1
|
Kim M, Choi M, Kwon YD, Ohe JY, Jung J. The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts. Life (Basel) 2024; 14:1088. [PMID: 39337872 PMCID: PMC11432935 DOI: 10.3390/life14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The suppressive effect of bisphosphonates (BPs) on bone metabolism is considered to be a major cause of medication-related osteonecrosis of the jaw (MRONJ). Enamel matrix derivative (EMD) stimulates and activates growth factors, leading to the regeneration of periodontal tissues. In this study, we aimed to explore the potential of EMD in reversing the detrimental effects of BPs on human fetal osteoblasts (hFOBs) and osteosarcoma-derived immature osteoblasts (MG63s) by assessing cell viability, apoptosis, migration, gene expression, and protein synthesis. While the suppressive effect of zoledronate (Zol) on cell viability and migration was observed, the addition of EMD significantly mitigated this effect and enhanced cell viability and migration. Furthermore, an increased apoptosis rate induced by Zol was decreased with the addition of EMD. The decreased gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and the receptor activator of nuclear factors kappa-B ligand (RANKL) caused by BP treatment was reversed by the co-addition of EMD to hFOB cells. This trend was also observed for ALP and bone sialoprotein (BSP) levels in MG63 cells. Furthermore, suppressed protein levels of OC, macrophage colony-stimulating factor (M-CSF), BSP, and type 1 collagen (COL1) were recovered following the addition of EMD. This finding suggests that EMD could mitigate the effects of BPs, resulting in the recovery of cell survival, migration, and gene and protein expression. However, the behavior of the osteoblasts was not fully restored, and further studies are necessary to confirm their effects at the cellular level and to assess their clinical usefulness in vivo for the prevention and treatment of MRONJ.
Collapse
Affiliation(s)
- Minah Kim
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Saint Vincent's Hospital, The Catholic University of Korea, Suwon 16247, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yong-Dae Kwon
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joo-Young Ohe
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Junho Jung
- Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
3
|
Mercado F, Hamlet S, Ivanovski S. A 3-year prospective clinical and patient-centered trial on subepithelial connective tissue graft with or without enamel matrix derivative in Class I-II Miller recessions. J Periodontal Res 2019; 55:296-306. [PMID: 31808142 DOI: 10.1111/jre.12715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND OBJECTIVE The study compared clinical and patient-centered outcomes of subepithelial connective tissue graft (CTG) with and without enamel matrix derivative (EMD) in the treatment of Class I-II Miller periodontal recession defects. MATERIAL AND METHODS This prospective clinical study evaluated 80 patients over a 3 years follow-up in a private periodontal practice. A total of 144 maxillary and mandibular anterior teeth were divided into two groups: group 1 (CTG with EMD-80 teeth) and group 2 (CTG only-64 teeth). Recession (REC), keratinized tissue (KT) width, % root overage, patient-centered outcomes, and pain visual analog scale (P-VAS) were compared between the two groups. RESULTS At 3 years follow-up at a patient level, statistically significant changes in REC were achieved in both group 1 (4.65 ± 1.84 to 0.39 ± 0.19 mm) and group 2 (4.43 ± 1.11 to 0.92 ± 0.43 mm). Complete root coverage (CRC) was achieved in 66.4% of group 1 and 50.1% of group 2. At both patient and tooth level, the 3-year outcomes were superior for group 1 compared with group 2 in terms of % root coverage, REC, and KT width. Clinical attachment loss (CAL) was reduced in group 1 compared with group 2 at the tooth level analysis only (<.01). Significantly less pain was reported using the pain visual analog Scale (P < .001) at the two weeks follow-up post-surgery in group 1. CONCLUSIONS Addition of EMD results in improved root coverage outcomes and higher amounts of keratinized tissue width 36 months after treatment of multiple adjacent recessions on maxillary and mandibular anterior teeth. The adjunctive use of EMD also resulted in significantly reduced pain 14 days after the surgery.
