1
|
Tang S, Wang Q, Sun K, Song Y, Liu R, Tan X, Li H, Lv Y, Yang F, Zhao J, Li S, Bi P, Yang J, Zhu Z, Chen D, Chuan Z, Luo X, Hu Z, Liu Y, Li Z, Ke T, Jiang D, Zheng K, Yang R, Chen K, Guo R. Metabolic Heterogeneity and Potential Immunotherapeutic Responses Revealed by Single-Cell Transcriptomics of Breast Cancer. Apoptosis 2024:10.1007/s10495-024-01952-7. [PMID: 38578322 DOI: 10.1007/s10495-024-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Breast cancer (BC) exhibits remarkable heterogeneity. However, the transcriptomic heterogeneity of BC at the single-cell level has not been fully elucidated. METHODS We acquired BC samples from 14 patients. Single-cell RNA sequencing (scRNA-seq), bioinformatic analyses, along with immunohistochemistry (IHC) and immunofluorescence (IF) assays were carried out. RESULTS According to the scRNA-seq results, 10 different cell types were identified. We found that Cancer-Associated Fibroblasts (CAFs) exhibited distinct biological functions and may promote resistance to therapy. Metabolic analysis of tumor cells revealed heterogeneity in glycolysis, gluconeogenesis, and fatty acid synthetase reprogramming, which led to chemotherapy resistance. Furthermore, patients with multiple metastases and progression were predicted to benefit from immunotherapy based on a heterogeneity analysis of T cells and tumor cells. CONCLUSIONS Our findings provide a comprehensive understanding of the heterogeneity of BC, provide comprehensive insight into the correlation between cancer metabolism and chemotherapy resistance, and enable the prediction of immunotherapy responses based on T-cell heterogeneity.
Collapse
Affiliation(s)
- Shicong Tang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| | - Qing Wang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China
| | - Ying Song
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rui Liu
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xin Tan
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Huimeng Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Yafeng Lv
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Fuying Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiawen Zhao
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Sijia Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Pingping Bi
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiali Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhengna Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Dong Chen
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhirui Chuan
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xiaomao Luo
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zaoxiu Hu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ying Liu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhenhui Li
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Tengfei Ke
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Kai Zheng
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Guangxi, 530021, People's Republic of China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China.
| | - Rong Guo
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|
2
|
Eliceiri GL. Novel Pathways between Invasiveness Modulators in Breast Cancer Single Cells. Crit Rev Eukaryot Gene Expr 2024; 34:73-75. [PMID: 38073443 DOI: 10.1615/critreveukaryotgeneexpr.2023050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Individual cells are known to behave differently than their whole populations of cells. The present work focused on proteins that control cancer invasiveness. Individual Dicer siRNA knockdown of HER4, CDC42, and E-cadherin decreased MMP1 mRNA levels in SCP2, a cancer single-cell progeny that is highly metastatic to bone and adrenal gland. Individual knockdown of β-catenin, CDC42, HER3, and the γ catalytic subunit of PI3K raised MMP1 mRNA levels in SCP21, a single-cell progeny of the same tumor and patient, with low metastasis to bone and adrenal.
Collapse
Affiliation(s)
- George L Eliceiri
- Department of Pathology, Saint Louis University School of Medicine, 709 St. James Drive, Saint Louis, Missouri 63119
| |
Collapse
|
3
|
Compound C Inhibits Renca Renal Epithelial Carcinoma Growth in Syngeneic Mouse Models by Blocking Cell Cycle Progression, Adhesion and Invasion. Int J Mol Sci 2022; 23:ijms23179675. [PMID: 36077072 PMCID: PMC9456023 DOI: 10.3390/ijms23179675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Compound C (CompC), an inhibitor of AMP-activated protein kinase, reduces the viability of various renal carcinoma cells. The molecular mechanism underlying anti-proliferative effect was investigated by flow cytometry and western blot analysis in Renca cells. Its effect on the growth of Renca xenografts was also examined in a syngeneic BALB/c mouse model. Subsequent results demonstrated that CompC reduced platelet-derived growth factor receptor signaling pathways and increased ERK1/2 activation as well as reactive oxygen species (ROS) production. CompC also increased the level of active Wee1 tyrosine kinase (P-Ser642-Wee1) and the inactive form of Cdk1 (P-Tyr15-Cdk1) while reducing the level of active histone H3 (P-Ser10-H3). ROS-dependent ERK1/2 activation and sequential alterations in Wee1, Cdk1, and histone H3 might be responsible for the CompC-induced G2/M cell cycle arrest and cell viability reduction. In addition, CompC reduced the adhesion, migration, and invasion of Renca cells in the in vitro cell systems, and growth of Renca xenografts in the BALB/c mouse model. Taken together, the inhibition of in vivo tumor growth by CompC may be attributed to the blockage of cell cycle progression, adhesion, migration, and invasion of tumor cells. These findings suggest the therapeutic potential of CompC against tumor development and progression.
