1
|
Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, Marín-Hernández Á, Silva-Adaya D, Rodríguez-Pérez CE, Gallardo-Pérez JC. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev Neurosci 2024; 35:813-838. [PMID: 38841811 DOI: 10.1515/revneuro-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Rosa Angelica Castillo-Rodríguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, Xochitepec 62790, Mexico
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
2
|
Yakimov B, Komarova A, Nikonova E, Mozherov A, Shimolina L, Shirmanova M, Becker W, Shirshin E, Shcheslavskiy V. Simultaneous assessment of NAD(P)H and flavins with multispectral fluorescence lifetime imaging microscopy at a single excitation wavelength of 750 nm. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:106501. [PMID: 39351138 PMCID: PMC11440180 DOI: 10.1117/1.jbo.29.10.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Significance Autofluorescence characteristics of the reduced nicotinamide adenine dinucleotide and oxidized flavin cofactors are important for the evaluation of the metabolic status of the cells. The approaches that involve a detailed analysis of both spectral and time characteristics of the autofluorescence signals may provide additional insights into the biochemical processes in the cells and biological tissues and facilitate the transition of spectral fluorescence lifetime imaging into clinical applications. Aim We present the experiments on multispectral fluorescence lifetime imaging with a detailed analysis of the fluorescence decays and spectral profiles of the reduced nicotinamide adenine dinucleotide and oxidized flavin under a single excitation wavelength aimed at understanding whether the use of multispectral detection is helpful for metabolic imaging of cancer cells. Approach We use two-photon spectral fluorescence lifetime imaging microscopy. Starting from model solutions, we switched to cell cultures treated by metabolic inhibitors and then studied the metabolism of cells within tumor spheroids. Results The use of a multispectral detector in combination with an excitation at a single wavelength of 750 nm allows the identification of fluorescence signals from three components: free and bound NAD(P)H, and flavins based on the global fitting procedure. Multispectral data make it possible to assess not only the lifetime but also the spectral shifts of emission of flavins caused by chemical perturbations. Altogether, the informative parameters of the developed approach are the ratio of free and bound NAD(P)H amplitudes, the decay time of bound NAD(P)H, the amplitude of flavin fluorescence signal, the fluorescence decay time of flavins, and the spectral shift of the emission signal of flavins. Hence, with multispectral fluorescence lifetime imaging, we get five independent parameters, of which three are related to flavins. Conclusions The approach to probe the metabolic state of cells in culture and spheroids using excitation at a single wavelength of 750 nm and a fluorescence time-resolved spectral detection with the consequent global analysis of the data not only simplifies image acquisition protocol but also allows to disentangle the impacts of free and bound NAD(P)H, and flavin components evaluate changes in their fluorescence parameters (emission spectra and fluorescence lifetime) upon treating cells with metabolic inhibitors and sense metabolic heterogeneity within 3D tumor spheroids.
Collapse
Affiliation(s)
- Boris Yakimov
- Sechenov First Moscow State Medical University, Laboratory of Clinical Biophotonics, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - Anastasia Komarova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Novgorod, Russia
| | - Elena Nikonova
- Sechenov First Moscow State Medical University, Laboratory of Clinical Biophotonics, Moscow, Russia
| | - Artem Mozherov
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Novgorod, Russia
| | - Liubov Shimolina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Novgorod, Russia
| | - Marina Shirmanova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Novgorod, Russia
| | | | - Evgeny Shirshin
- Sechenov First Moscow State Medical University, Laboratory of Clinical Biophotonics, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - Vladislav Shcheslavskiy
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Novgorod, Russia
- Becker&Hickl GmbH, Berlin, Germany
| |
Collapse
|
3
|
Kes MMG, Berkers CR, Drost J. Bridging the gap: advancing cancer cell culture to reveal key metabolic targets. Front Oncol 2024; 14:1480613. [PMID: 39355125 PMCID: PMC11442172 DOI: 10.3389/fonc.2024.1480613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolic rewiring is a defining characteristic of cancer cells, driving their ability to proliferate. Leveraging these metabolic vulnerabilities for therapeutic purposes has a long and impactful history, with the advent of antimetabolites marking a significant breakthrough in cancer treatment. Despite this, only a few in vitro metabolic discoveries have been successfully translated into effective clinical therapies. This limited translatability is partially due to the use of simplistic in vitro models that do not accurately reflect the tumor microenvironment. This Review examines the effects of current cell culture practices on cancer cell metabolism and highlights recent advancements in establishing more physiologically relevant in vitro culture conditions and technologies, such as organoids. Applying these improvements may bridge the gap between in vitro and in vivo findings, facilitating the development of innovative metabolic therapies for cancer.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
4
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
5
|
Zhan Z, Lin K, Wang T. Construction of oxidative phosphorylation-related prognostic risk score model in uveal melanoma. BMC Ophthalmol 2024; 24:204. [PMID: 38698303 PMCID: PMC11067154 DOI: 10.1186/s12886-024-03441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Uveal melanoma (UVM) is a malignant intraocular tumor in adults. Targeting genes related to oxidative phosphorylation (OXPHOS) may play a role in anti-tumor therapy. However, the clinical significance of oxidative phosphorylation in UVM is unclear. METHOD The 134 OXPHOS-related genes were obtained from the KEGG pathway, the TCGA UVM dataset contained 80 samples, served as the training set, while GSE22138 and GSE39717 was used as the validation set. LASSO regression was carried out to identify OXPHOS-related prognostic genes. The coefficients obtained from Cox multivariate regression analysis were used to calculate a risk score, which facilitated the construction of a prognostic model. Kaplan-Meier survival analysis, logrank test and ROC curve using the time "timeROC" package were conducted. The immune cell frequency in low- and high-risk group was analyzed through Cibersort tool. The specific genomic alterations were analyzed by "maftools" R package. The differential expressed genes between low- or high-risk group were analyzed and performed Gene Ontology (GO) and GSEA. Finally, we verified the function of CYC1 in UVM by gene silencing in vitro. RESULTS A total of 9 OXPHOS-related prognostic genes were identified, including NDUFB1, NDUFB8, ATP12A, NDUFA3, CYC1, COX6B1, ATP6V1G2, ATP4B and NDUFB4. The UVM prognostic risk model was constructed based on the 9 OXPHOS-related prognostic genes. The prognosis of patients in the high-risk group was poorer than low-risk group. Besides, the ROC curve demonstrated that the area under the curve of the model for predicting the 1 to 5-year survival rate of UVM patients were all more than 0.88. External validation in GSE22138 and GSE39717 dataset revealed that these 9 genes could also be utilized to evaluate and predict the overall survival of patients with UVM. The risk score levels related to immune cell frequency and specific genomic alterations. The DEGs between the low- and high- risk group were enriched in tumor OXPHOS and immune related pathway. In vitro experiments, CYC1 silencing significantly inhibited UVM cell proliferation and invasion, induced cell apoptosis. CONCLUSION In sum, a prognostic risk score model based on oxidative phosphorylation-related genes in UVM was developed to enhance understanding of the disease. This prognostic risk score model may help to find potential therapeutic targets for UVM patients. CYC1 acts as an oncogene role in UVM.