Collapse
Affiliation(s)
- Faustino Mercado
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia.,School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia
| | - Sašo Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
4
|
Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019; 306:66-79. [PMID: 30771440 DOI: 10.1016/j.toxlet.2019.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the hepatotoxic effect and its underlying mechanism of aloe emodin (AE). AE was docked with the targets of NF-κB inflammatory pathway and P53 apoptosis pathway respectively by using molecular docking technique. To verify the results of molecular docking and further investigate the hepatotoxicity mechanism of AE, the zebrafish Tg (fabp10: EGFP) was used as an animal model in vivo. The pathological sections of zebrafish liver were analyzed to observe the histopathological changes and Sudan black B was used to study whether there were inflammatory reactions in zebrafish liver or not. Then TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptotic signal of zebrafish liver cells, finally the mRNA expression levels as well as the protein expression levels of the targets in NF-κB and P53 pathways in zebrafish were measured by quantitative Real-Time PCR (qRT-PCR) and western blot. Molecular docking results showed that AE could successfully dock with all the targets of NF-κB and P53 pathways, and the docking scores of most of the targets were equal to or higher than that of the corresponding ligands. Pathological sections showed AE could cause zebrafish liver lesions and the result of Sudan black B staining revealed that AE blackened the liver of zebrafish with Sudan black B. Then TUNEL assay showed that a large number of dense apoptotic signals were observed in AE group, mainly distributed in the liver and yolk sac of zebrafish. The results of qRT-PCR and western blot showed that AE increased the mRNA and protein expression levels of pro-inflammatory and pro-apoptotic targets in NF-κB and P53 pathways. AE could activate the NF-κB inflammatory pathway and the P53 apoptosis pathway, and its hepatotoxic mechanism was related to activation of NF-κB-P53 inflammation-apoptosis pathways.
Collapse
Affiliation(s)
- Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
5
|
Weinreb M, Nemcovsky CE. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2017; 68:41-54. [PMID: 25867978 DOI: 10.1111/prd.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated.
Collapse
|
6
|
Maymon-Gil T, Weinberg E, Nemcovsky C, Weinreb M. Enamel Matrix Derivative Promotes Healing of a Surgical Wound in the Rat Oral Mucosa. J Periodontol 2016; 87:601-9. [PMID: 26777768 DOI: 10.1902/jop.2016.150567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enamel matrix proteins (EMPs) play a role in enamel formation and the development of the periodontium. Sporadic clinical observations of periodontal regeneration treatments with enamel matrix derivative (EMD), a commercial formulation of EMPs, suggest that it also promotes post-surgical healing of soft tissues. In vitro studies showed that EMD stimulates various cellular effects, which could potentially enhance wound healing. This study examines the in vivo effects of EMD on healing of an oral mucosa surgical wound in rats. METHODS A bilateral oral mucosa wound was created via a crestal incision in the anterior edentulous maxilla of Sprague-Dawley rats. Full-thickness flaps were raised, and, after suturing, EMD was injected underneath the soft tissues on one side, whereas the EMD vehicle was injected in the contralateral side. Animals were sacrificed after 5 or 9 days, and the wound area was subjected to histologic and immunohistochemical analysis of the epithelial gap, number of macrophages, blood vessels, proliferating cells, and collagen content in the connective tissue (CT). Gene expression analysis was also conducted 2 days post-surgery. RESULTS EMD had no effect on the epithelial gap of the wound. On both days 5 and 9, EMD treatment increased significantly the number of blood vessels and the collagen content. EMD also enhanced (by 20% to 40%) the expression of transforming growth factors β1 and β2, vascular endothelial growth factor, interleukin-1β, matrix metalloproteinase-1, versican, and fibronectin. CONCLUSION EMD improves oral mucosa incisional wound healing by promoting formation of blood vessels and collagen fibers in CT.