Collapse
|
4
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
5
|
Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through regulation of PI3K/Akt and ERK1/2 signaling pathways. Anticancer Drugs 2017; 28:959-966. [DOI: 10.1097/cad.0000000000000535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through regulation of PI3K/Akt and ERK1/2 signaling pathways. Anticancer Drugs 2017. [DOI: 10.1097/cad.0000000000000535 pmid: 28704237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cao S, Chen C, Xue J, Huang Y, Yang X, Ling K. Silencing of type Iγ phosphatidylinositol phosphate kinase suppresses ovarian cancer cell proliferation, migration and invasion. Oncol Rep 2017; 38:253-262. [PMID: 28560454 PMCID: PMC5492676 DOI: 10.3892/or.2017.5670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the major cause of death in ovarian cancer patients. Given that the molecular mechanism underlying metastasis formation is critical for improving therapeutic development and clinical treatment, it must be fully understood. Recent studies have revealed that lipid kinase type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) participates in the metastasis of breast cancer and colon cancer by regulating cell migration and invasion. However, its role in the progression of ovarian cancer is unclear. Here we showed that PIPKIγ expression is upregulated in multiple epithelial ovarian cancer cell lines. Silencing of PIPKIγ impaired PI3K/AKT signaling and inhibited the aggressive behaviors of epithelial ovarian cancer cells, including proliferation, migration and invasion. Moreover, we found that PIPKIγ was required for the activation of signal transducer and activator of transcription 3 (STAT3) in epithelial ovarian cancer cells, indicating that STAT3 may also be engaged in the PIPKIγ-dependent aggressiveness of epithelial ovarian cancer cells. Our results, for the first time, identified PIPKIγ as a novel regulator in epithelial ovarian cancer cells that promotes cell proliferation, migration and invasion by activating multiple signaling pathways. Therefore, we propose that PIPKIγ could potentially be a therapeutic target for the early detection and treatment of epithelial ovarian cancer. Further studies employing in vivo models are necessary to test this possibility.
Collapse
Affiliation(s)
- Siyu Cao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
8
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Bhowmik T, Gomes A. Down–regulation of cyclin–dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem Biol Interact 2017; 268:119-128. [DOI: 10.1016/j.cbi.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
10
|
Doroudgar S, Quijada P, Konstandin M, Ilves K, Broughton K, Khalafalla FG, Casillas A, Nguyen K, Gude N, Toko H, Ornelas L, Thuerauf DJ, Glembotski CC, Sussman MA, Völkers M. S100A4 protects the myocardium against ischemic stress. J Mol Cell Cardiol 2016; 100:54-63. [PMID: 27721024 DOI: 10.1016/j.yjmcc.2016.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myocardial infarction is followed by cardiac dysfunction, cellular death, and ventricular remodeling, including tissue fibrosis. S100A4 protein plays multiple roles in cellular survival, and tissue fibrosis, but the relative role of the S100A4 in the myocardium after myocardial infarction is unknown. This study aims to investigate the role of S100A4 in myocardial remodeling and cardiac function following infarct damage. METHODS AND RESULTS S100A4 expression is low in the adult myocardium, but significantly increased following myocardial infarction. Deletion of S100A4 increased cardiac damage after myocardial infarction, whereas cardiac myocyte-specific overexpression of S100A4 protected the infarcted myocardium. Decreased cardiac function in S100A4 Knockout mice was accompanied with increased cardiac remodeling, fibrosis, and diminished capillary density in the remote myocardium. Loss of S100A4 caused increased apoptotic cell death both in vitro and in vivo in part mediated by decreased VEGF expression. Conversely, S100A4 overexpression protected cells against apoptosis in vitro and in vivo. Increased pro-survival AKT-signaling explained reduced apoptosis in S100A4 overexpressing cells. CONCLUSION S100A4 expression protects cardiac myocytes against myocardial ischemia and is required for stabilization of cardiac function after MI.