Collapse
Affiliation(s)
- Zhiyun Zhan
- Ophthalmology Department, First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, 350004, Fuzhou, Fujian, China
| | - Kun Lin
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 516 Jinrong South Road, 350001, Fuzhou, China
| | - Tingting Wang
- Ophthalmology Department, First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, 350004, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Yan F, Mutembei B, Valerio T, Gunay G, Ha JH, Zhang Q, Wang C, Selvaraj Mercyshalinie ER, Alhajeri ZA, Zhang F, Dockery LE, Li X, Liu R, Dhanasekaran DN, Acar H, Chen WR, Tang Q. Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:2014-2047. [PMID: 38633082 PMCID: PMC11019711 DOI: 10.1364/boe.514079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bornface Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Trisha Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ji-Hee Ha
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qinghao Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | | | - Zaid A. Alhajeri
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Fan Zhang
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lauren E. Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xinwei Li
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ronghao Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250100, China
| | - Danny N. Dhanasekaran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| |
Collapse
|
7
|
Robledo-Cadena DX, Pacheco-Velazquez SC, Vargas-Navarro JL, Padilla-Flores JA, Moreno-Sanchez R, Rodríguez-Enríquez S. Mitochondrial Proteins as Metabolic Biomarkers and Sites for Therapeutic Intervention in Primary and Metastatic Cancers. Mini Rev Med Chem 2024; 24:1187-1202. [PMID: 39004839 DOI: 10.2174/0113895575254320231030051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 07/16/2024]
Abstract
Accelerated aerobic glycolysis is one of the main metabolic alterations in cancer, associated with malignancy and tumor growth. Although glycolysis is one of the most studied properties of tumor cells, recent studies demonstrate that oxidative phosphorylation (OxPhos) is the main ATP provider for the growth and development of cancer. In this last regard, the levels of mRNA and protein of OxPhos enzymes and transporters (including glutaminolysis, acetate and ketone bodies catabolism, free fatty acid β-oxidation, Krebs Cycle, respiratory chain, phosphorylating system- ATP synthase, ATP/ADP translocator, Pi carrier) are altered in tumors and cancer cells in comparison to healthy tissues and organs, and non-cancer cells. Both energy metabolism pathways are tightly regulated by transcriptional factors, oncogenes, and tumor-suppressor genes, all of which dictate their protein levels depending on the micro-environmental conditions and the type of cancer cell, favoring cancer cell adaptation and growth. In the present review paper, variation in the mRNA and protein levels as well as in the enzyme/ transporter activities of the OxPhos machinery is analyzed. An integral omics approach to mitochondrial energy metabolism pathways may allow for identifying their use as suitable, reliable biomarkers for early detection of cancer development and metastasis, and for envisioned novel, alternative therapies.
Collapse
Affiliation(s)
- Diana Xochiquetzal Robledo-Cadena
- Departamento de Bioquímica. Instituto Nacional de Cardiología. Juan Badiano No. 1. Col. Sección XVI. 14080. Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, México City, 04510, México
| | - Silvia Cecilia Pacheco-Velazquez
- Departamento de Bioquímica. Instituto Nacional de Cardiología. Juan Badiano No. 1. Col. Sección XVI. 14080. Ciudad de México, México
| | - Jorge Luis Vargas-Navarro
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Joaquín Alberto Padilla-Flores
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Sara Rodríguez-Enríquez
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| |
Collapse
|
8
|
Payne MC, Ho S, Hashimoto T, Imboden S, Diaz JA, Lee BS, Rupert MJ, Cai NY, Goldstein AS, Lin NYC. Microwell-based flow culture increases viability and restores drug response in prostate cancer spheroids. Biotechnol J 2023:e2200434. [PMID: 36905340 DOI: 10.1002/biot.202200434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
3D cancer spheroids represent a highly promising model for study of cancer progression and therapeutic development. Wide-scale adoption of cancer spheroids, however, remains a challenge due to the lack of control over hypoxic gradients that may cloud the assessment of cell morphology and drug response. Here, we present a Microwell Flow Device (MFD) that generates in-well laminar flow around 3D tissues via repetitive tissue sedimentation. Using a prostate cancer cell line, we demonstrate the spheroids in the MFD exhibit improved cell growth, reduced necrotic core formation, enhanced structural integrity, and downregulated expression of cell stress genes. The flow-cultured spheroids also exhibit an improved sensitivity to chemotherapy with greater transcriptional response. These results demonstrate how fluidic stimuli reveal the cellular phenotype previously masked by severe necrosis. Our platform advances 3D cellular models and enables study into hypoxia modulation, cancer metabolism, and drug screening within pathophysiological conditions.