Collapse
Affiliation(s)
- Tal Maymon-Gil
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University
| | - Miron Weinreb
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Shirakata Y, Sculean A, Shinohara Y, Sena K, Takeuchi N, Bosshardt DD, Noguchi K. Healing of localized gingival recessions treated with a coronally advanced flap alone or combined with an enamel matrix derivative and a porcine acellular dermal matrix: a preclinical study. Clin Oral Investig 2015; 20:1791-800. [PMID: 26612398 DOI: 10.1007/s00784-015-1680-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of a porcine acellular dermal matrix (PADM) with or without an enamel matrix derivative (EMD) on gingival recession defects treated with a coronally advanced flap (CAF) in dogs. MATERIALS AND METHODS Miller class II gingival recession defects (5 mm wide and 7 mm deep) were surgically created on the labial side of bilateral maxillary canines in 12 dogs. After 8 weeks of plaque accumulation, the 24 chronic defects were randomly assigned to one of the following 4 treatments: CAF, CAF with PADM (CAF/PADM), CAF with EMD (CAF/EMD), and CAF with EMD and PADM (CAF/EMD/PADM). The animals were sacrificed 10 weeks after surgery for histologic evaluation. RESULTS In all groups, root coverage was obtained to a varying degree. PADM was well incorporated in gingival connective tissue in the CAF/PADM and in the CAF/EMD/PADM groups. The height of newly formed bone was significantly greater in the CAF/EMD/PADM group than in the CAF and CAF/PADM groups. New cementum with periodontal ligament-like tissue was predominantly found in the CAF/EMD and CAF/EMD/PADM groups. The CAF/EMD/PADM group showed the greatest amount of new cementum among the groups examined, although the difference was not statistically significant. CONCLUSION Within the limitations of the present study, it can be concluded that CAF/EMD/PADM treatment may promote periodontal regeneration in gingival recession defects. CLINICAL RELEVANCE The present results suggest that the combination of EMD and PADM in conjunction with CAF may represent a promising approach for treating single Miller class II gingival recessions.
Collapse
Affiliation(s)
- Y Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - A Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Y Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - K Sena
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - N Takeuchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - D D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - K Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
8
|
Miron RJ, Dard M, Weinreb M. Enamel matrix derivative, inflammation and soft tissue wound healing. J Periodontal Res 2014; 50:555-69. [PMID: 25418917 DOI: 10.1111/jre.12245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/17/2022]
Abstract
Over 15 years have now passed since enamel matrix derivative (EMD) emerged as an agent capable of periodontal regeneration. Following thorough investigation, evidenced-based clinical application is now established for a multitude of clinical settings to promote regeneration of periodontal hard tissues. Despite the large number of studies and review articles written on this topic, no single review has compiled the influence of EMD on tissue inflammation, an area of research that merits substantial attention in periodontology. The aim of the present review was to gather all studies that deal with the effects of EMD on tissue inflammation with particular interest in the cellular mechanisms involved in inflammation and soft tissue wound healing/resolution. The effects of EMD on monocytes, macrophages, lymphocytes, neutrophils, fibroblasts and endothelial cells were investigated for changes in cell behavior as well as release of inflammatory markers, including interleukins, prostaglandins, tumor necrosis factor-α, matrix metalloproteinases and members of the OPG-RANKL pathway. In summary, studies listed in this review have reported that EMD is able to significantly decrease interleukin-1b and RANKL expression, increase prostaglandin E2 and OPG expression, increase proliferation and migration of T lymphocytes, induce monocyte differentiation, increase bacterial and tissue debris clearance, as well as increase fibroplasias and angiogenesis by inducing endothelial cell proliferation, migration and capillary-like sprout formation. The outcomes from the present review article indicate that EMD is able to affect substantially the inflammatory and healing responses and lay the groundwork for future investigation in the field.