Collapse
Affiliation(s)
- Shirin Doroudgar
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA; University Hospital Heidelberg, Internal Medicine III, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Pearl Quijada
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Mathias Konstandin
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA; University Hospital Heidelberg, Internal Medicine III, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Kelli Ilves
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kathleen Broughton
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Farid G Khalafalla
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Alexandria Casillas
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kristine Nguyen
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Natalie Gude
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Haruhiro Toko
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Luis Ornelas
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Donna J Thuerauf
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Christopher C Glembotski
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Mark A Sussman
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Mirko Völkers
- The San Diego State Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA; University Hospital Heidelberg, Internal Medicine III, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
11
|
Zhai LL, Wu Y, Cai CY, Huang Q, Tang ZG. High-Level Expression and Prognostic Significance of Matrix Metalloprotease-19 and Matrix Metalloprotease-20 in Human Pancreatic Ductal Adenocarcinoma. Pancreas 2016; 45:1067-72. [PMID: 26692439 DOI: 10.1097/mpa.0000000000000569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Matrix metalloproteinase (MMP)-19 and MMP-20 are important members of the MMP family, and their roles in tumor survivorship and progression are continually reported. This work aimed to determine the expression and prognostic significance of MMP-19 and MMP-20 in pancreatic ductal adenocarcinoma (PDAC). METHODS Immunohistochemistry was used to investigate the levels of MMP-19 and MMP-20 expression in carcinoma tissues and paracancerous tissues from 102 PDAC patients. RESULTS The MMP-19 and MMP-20 were, respectively, expressed in 71.6% (73/102) and 70.6% (72/102) of carcinoma tissues, and the expression was positively correlated (r = 0.643, P < 0.001). High-level expression of MMP-19 and MMP-20 was strongly correlated with aggressive clinicopathological characteristics. Kaplan-Meier analysis showed that high-level expression of MMP-19 and MMP-20 was significantly associated with decreased event-free survival (P < 0.001) and overall survival (P < 0.001). Multivariate analysis showed that high-level expression of MMP-19 could act as an independent predictive biomarker for poor event-free survival and overall survival. CONCLUSIONS Levels of MMP-19 and MMP-20 expression are significantly increased in PDAC. High-level expression of MMP-19 and MMP-20 is closely correlated to progression and prognosis of PDAC, and these may be considered as promising markers for unfavorable prognoses.
Collapse
Affiliation(s)
- Lu-Lu Zhai
- From the Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University; and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep 2016; 6:28773. [PMID: 27349797 PMCID: PMC4923879 DOI: 10.1038/srep28773] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Abstract
As one main active compound of curcuminoids, Bisdemethoxycurcumin (BDMC) possesses several biological activities, such as anti-inflammation and anti-cancer activities. However, the detailed mechanism of BDMC’s anti-metastasis activity in ovarian cancer has not been clearly elucidated yet. In the present study, cell proliferation, wound healing motility, cell adhesion and invasion with or without BDMC were determined. In addition, western blot was used to examine proteins expressions. The lucigenin-enhanced luminescence was introduced to assess cellular oxidative stress. The luciferase reporter gene assay was introduced to evaluate the transcriptional activity of NF-κB. Finally, BDMC significantly inhibited the adhesion, migration, invasion and metastasis of SKOV-3 cells. Moreover, BDMC inhibited expressions of several degradation-associated proteins, such as matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), CD147, urokinase plasminogen activator (uPA), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), whereas increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), in a dose-dependent manner. In addition, BDMC reduced generation of cellular superoxide in a dose-dependent manner. Furthermore, BDMC inhibited the phosphorylation levels of NF-κB p65 and IκB-α, and consequently reduced NF-κB-driven luciferase expression. Collectively, BDMC serves as a therapeutic medicine to suppress ovarian cancer, perhaps via inhibiting cellular oxidative stress and subsequently inactivating NF-κB pathway.