Collapse
Affiliation(s)
- Marie C Payne
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, California, USA
| | - SumYat Ho
- Department of Biochemistry, University of California, Los Angeles, California, USA
| | - Takao Hashimoto
- Departments of Molecular, Cell & Developmental Biology and Urology, University of California, Los Angeles, California, USA
| | - Sara Imboden
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, California, USA
| | - Johnny A Diaz
- Departments of Molecular, Cell & Developmental Biology and Urology, University of California, Los Angeles, California, USA
| | - Brandon S Lee
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Melissa J Rupert
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Nathan Y Cai
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell & Developmental Biology and Urology, University of California, Los Angeles, California, USA
| | - Neil Y C Lin
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Moreno-Sánchez R, Robledo-Cadena DX, Pacheco-Velázquez SC, Vargas Navarro JL, Padilla-Flores JA, Rodríguez-Enríquez S. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect. Arch Biochem Biophys 2023; 739:109559. [PMID: 36906097 DOI: 10.1016/j.abb.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| | | | | | - Jorge Luis Vargas Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Joaquín Alberto Padilla-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, 14080, Mexico; Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Medicina, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| |
Collapse
|
10
|
Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater 2022; 18:459-470. [PMID: 35415297 PMCID: PMC8971536 DOI: 10.1016/j.bioactmat.2022.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models and tumour spheroids, our 3DBPO model showed significant changes in cell cycle, metabolism, adherens junctions, and other pathways associated with epigenetic regulation. The 3DBPO model was more sensitive to therapies targeted to the autophagy pathway. We showed that simulating ECM yielded different osteosarcoma cell metabolic characteristics and drug sensitivity in the 3DBPO model compared with classical models. We suggest 3D printed osteosarcoma models can be used in osteosarcoma fundamental and translational research, which may contribute to novel therapeutic strategy discovery. 3DBPO model behaved better than traditional 2D and CSC models in simulating in vivo osteosarcoma microenvironment. 3DBPO model showed significant changes in many signaling pathways associated with epigenetic regulation. 3DBPO model was particularly sensitive to autophagy-related drugs.
Collapse
|
11
|
Pacheco-Velázquez SC, Ortega-Mejía II, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Tapia-Martínez G, Peñalosa-Castro I, Aguilar-Ponce JL, Granados-Rivas JC, Moreno-Sánchez R, Rodríguez-Enríquez S. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids. Front Oncol 2022; 12:1018137. [PMID: 36419896 PMCID: PMC9676491 DOI: 10.3389/fonc.2022.1018137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
Several biological processes related to cancer malignancy are regulated by 17-β estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERβ receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ignacio Peñalosa-Castro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | | | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Rafael Moreno-Sánchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| |
Collapse
|
12
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
13
|
Amemiya T, Shibata K, Takahashi J, Watanabe M, Nakata S, Nakamura K, Yamaguchi T. Glycolytic oscillations in HeLa cervical cancer cell spheroids. FEBS J 2022; 289:5551-5570. [DOI: 10.1111/febs.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Junpei Takahashi
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | | | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences Meiji University Nakano‐ku Japan
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University Nakano‐ku Japan
| |
Collapse
|
14
|
Javed Z, Worley BL, Stump C, Shimko SS, Crawford LC, Mythreye K, Hempel N. Optimization of Extracellular Flux Assay to Measure Respiration of Anchorage-independent Tumor Cell Spheroids. Bio Protoc 2022; 12:e4321. [PMID: 35340292 PMCID: PMC8899553 DOI: 10.21769/bioprotoc.4321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 10/05/2023] Open
Abstract
Three-dimensional (3D) cell culture models are widely used in tumor studies to more accurately reflect cell-cell interactions and tumor growth conditions in vivo. 3D anchorage-independent spheroids derived by culturing cells in ultra-low attachment (ULA) conditions is particularly relevant to ovarian cancer, as such cell clusters are often observed in malignant ascites of late-stage ovarian cancer patients. We and others have found that cells derived from anchorage-independent spheroids vary widely in gene expression profiles, proliferative state, and metabolism compared to cells maintained under attached culture conditions. This includes changes in mitochondrial function, which is most commonly assessed in cultured live cells by measuring oxygen consumption in extracellular flux assays. To measure mitochondrial function in anchorage-independent multicellular aggregates, we have adapted the Agilent Seahorse extracellular flux assay to optimize measurements of oxygen consumption and extracellular acidification of ovarian cancer cell spheroids generated by culture in ULA plates. This protocol includes: (i) Methods for culturing tumor cells as uniform anchorage-independent spheroids; (ii) Optimization for the transfer of spheroids to the Agilent Seahorse cell culture plates; (iii) Adaptations of the mitochondrial and glycolysis stress tests for spheroid extracellular flux analysis; and (iv) Suggestions for optimization of cell numbers, spheroid size, and normalization of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) values. Using this method, we have found that ovarian cancer cells cultured as anchorage-independent spheroids display altered mitochondrial function compared to monolayer cultures attached to plastic dishes. This method allows for the assessment of mitochondrial function in a more relevant patho/physiological culture condition and can be adapted to evaluate mitochondrial function of various cell types that are able to aggregate into multicellular clusters in anchorage-independence. Graphic abstract: Workflow of the Extracellular Flux Assay to Measure Respiration of Anchorage-independent Tumor Cell Spheroids.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Coryn Stump
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sara S. Shimko
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - LaTaijah C. Crawford
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
15
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
16
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
18
|
Nii T. Strategies Using Gelatin Microparticles for Regenerative Therapy and Drug Screening Applications. Molecules 2021; 26:molecules26226795. [PMID: 34833885 PMCID: PMC8617939 DOI: 10.3390/molecules26226795] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In particular, gelatin particles have been noted due to their attractive properties as drug carriers. The drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin molecule, responding to the purpose of the research. The gelatin particles capable of drug release are effective in wound healing, drug screening models. For example, a sustained release of growth factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening model, a tissue-like model composed of cells with high activity by the sustained release of drug or growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death. This review introduces recent research on gelatin microparticles-based strategies for regenerative therapy and drug screening models.
