gland physiology is further supported by the mode of action of anti-acne agents which have been proposed to attenuate FGFR2b-signaling. Downregulation of FGFR2b-signaling by isotretinoin explains its therapeutic effect in acne. Downregulation of FGFR2b-signaling during the first trimester of pregnancy disturbs branched morphogenesis and explains retinoid embryotoxicity. Insulin-like growth factor-1 (IGF-1), the mediator of growth hormone during puberty, intracts with androgen-dependent FGFR2b-signaling and links androgen- and FGF-mediated signal transduction important in sebaceous gland homeostasis. The search for a follicular defect in the dermalepithelial regulation of growth factor-signaling in acne-prone skin appears to be a most promising approach to clarify the pathogenesis of acne.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Germany
| |
Collapse
|
29
|
Down-regulation of Sprouty2 via p38 MAPK plays a key role in the induction of cellular apoptosis by tumor necrosis factor-alpha. Biochem Biophys Res Commun 2008; 375:460-4. [PMID: 18713620 DOI: 10.1016/j.bbrc.2008.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 02/05/2023]
Abstract
Mammalian Sprouty2 (Spry2) is a key regulator of the receptor tyrosine kinase/ERK signaling pathway and involved in many biological processes, including cell growth, migration, and tumor suppression. Here, we demonstrated that the intracellular protein level of Spry2 was significantly down-regulated by tumor necrosis factor-alpha (TNF-alpha) in both murine Swiss 3T3 fibroblasts and MLE15 lung epithelial cells. Although TNF-alpha activates multiple signaling cascades, only the inhibitor of p38 MAPK pathway blocked TNF-alpha-induced Spry2 down-regulation. Moreover, since both the mRNA level and protein half-life of Spry2 were unaltered by TNF-alpha treatment, this indicated the possible involvement of a translational mechanism in mediating the inhibitory effect of TNF-alpha. Importantly, rescue of the TNF-alpha-induced down-regulation of Spry2 by gene overexpression led to reverse of the apoptotic effect of TNF-alpha in Swiss 3T3 cells. To our knowledge, this study is the first that reported the association of Spry2 with TNF-alpha signaling pathway.
Collapse
|
30
|
Pillai A. Decreased expression of Sprouty2 in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: a correlation with BDNF expression. PLoS One 2008; 3:e1784. [PMID: 18335055 PMCID: PMC2262156 DOI: 10.1371/journal.pone.0001784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/11/2008] [Indexed: 12/11/2022] Open
Abstract
Background Current theories on the pathophysiology of schizophrenia suggest altered brain plasticity such as decreased neural proliferation and migration, delayed myelination, and abnormal synaptic modeling, in the brain of subjects with schizophrenia. Though functional alterations in BDNF, which plays important role in neuroplasticity, are implicated in many abnormalities found in schizophrenia, the regulatory mechanism(s) involved in the abnormal signaling of BDNF in schizophrenia is not clear. The present study investigated whether Sprouty2, a regulator of growth factor signaling, is abnormally expressed in schizophrenia, and is associated with the changes in BDNF mRNA in this disorder. The potential effect of antipsychotic drugs on Sprouty2 expression was tested in adult rats. Methods and Findings Sprouty2 and BDNF gene expression were analyzed in dorsolateral prefrontal cortex samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA in 100 individuals (35 with schizophrenia, 31 with bipolar disorder, and 34 psychiatrically normal controls) showed significantly decreased expression of Sprouty2 and BDNF in both schizophrenia and bipolar disorder. Moreover, a significant correlation between these two genes existed in control, schizophrenia and bipolar subjects. Long-term treatment with antipsychotic drugs, haloperidol and olanzapine, showed differential effects on both Sprouty2 and BDNF mRNA and protein levels in the frontal cortex of rats. Conclusion These findings demonstrating decreased expression of Sprouty2 associated with changes in BDNF, suggest the possibility that these decreases are secondary to treatment rather than to factors that are significant in the disease process of either schizophrenia and/or bipolar disorder. Further exploration of Sprouty2-related signal transduction pathways may be helpful to design novel treatment strategies for these disorders.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Medical Research Service Line, Veterans Affairs Medical Center, Augusta, Georgia, United States of America.
| |
Collapse
|
31
|
Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11:53-62. [PMID: 18219583 DOI: 10.1007/s10456-008-9089-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/07/2008] [Indexed: 01/07/2023]
Abstract
Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependent. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.
Collapse
|