Collapse
|
13
|
Zhang L, Zhang J, Chen Z, Wang L, Wu X, Ou M. Epidermal growth factor (EGF) triggers the malignancy of hemangioma cells via activation of NF-κB signals. Biomed Pharmacother 2016; 82:133-40. [PMID: 27470348 DOI: 10.1016/j.biopha.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022] Open
Abstract
Hemangioma (HA) is tumor formed by hyper-proliferation of vascular endothelial cells. However, the role and mechanisms of epidermal growth factor (EGF) on the progression of HA are not well illustrated. Our present study revealed that EGF can significantly promote the in vitro proliferation and motility of HA cells, which was confirmed by the up regulation of Bcl-2, proliferating cell nuclear antigen (PCNA), and metalloproteinase-2 (MMP-2) and MMP-9. The pharmacological inhibition of NF-κB, while not ERK1/2 or PI3K/Akt, attenuated EGF induced cell proliferation and expression of MMP-2 and MMP-9. EGF treatment also increased the phosphorylation, nuclear translocation and transcriptional activities of NF-κB in HA cells. These data suggested that NF-κB plays an essential role in EGF induced malignancy of HA cells. Furthermore, EGF treatment also increased the phosphorylation of IκB and IKKα, while not IKKβ or IKKγ. The knockdown of IKKα reversed EGF induced activation of NF-κB. EGF treatment also decreased the phosphorylation of GSK-3β and increased its activities in both HDEC and CRL-2586 EOMA cells. LiCl, a potent GSK-3β inhibitor, can obviously reverse EGF induced up regulation of p65 phosphorylation. Collectively, our study revealed that EGF can trigger the malignancy of HA cells via induction of proliferation and invasion. The activation of NF-κB through IKKα/IκBα and GSK-3β signal is essential for this process. It suggested that EGF/NF-κB signal may represent a novel therapeutic target for the treatment of human HA.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Emergency, Peolpe's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China
| | - Jingming Zhang
- Department of Cardiology, The People's Hospital of Zhongwei City of Ningxia Hui Autonomous Region, Zhongwei 755000, China
| | - Zhanlong Chen
- Department of Emergency, Peolpe's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China
| | - Liqin Wang
- Department of Vascular Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China
| | - Xiaomin Wu
- Department of Vascular Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China
| | - Minghui Ou
- Department of Vascular Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China.
| |
Collapse
|
14
|
Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach. Mol Cell Proteomics 2015; 15:642-56. [PMID: 26657081 DOI: 10.1074/mcp.m115.053199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
A massive amount of somatic mutations has been cataloged in large-scale projects such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium projects. The majority of the somatic mutations found in tumor genomes are neutral 'passenger' rather than damaging "driver" mutations. Now, understanding their biological consequences and prioritizing them for druggable targets are urgently needed. Thanks to the rapid advances in structural genomics technologies (e.g. X-ray), large-scale protein structural data has now been made available, providing critical information for deciphering functional roles of mutations in cancer and prioritizing those alterations that may mediate drug binding at the atom resolution and, as such, be druggable targets. We hypothesized that mutations at protein-ligand binding-site residues are likely to be druggable targets. Thus, to prioritize druggable mutations, we developed SGDriver, a structural genomics-based method incorporating the somatic missense mutations into protein-ligand binding-site residues using a Bayes inference statistical framework. We applied SGDriver to 746,631 missense mutations observed in 4997 tumor-normal pairs across 16 cancer types from The Cancer Genome Atlas. SGDriver detected 14,471 potential druggable mutations in 2091 proteins (including 1,516 recurrently mutated proteins) across 3558 cancer genomes (71.2%), and further identified 298 proteins harboring mutations that were significantly enriched at protein-ligand binding-site residues (adjusted p value < 0.05). The identified proteins are significantly enriched in both oncoproteins and tumor suppressors. The follow-up drug-target network analysis suggested 98 known and 126 repurposed druggable anticancer targets (e.g. SPOP and NR3C1). Furthermore, our integrative analysis indicated that 13% of patients might benefit from current targeted therapy, and this -proportion would increase to 31% when considering drug repositioning. This study provides a testable strategy for prioritizing druggable mutations in precision cancer medicine.