Collapse
Affiliation(s)
- Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Pant T, Gaikwad G, Jain D, Dandekar P, Jain R. Establishment and characterization of lung co-culture spheroids for paclitaxel loaded Eudragit® RL 100 nanoparticle evaluation. Biotechnol Prog 2021; 37:e3203. [PMID: 34427389 DOI: 10.1002/btpr.3203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022]
Abstract
3D cell cultures are regarded as a better and more relevant approach for screening drugs and therapeutics, particularly due to their likeness with the in vivo conditions. Spheroids offer an intermediate platform between in vitro and in vivo models, for conducting tumor-based investigations. In this study, a simple setup was developed for consistent generation of lung co-culture spheroids, which were developed using the cancer cell lines A549, NCI H460, and fibroblast cells WI-38. The potential of these spheroids for evaluating the toxicity of Eudragit® RL 100 nanoparticles (ENP) was explored. Monodisperse ENP, having the size range of 140-200 nm was prepared using the nanoprecipitation method. These were loaded with the poorly water-soluble anticancer drug paclitaxel. The evaluation of toxicity and uptake of drug-loaded ENP revealed that 2D monolayers were more sensitive to treatment than 3D spheroids. Within spheroids, co-cultures were more resistant to the treatment than monocultures. Overall, our findings demonstrated that the lung co-culture spheroids were a suitable model for accelerating the efficacy and toxicity-related investigations of novel drug delivery systems.
Collapse
Affiliation(s)
- Tejal Pant
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ganesh Gaikwad
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Dhiraj Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
20
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
21
|
Yamamoto S, Nishimura K, Morita K, Kanemitsu S, Nishida Y, Morimoto T, Aoi T, Tamura A, Maruyama T. Microenvironment pH-Induced Selective Cell Death for Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile. Biomacromolecules 2021; 22:2524-2531. [PMID: 33960189 DOI: 10.1021/acs.biomac.1c00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembly of synthetic molecules has been drawing broad attention as a novel emerging approach in drug discovery. Here, we report selective cell death induced by a novel peptide amphiphile that self-assembles to form entangled nanofibers (hydrogel) based on intracellular pH (pHi). We found that a palmitoylated hexapeptide (C16-VVAEEE) formed a hydrogel below pH 7. The formation of the nanofibrous self-assembly was responsive to a small pH change around pH 7. The cytotoxicity of C16-VVAEEE was correlated with pHi of cells. Microscope observation demonstrated the self-assembly of C16-VVAEEE inside HEK293 cells. In vivo experiments revealed that the transcutaneous administration of C16-VVAEEE showed remarkable anti-tumor activity. This study proposes that distinct microenvironment inside living cells can be used as a trigger for the intracellular self-assembly of a peptide amphiphile, which provide a new clue to drug discovery.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Sayuki Kanemitsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoyuki Morimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
22
|
Mosier JA, Wu Y, Reinhart-King CA. Recent advances in understanding the role of metabolic heterogeneities in cell migration. Fac Rev 2021; 10:8. [PMID: 33659926 PMCID: PMC7894266 DOI: 10.12703/r/10-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent in cell populations and their contributions to cell migration.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
23
|
Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13120463. [PMID: 33333716 PMCID: PMC7765098 DOI: 10.3390/ph13120463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.
Collapse
|
24
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
25
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
26
|
Bouchez CL, Hammad N, Cuvellier S, Ransac S, Rigoulet M, Devin A. The Warburg Effect in Yeast: Repression of Mitochondrial Metabolism Is Not a Prerequisite to Promote Cell Proliferation. Front Oncol 2020; 10:1333. [PMID: 32974131 PMCID: PMC7466722 DOI: 10.3389/fonc.2020.01333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
O. Warburg conducted one of the first studies on tumor energy metabolism. His early discoveries pointed out that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation. Warburg's results and hypothesis generated controversies that are persistent to this day. It is thus of great importance to understand the mechanisms by which cancer cells can reversibly regulate the two pathways of their energy metabolism as well as the functioning of this metabolism in cell proliferation. Here, we made use of yeast as a model to study the Warburg effect and its eventual function in allowing an increased ATP synthesis to support cell proliferation. The role of oxidative phosphorylation repression in this effect was investigated. We show that yeast is a good model to study the Warburg effect, where all parameters and their modulation in the presence of glucose can be reconstituted. Moreover, we show that in this model, mitochondria are not dysfunctional, but that there are fewer mitochondria respiratory chain units per cell. Identification of the molecular mechanisms involved in this process allowed us to dissociate the parameters involved in the Warburg effect and show that oxidative phosphorylation repression is not mandatory to promote cell growth. Last but not least, we were able to show that neither cellular ATP synthesis flux nor glucose consumption flux controls cellular growth rate.