Collapse
Affiliation(s)
- R J Miron
- Department of Periodontology, Department of Oral Surgery, University of Bern, Bern, Switzerland.,Faculty of Dental Medicine, University of Laval, Quebec City, QC, Canada
| | - M Dard
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - M Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, Harris DA, Abraham CR. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 2014; 289:24700-15. [PMID: 25037225 DOI: 10.1074/jbc.m114.567321] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Generation of reactive oxygen species (ROS), leading to oxidative damage and neuronal cell death, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer disease. The present study aimed to examine the mechanism by which the anti-aging protein Klotho exerts neuroprotective effects against neuronal damage associated with neurodegeneration and oxidative stress. Pretreatment of rat primary hippocampal neurons and mouse hippocampal neuronal cell line HT22 with recombinant Klotho protected these cells from glutamate and oligomeric amyloid β (oAβ)-induced cytotoxicity. In addition, primary hippocampal neurons obtained from Klotho-overexpressing mouse embryos were more resistant to both cytotoxic insults, glutamate and oAβ, compared with neurons from wild-type littermates. An antioxidative stress array analysis of neurons treated with Klotho revealed that Klotho significantly enhances the expression of the thioredoxin/peroxiredoxin (Trx/Prx) system with the greatest effect on the induction of Prx-2, an antioxidant enzyme, whose increase was confirmed at the mRNA and protein levels. Klotho-induced phosphorylation of the PI3K/Akt pathway, a pathway important in apoptosis and longevity, was associated with sustained inhibitory phosphorylation of the transcription factor forkhead box O3a (FoxO3a) and was essential for the induction of Prx-2. Down-regulation of Prx-2 expression using a lentivirus harboring shRNA almost completely abolished the ability of Klotho to rescue neurons from glutamate-induced death and significantly, but not completely, inhibited cell death mediated by oAβ, suggesting that Prx-2 is a key modulator of neuroprotection. Thus, our results demonstrate, for the first time, the neuroprotective role of Klotho and reveal a novel mechanism underlying this effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Tracey B Tucker Zhou
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | - Carmela R Abraham
- From the Department of Biochemistry, Program in Molecular Medicine, and Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
10
|
Catón J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 2011; 15:1054-65. [PMID: 21199329 PMCID: PMC3822618 DOI: 10.1111/j.1582-4934.2010.01251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell-based tissue repair of the tooth and – tooth-supporting – periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue.
Collapse
Affiliation(s)
- Javier Catón
- Clinical and Diagnostic Sciences, Dental Institute, King's College London, London, UK
| | | | | | | | | |
Collapse
|
11
|
The effect of enamel matrix protein on gingival tissue thickness in vivo. Odontology 2011; 100:61-6. [DOI: 10.1007/s10266-011-0022-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022]
|
12
|
Weinberg E, Topaz M, Dard M, Lyngstadaas P, Nemcovsky C, Weinreb M. Differential effects of prostaglandin E(2) and enamel matrix derivative on the proliferation of human gingival and dermal fibroblasts and gingival keratinocytes. J Periodontal Res 2011; 45:731-40. [PMID: 20682018 DOI: 10.1111/j.1600-0765.2010.01293.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Elevated levels of prostaglandins contribute to periodontal destruction but can impair gingival healing by affecting local fibroblasts. Enamel matrix derivative (EMD) has beneficial effects on supporting and gingival tissues. We showed that prostaglandin E(2) (PGE(2) ) inhibits the proliferation of human gingival fibroblasts (hGFs) and that EMD stimulates it. Prostaglandins and EMD may also affect skin healing by targeting dermal fibroblasts (DFs). Thus, we compared the effects of these two agents on the proliferation of hGFs, human gingival keratinocytes (hGKs) and hDFs. MATERIAL AND METHODS Cells from healthy human gingiva or skin were treated with PGE(2) and/or EMD, and proliferation was assessed by measuring cell number and DNA synthesis. RESULTS In hGFs, PGE(2) (1 μm) inhibited proliferation while EMD stimulated it. When present together, EMD abolished the PGE(2) -induced inhibition. Serum increased (by a factor of 10) the amount of phosphorylated extracellular signal-regulated kinase (p-ERK), PGE(2) reduced it (by 70-80%) and EMD restored it when present with PGE(2). Prostaglandin E(2) stimulated cAMP production in hGFs while serum or EMD did not. Enamel matrix derivative stimulated hDF proliferation, but the inhibitory effect of PGE(2) was milder than with hGFs. When present together, EMD abolished the PGE(2) -induced inhibition. Enamel matrix derivative inhibited the proliferation of primary hGKs, but PGE(2) had no effect. Finally, we found that hDFs contained about five times less prostaglandin EP(2) receptor mRNA than hGFs, while hGKs contained none. CONCLUSION Prostaglandin E(2) inhibits and EMD stimulates hGF proliferation via distinct pathways. The different sensitivities of hDFs and hGKs to PGE(2) can be explained by the levels of EP(2) expression.