Collapse
Affiliation(s)
- Junfei Zhao
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Feixiong Cheng
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Yuanyuan Wang
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203
| | - Carlos L Arteaga
- §Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ¶Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ‖Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zhongming Zhao
- From the ‡Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203; ‖Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; **Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; ¶¶School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
15
|
LIU CHUAN, WU FAN, LIU YUANWEI, MENG CONG. Catalpol suppresses proliferation and facilitates apoptosis of MCF-7 breast cancer cells through upregulating microRNA-146a and downregulating matrix metalloproteinase-16 expression. Mol Med Rep 2015; 12:7609-14. [DOI: 10.3892/mmr.2015.4361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
|
16
|
Datar I, Feng J, Qiu X, Lewandowski J, Yeung M, Ren G, Aras S, Al-Mulla F, Cui H, Trumbly R, Arudra SKC, De Las Casas LE, de la Serna I, Bitar MS, Yeung KC. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13. PLoS One 2015; 10:e0134494. [PMID: 26308852 PMCID: PMC4550449 DOI: 10.1371/journal.pone.0134494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/09/2015] [Indexed: 01/25/2023] Open
Abstract
Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs) including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP transcription, suggesting a potential mechanism by which RKIP inhibits tumor progression and metastasis.
Collapse
Affiliation(s)
- Ila Datar
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Jingwei Feng
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Xiaoliang Qiu
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - John Lewandowski
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Miranda Yeung
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Gang Ren
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Fahd Al-Mulla
- Kuwait University, Faculty of Medicine, P.O. Box 24923, Safat, Kuwait
| | - Hongjuan Cui
- State Key Laboratory Of Silkworm Genome Biology, Chongqing, China
| | - Robert Trumbly
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Sri Krishna Chaitanya Arudra
- Department of Pathology, University of Toledo, College of Medicine, Health Science Campus, Toledo Ohio, United States of America
| | - Luis E. De Las Casas
- Department of Pathology, University of Toledo, College of Medicine, Health Science Campus, Toledo Ohio, United States of America
| | - Ivana de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| | - Milad S. Bitar
- Kuwait University, Faculty of Medicine, P.O. Box 24923, Safat, Kuwait
| | - Kam C. Yeung
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Health Science Campus, Toledo, Ohio, United States of America
| |
Collapse
|
17
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
18
|
Du Y, Feng J, Wang R, Zhang H, Liu J. Effects of Flavonoids from Potamogeton crispus L. on Proliferation, Migration, and Invasion of Human Ovarian Cancer Cells. PLoS One 2015; 10:e0130685. [PMID: 26098839 PMCID: PMC4476667 DOI: 10.1371/journal.pone.0130685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
In order to explore the efficient utilization of plant resources from constructed wetlands, the potential anti-metastatic effects of flavonoids from Potamogeton crispus L. were investigated in human ovarian cancer cells (ES-2). Two major flavonoids, luteolin-3'-O-β-D-glucopyranoside and flavone-6-C-β-D-glucopyranoside, were isolated from P. crispus and identified. The effects of these flavonoids on cell proliferation, cell morphology, cell cycle, apoptosis, and cell migration and invasion were then investigated. Furthermore, reverse transcriptase polymerase chain reaction assays and western blotting analysis were conducted to examine the expression level of mRNA and protein. Results indicated that Luteolin-3'-O-β-D-glucopyranoside inhibited ES-2 cell migration and invasion and suppressed the expression of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and Flavone-6-C-β-D-glucopyranoside had no significant inhibitory effects on ES-2 cells. Thus, this study demonstrated the potential anti-metastatic properties of a P. crispus flavonoid, and provided a scientific approach for the screening of promising natural resources from constructed wetlands to identify useful products for use in the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