Collapse
Affiliation(s)
- Cyrielle L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Noureddine Hammad
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Sylvain Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Stéphane Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Michel Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| |
Collapse
|
27
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Metabolic Alterations in Spheroid-Cultured Hepatic Stellate Cells. Int J Mol Sci 2020; 21:ijms21103451. [PMID: 32414151 PMCID: PMC7279360 DOI: 10.3390/ijms21103451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatic stellate cells (HSCs) play a vital role in liver fibrosis, and a greater understanding of their regulation is required. Recent studies have focused on relationships between extracellular matrix (ECM) stiffness and gene expression or cellular metabolism, but none have provided a detailed metabolic analysis of HSC changes in spheroid cultures. Accordingly, in the present study, we created an HSC spheroid culture and analyzed changes in gene expression and metabolism. Expression of α-smooth muscle actin (α-SMA) decreased in the spheroids, suppressing proliferation. Gene expression analysis revealed the cell cycle, sirtuin signaling, mitochondrial dysfunction, and the Hippo pathway to be canonical pathways, believed to result from decreased proliferative ability or mitochondrial suppression. In the Hippo pathway, nuclear translocation of the yes-associated protein (YAP) was decreased in the spheroid, which was associated with the stiffness of the ECM. Metabolome analysis showed glucose metabolism changes in the spheroid, including glutathione pathway upregulation and increased lipid synthesis. Addition of the glycolytic product phosphoenolpyruvate (PEP) led to increased spheroid size, with increased expression of proteins such as α-SMA and S6 ribosomal protein (RPS6) phosphorylation, which was attributed to decreased suppression of translation. The results of our study contribute to the understanding of metabolic changes in HSCs and the progression of hepatic fibrosis.
Collapse
|
29
|
Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression. Mol Metab 2020; 38:100973. [PMID: 32251664 PMCID: PMC7300377 DOI: 10.1016/j.molmet.2020.100973] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND ATP-dependent chromatin remodelers are evolutionarily conserved complexes that alter nucleosome positioning to influence many DNA-templated processes, such as replication, repair, and transcription. In particular, chromatin remodeling can dynamically regulate gene expression by altering accessibility of chromatin to transcription factors. SCOPE OF REVIEW This review provides an overview of the importance of chromatin remodelers in the regulation of metabolic gene expression. Particular emphasis is placed on the INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers in both yeast and mammals. This review details discoveries from the initial identification of chromatin remodelers in Saccharomyces cerevisiae to recent discoveries in the metabolic requirements of developing embryonic tissues in mammals. MAJOR CONCLUSIONS INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers regulate the expression of energy metabolism pathways in S. cerevisiae and mammals in response to diverse nutrient environments. In particular, the INO80 complex organizes the temporal expression of gene expression in the metabolically synchronized S. cerevisiae system. INO80-mediated chromatin remodeling is also needed to constrain cell division during metabolically favorable conditions. Conversely, the BAF/PBAF remodeler regulates tissue-specific glycolytic metabolism and is disrupted in cancers that are dependent on glycolysis for proliferation. The role of chromatin remodeling in metabolic gene expression is downstream of the metabolic signaling pathways, such as the TOR pathway, a critical regulator of metabolic homeostasis. Furthermore, the INO80 and BAF/PBAF chromatin remodelers have both been shown to regulate heart development, the tissues of which have unique requirements for energy metabolism during development. Collectively, these results demonstrate that chromatin remodelers communicate metabolic status to chromatin and are a central component of homeostasis pathways that optimize cell fitness, organismal development, and prevent disease.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, Stanford CA 94305, USA.
| |
Collapse
|
30
|
Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regen Ther 2020; 14:196-204. [PMID: 32154334 PMCID: PMC7058408 DOI: 10.1016/j.reth.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The objective of this study is to design a cancer invasion model where the cancer invasion rate can be regulated in vitro. Methods Cancer-associated fibroblasts (CAF) aggregates incorporating gelatin hydrogel microspheres (GM) containing various concentrations of transforming growth factor-β1 (TGF-β1) (CAF-GM-TGF-β1) were prepared. Alpha-smooth muscle actin (α-SMA) for the CAF aggregates was measured to investigate the CAF activation level by changing the concentration of TGF-β1. An invasion assay was performed to evaluate the cancer invasion rate by co-cultured of cancer cells with various CAF-GM-TGF-β1. Results The expression level of α-SMA for CAF increased with an increased in the TGF-β1 concentration. When co-cultured with various types of CAF-GM-TGF-β1, the cancer invasion rate was well correlated with the α-SMA level. It is conceivable that the TGF-β1 concentration could modify the level of CAF activation, leading to the invasion rate of cancer cells. In addition, at the high concentrations of TGF-β1, the effect of a matrix metalloproteinase (MMP) inhibitor on the cancer invasion rate was observed. The higher invasion rate would be achieved through the higher MMP production. Conclusions The present model is promising to realize the cancer invasion whose rate can be modified by changing the TGF-β1 concentration. This invasion model would be a promising tool for anti-cancer drug screening. TGF-β1 was controlled release from gelatin hydrogel microspheres. CAF were activated by increased TGF-β1 concentration. There was a good correlation between invasion rate and TGF-β1 concentration. Higher invasion rate would be achieved through matrix metalloproteinase production.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- PBS, phosphate buffered-saline
- PLGA, poly (lactic-co-glycolic acid)
- PVA, poly (vinyl alcohol)
- TGF-β1, transforming growth factor-β1
- Three-dimensional cell culture
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
31
|
3D multicellular models to study the regulation and roles of acid-base transporters in breast cancer. Biochem Soc Trans 2019; 47:1689-1700. [PMID: 31803922 DOI: 10.1042/bst20190131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
As a result of elevated metabolic rates and net acid extrusion in the rapidly proliferating cancer cells, solid tumours are characterized by a highly acidic microenvironment, while cancer cell intracellular pH is normal or even alkaline. Two-dimensional (2D) cell monocultures, which have been used extensively in breast cancer research for decades, cannot precisely recapitulate the rich environment and complex processes occurring in tumours in vivo. The use of such models can consequently be misleading or non-predictive for clinical applications. Models mimicking the tumour microenvironment are particularly pivotal for studying tumour pH homeostasis, which is profoundly affected by the diffusion-limited conditions in the tumour. To advance the understanding of the mechanisms and consequences of dysregulated acid-base homeostasis in breast cancer, clinically relevant models that incorporate the unique microenvironment of these tumours are required. The development of three-dimensional (3D) cell cultures has provided new tools for basic research and pre-clinical approaches, allowing the culture of breast cancer cells under conditions that closely resemble tumour growth in a living organism. Here we provide an overview of the main 3D techniques relevant for breast cancer cell culture. We discuss the advantages and limitations of the classical 3D models as well as recent advances in 3D culture techniques, focusing on how these culture methods have been used to study acid-base transport in breast cancer. Finally, we outline future directions of 3D culture technology and their relevance for studies of acid-base transport.