Collapse
Affiliation(s)
- E Weinberg
- Department of Oral Biology, the Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel. © 2010 John Wiley & Sons A/S
| | | | | | | | | | | |
Collapse
|
13
|
Laaksonen M, Sorsa T, Salo T. Emdogain in carcinogenesis: a systematic review of in vitro studies. J Oral Sci 2010; 52:1-11. [PMID: 20339227 DOI: 10.2334/josnusd.52.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Emdogain is a commercial product of unknown composition and is clinically used to induce periodontal regeneration. This study aims to review current knowledge of the in vitro effects of Emdogain on oral tissues and, in particular, factors related to carcinoma. A systematic approach was used to review studies from the Embase and Pubmed databases; a total of 76 studies were included. These comprised in vitro studies of the cytokines in, or regulated by, Emdogain and assays designed to study the effects of EMD on human cells in oral tissues or malignant cells. Several studies have shown that EMD regulates the proliferation, migration, adhesion, gene expression, and cytokine production of (pre-)osteoblasts, periodontal fibroblasts, and gingival fibroblasts. However, the effects of EMD on malignant oral cells are not well understood. EMD seems to have broad regulatory effects on malignant cells and on several carcinoma-related factors. Evidence suggests that patients with premalignant or malignant mucosal lesions should not be treated with EMD.
Collapse
Affiliation(s)
- Matti Laaksonen
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Institute of Dentistry, University of Helsinki, Finland
| | | | | |
Collapse
|
14
|
Zeldich E, Koren R, Dard M, Weinberg E, Weinreb M, Nemcovsky CE. Enamel matrix derivative induces the expression of tissue inhibitor of matrix metalloproteinase-3 in human gingival fibroblasts via extracellular signal-regulated kinase. J Periodontal Res 2010; 45:200-6. [DOI: 10.1111/j.1600-0765.2009.01218.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Weinberg E, Zeldich E, Weinreb MM, Moses O, Nemcovsky C, Weinreb M. Prostaglandin E2 inhibits the proliferation of human gingival fibroblasts via the EP2 receptor and Epac. J Cell Biochem 2010; 108:207-15. [PMID: 19582788 DOI: 10.1002/jcb.22242] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Elevated levels of prostaglandins such as PGE(2) in inflamed gingiva play a significant role in the tissue destruction caused by periodontitis, partly by targeting local fibroblasts. Only very few studies have shown that PGE(2) inhibits the proliferation of a gingival fibroblast (GF) cell line, and we expanded this research by using primary human GFs (hGFs) and looking into the mechanisms of the PGE(2) effect. GFs derived from healthy human gingiva were treated with PGE(2) and proliferation was assessed by measuring cell number and DNA synthesis and potential signaling pathways were investigated using selective activators or inhibitors. PGE(2) inhibited the proliferation of hGFs dose-dependently. The effect was mimicked by forskolin (adenylate cyclase stimulator) and augmented by IBMX (a cAMP-breakdown inhibitor), pointing to involvement of cAMP. Indeed, PGE(2) and forskolin induced cAMP generation in these cells. Using selective EP receptor agonists we found that the anti-proliferative effect of PGE(2) is mediated via the EP(2) receptor (which is coupled to adenylate cyclase activation). We also found that the effect of PGE(2) involved activation of Epac (exchange protein directly activated by cAMP), an intracellular cAMP sensor, and not PKA. While serum increased the amount of phospho-ERK in hGFs by approximately 300%, PGE(2) decreased it by approximately 50%. Finally, the PGE(2) effect does not require endogenous production of prostaglandins since it was not abrogated by two COX-inhibitors. In conclusion, in human gingival fibroblasts PGE(2) activates the EP(2)-cAMP-Epac pathway, reducing ERK phosphorylation and inhibiting proliferation. This effect could hamper periodontal healing and provide further insights into the pathogenesis of inflammatory periodontal disease.