- Yuanda Du
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Renqing Wang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
- School of Life Sciences, Shandong University, Jinan, 250100, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, 250100, China
| | - Haijie Zhang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jian Liu
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Fibulin1C peptide induces cell attachment and extracellular matrix deposition in lung fibroblasts. Sci Rep 2015; 5:9496. [PMID: 25834989 PMCID: PMC5381689 DOI: 10.1038/srep09496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/05/2015] [Indexed: 01/03/2023] Open
Abstract
Fibulin-1 is an extracellular matrix (ECM) protein, levels of which are elevated in serum and lung tissue from patients with idiopathic pulmonary fibrosis compared to healthy volunteers. Inhibition of fibulin-1C, one of four fibulin-1 isoforms, reduced proliferation and wound healing in human airway smooth muscle (ASM) cells. This study identified the bioactive region/s of fibulin-1C which promotes fibrosis. Seven fibulin-1C peptides were synthesized and used to pre-coat tissue culture plates before lung derived ASM cells and fibroblasts from patients with pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD) or neither disease (Control) were plated. Peptide effects on in vitro measures of fibrosis: cell attachment, proliferation and viability, and ECM deposition, were examined. Among these peptides, peptide 1C1 (FBLN1C1) enhanced ASM cell and fibroblast attachment. FBLN1C1 increased mitochondrial activity and proliferation in fibroblasts. In addition, FBLN1C1 stimulated fibulin1 deposition in PF and COPD fibroblasts, and augmented fibronectin and perlecan deposition in all three groups. Peptides FBLN1C2 to FBLN1C7 had no activity. The active fibulin-1C peptide identified in this study describes a useful tool for future studies. Ongoing investigation of the role of fibulin-1 may reveal the mechanisms underlying the pathphysiology of chronic lung diseases.
Collapse
|
20
|
Liu Y, Cao W, Zhang B, Liu YQ, Wang ZY, Wu YP, Yu XJ, Zhang XD, Ming PH, Zhou GB, Huang L. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep 2013; 3:3098. [PMID: 24226295 PMCID: PMC3827615 DOI: 10.1038/srep03098] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/15/2013] [Indexed: 11/12/2022] Open
Abstract
Invasion and metastasis are the main causes of treatment failure and death in breast cancer. Thus, novel invasion-based therapies such as those involving natural agents are urgently required. In this study, we examined the effects of magnolol (Mag), a compound extracted from medicinal herbs, on breast cancer cells in vitro and in vivo. Highly invasive cancer cells were found to be highly sensitive to treatment. Mag markedly inhibited the activity of highly invasive MDA-MB-231 cells. Furthermore, Mag significantly downregulated matrix metalloproteinase-9 (MMP-9) expression, an enzyme critical to tumor invasion. Mag also inhibited nuclear factor-κB (NF-κB) transcriptional activity and the DNA binding of NF-κB to MMP-9 promoter. These results indicate that Mag suppresses tumor invasion by inhibiting MMP-9 through the NF-κB pathway. Moreover, Mag overcame the promoting effects of phorbol 12-myristate 13-acetate (PMA) on the invasion of MDA-MB-231 cells. Our findings reveal the therapeutic potential and mechanism of Mag against cancer.