Collapse
|
32
|
Nii T, Makino K, Tabata Y. A Cancer Invasion Model Combined with Cancer-Associated Fibroblasts Aggregates Incorporating Gelatin Hydrogel Microspheres Containing a p53 Inhibitor. Tissue Eng Part C Methods 2019; 25:711-720. [DOI: 10.1089/ten.tec.2019.0189] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kimiko Makino
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng 2019; 128:606-612. [DOI: 10.1016/j.jbiosc.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
|
34
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
35
|
Tucker LH, Hamm GR, Sargeant RJE, Goodwin RJA, Mackay CL, Campbell CJ, Clarke DJ. Untargeted Metabolite Mapping in 3D Cell Culture Models Using High Spectral Resolution FT-ICR Mass Spectrometry Imaging. Anal Chem 2019; 91:9522-9529. [DOI: 10.1021/acs.analchem.9b00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lulu H. Tucker
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Gregory R. Hamm
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Rebecca J. E. Sargeant
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Richard J. A. Goodwin
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - C. Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Colin J. Campbell
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - David J. Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
36
|
Bizjak M, Malavašič P, Pirkmajer S, Pavlin M. Comparison of the effects of metformin on MDA-MB-231 breast cancer cells in a monolayer culture and in tumor spheroids as a function of nutrient concentrations. Biochem Biophys Res Commun 2019; 515:296-302. [PMID: 31146913 DOI: 10.1016/j.bbrc.2019.05.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
Abstract
Metabolic pathways of cancer cells depend on the concentrations of nutrients in their micro-environment as well as on the cell-to-cell interactions. Here we examined the effects of glucose, pyruvate and glutamine on the sensitivity of MDA-MB-231 cells to metabolic drug metformin using standard 2D culture, in which cells are grown in a monolayer, and 3D tumor spheroids, in which three-dimensional growth of cells better mimics a tumor. To examine effects of nutrients on metformin action, MDA-MB-231 cells were grown in commonly used media (DMEM, MEM and RPMI-1640) that differ mainly in the concentrations of amino acids. We used MTS assay and Hoechst and propidium iodide staining to determine cell number, viability and survival, respectively. We also determined the size of tumor spheroids and assessed effects of nutrients on metformin-stimulated AMP-activated protein kinase activation. Non-essential amino acids suppressed the effects of metformin on MDA-MB-231 cells in a 2D culture and in 3D tumor spheroids. Glutamine and pyruvate weakly diminished the effects of metformin in 2D culture. Furthermore, glucose protected tumor spheroids against metformin-induced disintegration. Our results show that nutrient availability must be considered when we evaluate the effects of metformin in 2D culture and in biologically more relevant 3D tumor spheroids.
Collapse
Affiliation(s)
- Maruša Bizjak
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Petra Malavašič
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol Appl Pharmacol 2019; 370:65-77. [PMID: 30878505 DOI: 10.1016/j.taap.2019.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/30/2023]
Abstract
The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 μM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 μM) and non-cancer HUVEC and 3T3 (IC50≥600 μM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 μM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 μM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 μM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.
Collapse
|
38
|
Marmolejo-León P, Azorín-Vega EP, Jiménez-Mancilla N, Mendoza-Nava HJ, Mitsoura E, Pineda B, Torres-García E. Estimation of the effectiveness ratio (α/β) for resistant cancer cells in U87MG human glioblastoma. Appl Radiat Isot 2018; 141:156-161. [DOI: 10.1016/j.apradiso.2018.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
39
|
Na+,HCO3–-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 2018; 37:5569-5584. [DOI: 10.1038/s41388-018-0353-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
|
40
|
Lukina MM, Dudenkova VV, Ignatova NI, Druzhkova IN, Shimolina LE, Zagaynova EV, Shirmanova MV. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel. Biochim Biophys Acta Gen Subj 2018; 1862:1693-1700. [PMID: 29719197 DOI: 10.1016/j.bbagen.2018.04.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Paclitaxel, a widely used antimicrotubular agent, predominantly eliminates rapidly proliferating cancer cells, while slowly proliferating and quiescent cells can survive the treatment, which is one of the main reasons for tumor recurrence and non-responsiveness to the drug. To improve the efficacy of chemotherapy, biomarkers need to be developed to enable monitoring of tumor responses. In this study we considered the auto-fluorescent metabolic cofactors NAD(P)H and FAD as possible indicators of cancer cell response to therapy with paclitaxel. It was found that, among the tested parameters (the fluorescence intensity-based redox ratio FAD/NAD(P)H, and the fluorescence lifetimes of NAD(P)H and FAD), the fluorescence lifetime of NAD(P)H is the most sensitive in tracking the drug response, and is capable of indicating heterogeneous cellular responses both in cell monolayers and in multicellular tumor spheroids. We observed that metabolic reorganization to a more oxidative state preceded the morphological manifestation of cell death and developed faster in cells that were more responsive to the drug. Our results suggest that noninvasive, label-free monitoring of the drug-induced metabolic changes by noting the NAD(P)H fluorescence lifetime is a valuable approach to characterize the responses of cancer cells to anti-cancer treatments and, therefore, to predict the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Maria M Lukina
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Nadezhda I Ignatova
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Irina N Druzhkova
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Lyubov' E Shimolina
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Elena V Zagaynova
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
41
|
Dutta D, Chong NS, Lim SH. Endogenous volatile organic compounds in acute myeloid leukemia: origins and potential clinical applications. J Breath Res 2018; 12:034002. [PMID: 29463782 DOI: 10.1088/1752-7163/aab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Not unlike many cancer types, acute myeloid leukemia (AML) exhibits many metabolic changes and reprogramming, causing changes in lipid metabolism. Some of the distinct molecular abnormalities associated with AML also modify the metabolic changes. Both processes result in changes in the production of endogenous volatile organic compounds (VOCs). The increasing availability of highly sensitive methods for detecting trace chemicals provides the opportunity to investigate the role of patient-specific VOC finger-prints as biomarkers for detecting early relapse or minimal residual disease in AML. Since VOC production is reliant on metabolic activities, when combined with currently available methods, VOC analysis may identify within a group of patients with flow cytometric or molecular evidence of residual disease those most at risk for disease relapse.