Collapse
Affiliation(s)
- Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Mellonig JT, Valderrama P, Gregory HJ, Cochran DL. Clinical and Histologic Evaluation of Non-Surgical Periodontal Therapy With Enamel Matrix Derivative: A Report of Four Cases. J Periodontol 2009; 80:1534-40. [DOI: 10.1902/jop.2009.090160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Feghali K, Iwasaki K, Tanaka K, Komaki M, Machigashira M, Ishikawa I, Izumi Y. Human gingival fibroblasts release high-mobility group box-1 protein through active and passive pathways. ACTA ACUST UNITED AC 2009; 24:292-8. [DOI: 10.1111/j.1399-302x.2009.00508.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Almqvist S, Werthén M, Johansson A, Törnqvist J, Agren MS, Thomsen P. Evaluation of a near-senescent human dermal fibroblast cell line and effect of amelogenin. Br J Dermatol 2009; 160:1163-71. [PMID: 19298284 DOI: 10.1111/j.1365-2133.2009.09071.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fibroblast senescence may delay healing of chronic wounds. OBJECTIVES To characterize a chronic human dermal fibroblast cell line (CRL-7815) with near-senescent properties, cell proliferation and production of wound-healing modulating cytokines, and biosynthesis and remodelling of collagen were compared with normal human dermal fibroblasts. Also, the response of CRL-7815 fibroblasts to the extracellular matrix protein amelogenin that is beneficial in the treatment of stalled chronic wounds was studied. METHODS Fibroblast proliferation was monitored by time-resolved growth curves and factors secreted into the culture medium containing 10% fetal bovine serum were measured by enzyme-linked immunosorbent assays. Fibroblast-mediated reorganization was examined in three-dimensional type I collagen matrices. RESULTS Cell proliferation over 9 days was significantly (P < 0.01) slower for CRL-7815 than for normal fibroblasts. Amelogenin at 1 mg mL(-1) increased (P < 0.01) CRL-7815 proliferation to the level of the normal fibroblasts. The neutrophil chemoattractant interleukin (IL)-8 was low while the constitutive production of monocyte chemoattractant protein (MCP)-1 was highly elevated in medium from cultured CRL-7815 fibroblasts. Amelogenin augmented IL-8 but attenuated MCP-1 secretion in CRL-7815 fibroblasts. The elevated vascular endothelial growth factor production in CRL-7815 fibroblasts was further increased with amelogenin while increased type I collagen synthesis by CRL-7815 was reduced with 0.1 mg mL(-1) amelogenin. The dramatically impaired collagen matrix remodelling with CRL-7815 fibroblasts (P < 0.001) was slightly improved with amelogenin (P = 0.0011). CONCLUSIONS The near-senescent cell line CRL-7815 shares functional anomalies with fibroblasts isolated from nonhealing chronic cutaneous wounds. Amelogenin has the capacity to switch chronic fibroblasts into an acute-like phenotype.