Collapse
Affiliation(s)
- Ying Liu
- 1] School of Life Sciences, Tsinghua University, Beijing, 100084, China [2] The Shenzhen Key Laboratory of Gene & Antibody Therapy, State Key Laboratory of Health Science & Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China [3]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brazilein suppresses migration and invasion of MDA-MB-231 breast cancer cells. Chem Biol Interact 2013; 204:105-15. [DOI: 10.1016/j.cbi.2013.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/15/2013] [Accepted: 05/02/2013] [Indexed: 12/21/2022]
|
22
|
HUANG BINBIN, SUN LONGE, CAO JIANCHUN, ZHANG YUNYUN, WU QIONG, ZHANG JUNJIE, GE YANLI, FU LIU, WANG ZHIRONG. Downregulation of the GnT-V gene inhibits metastasis and invasion of BGC823 gastric cancer cells. Oncol Rep 2013; 29:2392-400. [DOI: 10.3892/or.2013.2373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 11/06/2022] Open
|
23
|
Dahlmann M, Sack U, Herrmann P, Lemm M, Fichtner I, Schlag PM, Stein U. Systemic shRNA mediated knock down of S100A4 in colorectal cancer xenografted mice reduces metastasis formation. Oncotarget 2013; 3:783-97. [PMID: 22878175 PMCID: PMC3478456 DOI: 10.18632/oncotarget.572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The metastasis-inducing protein S100A4 was found to be a prognostic indicator for the development of metachronous metastases. S100A4 expression levels correlate with the formation of human colorectal cancer metastases and shorter patients’ survival. Inhibition of S100A4 expression in patients might therefore result in decreased metastasis formation and prolonged survival. In the present study, we used shRNA expression plasmids to inhibit S100A4 expression in the colorectal cancer cell lines HCT116, SW620 and DLD-1. Cell lines with reduced S100A4 expression showed reduced cell migration and invasion in vitro. The knock-down of S100A4 expression also led to significantly diminished formation of liver metastases when intrasplenically transplanted in mice (P = 0.004). We then focused on the therapeutic potential of systemically applied shRNA expression plasmids acting on S100A4 via repeated hydrodynamics-based tail vein injection of plasmid DNA. Mice, intrasplenically transplanted with HCT116 cells and treated systemically with S100A4-shRNA plasmids, showed a decrease of S100A4 and MMP9 expression levels, resulting in significantly reduced liver metastases (P = 0.005). In summary, we show for the first time the intratumoral knock-down of S100A4 via systemic application of S100A4-shRNA plasmid DNA, which restricts metastasis formation in a xenografted mouse model of colorectal cancer.
Collapse
Affiliation(s)
- Mathias Dahlmann
- Experimental and Clinical Research Center, joint cooperation between Charité, Medical Faculty and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Inhibition of EGF/EGFR activation with naphtho[1,2-b]furan-4,5-dione blocks migration and invasion of MDA-MB-231 cells. Toxicol In Vitro 2013; 27:1-10. [DOI: 10.1016/j.tiv.2012.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/26/2012] [Accepted: 10/02/2012] [Indexed: 12/30/2022]
|
25
|
Tsai PC, Hsieh CY, Chiu CC, Wang CK, Chang LS, Lin SR. Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway. Toxicon 2012; 60:734-43. [DOI: 10.1016/j.toxicon.2012.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/01/2012] [Accepted: 05/24/2012] [Indexed: 01/21/2023]
|
26
|
Wang L, Yuan J, Tu Y, Mao X, He S, Fu G, Zong J, Zhang Y. Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol 2012; 15:139-45. [PMID: 22855183 DOI: 10.1007/s12094-012-0900-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/19/2012] [Indexed: 01/12/2023]
Abstract
AIM Matrix metalloproteinase (MMP)-14 and MMP-19 have been demonstrated to play an important role in the development of human gliomas. However, their prognostic values are not clear. The aim of this study was to investigate whether co-expression of MMP-14 and MMP-19 has prognostic relevance in human gliomas. METHODS Immunohistochemistry and western blot were used to investigate the expression of MMP-14 and MMP-19 proteins in 128 patients with gliomas. RESULTS The expression levels of MMP-14 and MMP-19 proteins in glioma tissues were both significantly higher (both P < 0.001) than those in non-neoplastic brain tissues according to the immunohistochemistry analysis, which was confirmed by the western blot analysis. Additionally, the overexpression of either MMP-14 or MMP-19 was significantly associated with the advanced WHO grade (both P = 0.02), the low Karnofsky performance score (KPS) (P = 0.008 and 0.01, respectively) and the poor overall survival (both P = 0.01). Moreover, the Multivariate Cox proportional-hazards regression analysis revealed that the increased expressions of MMP-14 and MMP-19 were both independent prognostic factors for poor overall survival (both P = 0.02). Furthermore, the co-expression of MMP-14 and MMP-19 was additively and more significantly (P = 0.006) associated with adverse prognosis in patients with gliomas than respective expression of MMP-14 and MMP-19. CONCLUSIONS These findings indicated for the first time that the co-expression of MMP-14 and MMP-19 is significantly correlated with prognosis in glioma patients, suggesting that the co-expression of these proteins may be used as both an early diagnostic and independent prognostic marker.