Collapse
Affiliation(s)
- Dibyendu Dutta
- Department of Professional Sciences, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | | | | |
Collapse
|
42
|
Mejías-Pérez E, Carreño-Fuentes L, Esteban M. Development of a Safe and Effective Vaccinia Virus Oncolytic Vector WR-Δ4 with a Set of Gene Deletions on Several Viral Pathways. Mol Ther Oncolytics 2018; 8:27-40. [PMID: 29367944 PMCID: PMC5772009 DOI: 10.1016/j.omto.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Despite the effectiveness of classic treatments and available diagnostic tools, cancer continues to be a leading world health problem, with devastating cancer-related death rates. Advances in oncolytic virotherapy have shown promise as potentially effective treatment options in the fight against cancer. The poxviruses have many features that make them an attractive platform for the development of oncolytic vectors, with some candidates currently in clinical trials. Here, we report the design and generation of a new oncolytic vector based on the vaccinia virus Western Reserve (WR) strain. We show that the WR-Δ4 virus, with the combined deletion of four specific viral genes that act on metabolic, proliferation, and signaling pathways (A48R, B18R, C11R, and J2R), has effective anti-tumor capabilities in vivo. In WR-Δ4-infected mice, we observed strong viral attenuation, reduced virus dissemination, and efficient tumor cell growth control in the B16F10 syngeneic melanoma model, with enhanced neutrophil migration and activation of tumor antigen-specific immune responses. This approach provides an alternative strategy toward ongoing efforts to develop an optimal oncolytic poxvirus vector.
Collapse
Affiliation(s)
- Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Madrid, 28049, Spain
| | - Liliana Carreño-Fuentes
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Madrid, 28049, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Madrid, 28049, Spain
| |
Collapse
|
43
|
Prina-Mello A, Jain N, Liu B, Kilpatrick JI, Tutty MA, Bell AP, Jarvis SP, Volkov Y, Movia D. Culturing substrates influence the morphological, mechanical and biochemical features of lung adenocarcinoma cells cultured in 2D or 3D. Tissue Cell 2017; 50:15-30. [PMID: 29429514 DOI: 10.1016/j.tice.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023]
Abstract
Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.
Collapse
Affiliation(s)
- Adriele Prina-Mello
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Namrata Jain
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Baiyun Liu
- School of Physics, University College Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | - Melissa A Tutty
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Alan P Bell
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Advanced Microscopy Laboratory (AML), Trinity College Dublin, Ireland
| | - Suzanne P Jarvis
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; School of Physics, University College Dublin, Ireland
| | - Yuri Volkov
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
44
|
Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 2017; 8:107423-107440. [PMID: 29296175 PMCID: PMC5746077 DOI: 10.18632/oncotarget.22475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
Complex three-dimensional (3D) in vitro models that recapitulate human tumor biology are essential to understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellular communication, nutrient and oxygen gradients, and cell polarity that is lacking in two-dimensional (2D) monolayer cultures. In the present study, we demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of ErbB family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments.
Collapse
|
45
|
Tajima S, Tabata Y. Preparation of epithelial cell aggregates incorporating matrigel microspheres to enhance proliferation and differentiation of epithelial cells. Regen Ther 2017; 7:34-44. [PMID: 30271850 PMCID: PMC6134895 DOI: 10.1016/j.reth.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/10/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
The objective of this study is to investigate the effect of matrigel microspheres (MM), gelatin hydrogel microspheres (GM), and matrigel-coated GM on the proliferated and biological functions of epithelial cells in cell aggregates incorporating the microspheres. The MM were prepared by a coacelvation method. When mammary epithelial EpH4 cells were cultured with the MM, GM, and matrigel-coated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to suppress the cell adhesion, EpH4 cell aggregates with each microspheres homogeneously incorporated were formed. Higher EpH4 cells proliferation was observed for cell aggregates incorporating MM, GM, and matrigel-coated GM compared with the conventional 3-dimensional (3D) culture method. When examined to evaluate the epithelial differentiation of EpH4 cells, the β-casein expression was significantly higher for the cell aggregates incorporating MM than that of aggregates incorporating GM and matrigel-coated GM or the conventional 3D culture method. It is concluded that the proliferation and differentiation of mammary epithelial EpH4 cells were promoted by the incorporation of MM.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
46
|
Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:102. [PMID: 28774341 PMCID: PMC5543535 DOI: 10.1186/s13046-017-0570-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Under hypoxic conditions, tumor cells undergo a series of adaptations that promote evolution of a more aggressive tumor phenotype including the activation of DNA damage repair proteins, altered metabolism, and decreased proliferation. Together these changes mitigate the negative impact of oxygen deprivation and allow preservation of genomic integrity and proliferative capacity, thus contributing to tumor growth and metastasis. As a result the presence of a hypoxic microenvironment is considered a negative clinical feature of many solid tumors. Hypoxic niches in tumors also represent a therapeutically privileged environment in which chemo- and radiation therapy is less effective. Although the negative impact of tumor hypoxia has been well established, the precise effect of oxygen deprivation on tumor cell behavior, and the molecular signals that allow a tumor cell to survive in vivo are poorly understood. Multicellular tumor spheroids (MCTS) have been used as an in vitro model for the avascular tumor niche, capable of more accurately recreating tumor genomic profiles and predicting therapeutic response. However, relatively few studies have used MCTS to study the molecular mechanisms driving tumor cell adaptations within the hypoxic tumor environment. Here we will review what is known about cell proliferation, DNA damage repair, and metabolic pathways as modeled in MCTS in comparison to observations made in solid tumors. A more precise definition of the cell populations present within 3D tumor models in vitro could better inform our understanding of the heterogeneity within tumors as well as provide a more representative platform for the testing of therapeutic strategies.