Collapse
Affiliation(s)
- S Almqvist
- Department of Biomaterials, Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Reti R, Kwon E, Qiu P, Wheater M, Sosne G. Thymosin beta4 is cytoprotective in human gingival fibroblasts. Eur J Oral Sci 2008; 116:424-30. [PMID: 18821984 DOI: 10.1111/j.1600-0722.2008.00569.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thymosin beta4 (Tbeta(4)) is a naturally occurring, ubiquitous, non-toxic protein with documented wound-healing, anti-inflammatory, anti-apoptotic, and tissue-repair properties in skin, the ocular surface, and the heart. The ability of Tbeta(4) to demonstrate similar protective properties in cells of the oral cavity was analyzed using an in vitro model of cultured human gingival fibroblasts. Thymosin beta 4 significantly suppressed the secretion of interleukin-8 (IL-8) following stimulation with tumor necrosis factoralpha (TNF-alpha), suggesting that it may suppress the inflammatory response initiated by pro-inflammatory cytokines. By contrast, Tbeta(4) was not effective in protecting fibroblasts from challenge with lipopolysaccharide purified from Porphyromonas gingivalis or Escherichia coli. Thymosin beta 4 was able to protect gingival fibroblasts against the known cytotoxic effects of chlorhexidine digluconate, a mouthrinse containing chlorhexidine digluconate, and carbamide peroxide. Additionally, Tbeta(4) was able to protect gingival fibroblasts from the apoptosis that is induced by stimulation with TNF-alpha or by exposure to chlorhexidine. Because of its multifunctional roles in protecting cells against damage, Tbeta(4) may have significant potential for use as an oral heathcare aid with combined antimicrobial, anti-inflammatory, anti-apoptotic, and cytoprotective properties.
Collapse
Affiliation(s)
- Robert Reti
- Department of Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
20
|
Zeldich E, Koren R, Dard M, Nemcovsky C, Weinreb M. EGFR in Enamel Matrix Derivative-induced Gingival Fibroblast Mitogenesis. J Dent Res 2008; 87:850-5. [DOI: 10.1177/154405910808700902] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported that EMD (Enamel Matrix Derivative) induces proliferation of human gingival fibroblasts via activation of Extracellular Regulated Kinase (ERK), and this study assessed the possible mediatory role of EGFR (Epidermal Growth Factor Receptor) in this effect. Treatment of gingival fibroblasts with EMD resulted in tyrosine phosphorylation of the EGFR, as assessed by immunoblotting and ELISA, while EMD-induced ERK activation and thymidine incorporation were markedly inhibited (~ 40–50%) by a specific EGFR tyrosine kinase inhibitor. Using appropriate inhibitors, we established that EMD-induced EGFR activation is largely due to shedding of HB-EGF (Heparin-binding EGF) from the cell membrane via a metalloproteinase-mediated process. Finally, the addition of PP1, a Src family inhibitor, abrogated both EGFR phosphorylation and ERK activation. Taken together, these results indicate that, at least in human gingival fibroblasts, EMD-induced ERK activation and proliferation are partially due to a Src-dependent, metalloproteinase-mediated transactivation of EGFR.
Collapse
Affiliation(s)
- E. Zeldich
- Departments of Oral Biology and
- Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Physiology and Pharmacology, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
- Pre-clinical Research, Institut Straumann, Basel, Switzerland
| | - R. Koren
- Departments of Oral Biology and
- Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Physiology and Pharmacology, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
- Pre-clinical Research, Institut Straumann, Basel, Switzerland
| | - M. Dard
- Departments of Oral Biology and
- Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Physiology and Pharmacology, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
- Pre-clinical Research, Institut Straumann, Basel, Switzerland
| | - C. Nemcovsky
- Departments of Oral Biology and
- Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Physiology and Pharmacology, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
- Pre-clinical Research, Institut Straumann, Basel, Switzerland
| | - M. Weinreb
- Departments of Oral Biology and
- Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Physiology and Pharmacology, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
- Pre-clinical Research, Institut Straumann, Basel, Switzerland
| |
Collapse
|
21
|
Bosshardt DD. Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 2008; 35:87-105. [DOI: 10.1111/j.1600-051x.2008.01264.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|