Collapse
Affiliation(s)
- Stephen Riffle
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
47
|
Druzhkova IN, Shirmanova MV, Lukina MM, Dudenkova VV, Mishina NM, Zagaynova EV. The metabolic interaction of cancer cells and fibroblasts - coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide. Cell Cycle 2017; 15:1257-66. [PMID: 26986068 DOI: 10.1080/15384101.2016.1160974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alteration in the cellular energy metabolism is a principal feature of tumors. An important role in modifying cancer cell metabolism belongs to the cancer-associated fibroblasts. However, the regulation of their interaction has been poorly studied to date. In this study we monitored the metabolic status of both cell types by using the optical redox ratio and the fluorescence lifetimes of the metabolic co-factors NAD(P)H and FAD, in addition to the intracellular pH and the hydrogen peroxide levels in the cancer cells, using genetically encoded sensors. In the co-culture of human cervical carcinoma cells HeLa and human fibroblasts we observed a metabolic shift from oxidative phosphorylation toward glycolysis in cancer cells, and from glycolysis toward OXPHOS in fibroblasts, starting from Day 2 of co-culturing. The metabolic switch was accompanied by hydrogen peroxide production and slight acidification of the cytosol in the cancer cells in comparison with that of the corresponding monoculture. Therefore, our HeLa-huFb system demonstrated metabolic behavior similar to Warburg type tumors. To our knowledge, this is the first time that these 3 parameters have been investigated together in a model of tumor-stroma co-evolution. We propose that determination of the start-point of the metabolic alterations and understanding of the mechanisms of their realization can open a new ways for cancer treatment.
Collapse
Affiliation(s)
| | - Marina V Shirmanova
- a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.,b Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
| | - Maria M Lukina
- a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.,b Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
| | - Varvara V Dudenkova
- a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.,b Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
| | - Nataliya M Mishina
- a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.,c Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , Moscow , Russia
| | - Elena V Zagaynova
- a Nizhny Novgorod State Medical Academy , Nizhny Novgorod , Russia.,b Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
| |
Collapse
|
48
|
Pereira PMR, Berisha N, Bhupathiraju NVSDK, Fernandes R, Tomé JPC, Drain CM. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One 2017; 12:e0177737. [PMID: 28545086 PMCID: PMC5435229 DOI: 10.1371/journal.pone.0177737] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Photodynamic Therapy (PDT) relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa) with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4) in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Naxhije Berisha
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - N V S Dinesh K Bhupathiraju
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Rosa Fernandes
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João P C Tomé
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
- Graduate Center of the City University of New York, New York, New York, United States of America
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
49
|
Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y, Kang Y. Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep 2017; 37:1971-1979. [PMID: 28260082 PMCID: PMC5367364 DOI: 10.3892/or.2017.5479] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/30/2016] [Indexed: 12/02/2022] Open
Abstract
We investigated the mechanism of cancer-associated fibroblasts (CAFs) in promoting the invasion and metastasis of pancreatic cancer cells in a non-vascular manner. We verified the original generation of isolated cultured CAFs and normal fibroblasts (NFs) based on the expression of α-SMA and vimentin, and we examined the cell glycolysis level through glucose consumption and lactate production experiments. The mRNA and protein expression of CAF glycolytic enzymes, lactate dehydrogenase and pyruvate kinase m2, were examined by RT-PCR and western blotting, respectively. In vitro culture first-generation pancreatic CAFs were collected and cultured together with pancreas cancer BxPc-3 and Panc-1 cells. Cell invasion and migration were assessed using a Transwell assay and scratch test, respectively. Mitochondrial activity was assessed by experimentally determining oxidative phosphorylation (OP) activity. The aerobic oxidation index of cancer cells was also examined. Succinate dehydrogenase, fumarate hydratase (FH), and monocarboxylate transporter 1 (MCT1) expression were examined using an MCT1-specific inhibitor to remove ‘tumor-stromal’ metabolic coupling to observe the influence of cell interstices on pancreas cancer progression. First-generation isolated cultured CAFs and NFs both grew well, and showed active proliferation. Glucose absorption and lactate production were significantly enhanced in CAFs compared with that in NFs. PCR and western blotting showed that the lactate dehydrogenase and pyruvate kinase m2 mRNA and protein expression levels were increased in the CAFs. After indirect co-culture, OP was increased in the BxPc-3 and Panc-1 cells; correspondingly, succinate dehydrogenase, FH and MCT expression were increased. After the MCT1-specific inhibitor removed ‘tumor-stromal’ metabolic coupling, the migration and invasion abilities of the pancreatic cancer cells were decreased. Pancreatic CAFs can alter metabolism as well as communicate with and respond to cancer cell migration and invasion. This may be an important mechanism for promoting tumor progression in a non-vascular manner in the tumor microenvironment. The mechanism by which CAFs reshape metabolic transition requires further analysis.
Collapse
Affiliation(s)
- Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wan Run Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wei Li
- Graduate School, Fourth Military Medical University, Xi'an, Shaanxi 710033, P.R. China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijuan Cui
- Department of General Surgery, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|