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Delassus GS, Cho H, Eliceiri GL. New signaling pathways from cancer progression modulators to mRNA expression of matrix metalloproteinases in breast cancer cells. J Cell Physiol 2011; 226:3378-84. [PMID: 21344390 DOI: 10.1002/jcp.22694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We observed previously that each of seven cancer progression inhibitors suppresses the mRNA expression of some matrix metalloproteinases (MMPs), but stimulates that of others, in breast cancer cells. In the present study we tested the effect of overexpressing other cancer modulators on MMP expression. The MMPs tested are MMP1, MMP2, MMP7, MMP13, MMP14, MMP16, MMP19, and MMP25. The proteins that were overexpressed are cancer inhibitors (NME, DRG1, IL10), enhancers (SOD2, FAK, IL17, and CREB), and proteins that suppress cancer progression in cells of some cancers and promote it in others (FUT1, integrin beta3, serpin E1, TIAM1, and claudin 4). Unexpectedly, all of them only lowered MMP mRNA expression, mainly of MMP16, MMP2, and MMP13, in breast cancer cells. Signaling from SOD2 uncoupled the accumulation of two MMP16 mRNA splice variants, suggesting signaling to a late step in MMP16 mRNA accumulation, such as MMP16 mRNA stabilization or late mRNA processing. Signaling that modulates MMP expression differed widely among the total population of MDA-MB-231 cells and single-cell progenies cloned from that population. It also differed substantially between cells of two metastatic breast basal adenocarcinomas, MDA-MB-231 and MDA-MB-468. The present study detected 37 new signaling pathways from cancer progression modulators located upstream of MMP mRNA expression in human breast cancer cells. Our siRNA-induced MMP knockdown data support the interpretation that signaling from MMP19, MMP1, MMP7, MMP12, MMP14, and MMP11 each stimulates the mRNA expression of other MMPs in breast cancer cells.
Collapse
Affiliation(s)
- Gregory S Delassus
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1004, USA
| | | | | |
Collapse
|
28
|
Lin KL, Chien CM, Hsieh CY, Tsai PC, Chang LS, Lin SR. Antimetastatic potential of cardiotoxin III involves inactivation of PI3K/Akt and p38 MAPK signaling pathways in human breast cancer MDA-MB-231 cells. Life Sci 2011; 90:54-65. [PMID: 22079475 DOI: 10.1016/j.lfs.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/08/2011] [Accepted: 10/08/2011] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study is to determine whether cardiotoxin III (CTX III) inhibited the metastasis in MDA-MB-231 cells and to further explain its possible mechanisms. MAIN METHODS The MTT assay, wound healing assay, Boyden chamber invasion assay, zymography analysis, reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), inhibitor assay, and Western blot analysis were used to reveal molecular events of CTX III in this study. KEY FINDINGS During treatment with non-toxic doses of CTX III, not only cell migration and invasion were markedly suppressed but the expression/activity of matrix metalloproteinase-9 (MMP-9) was also significantly and selectively suppressed in a concentration-dependent manner. In addition, CTX III decreased the nuclear protein level of nuclear factor kappa B (NF-κB), and pretreatment with NF-κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also reduced MMP-9 expression/activity and cell migration. Our biochemical assays indicated that CTX III potently suppressed the phosphorylation of p38 mitogen-activated protein kinase (MAPK), phosphatidylinositide-3-kinase (PI3K) and Akt. Additionally, the treatment of inhibitors specific for p38 MAPK (SB203580) or PI3K (wortmannin) to cells could result in a reduced expression of NF-κB and MMP-9 expression, concomitantly with an inhibition on cell metastasis. SIGNIFICANCE These results demonstrated that CTX III inhibition of MDA-MB-231 cells may occur through inactivation of both PI3K/Akt and p38 MAPK signaling pathways, exerting inhibitory effects on NF-κB transcriptional factor, thereby decreasing the activity of MMP-9 and then posing an anti-metastatic effect in the cells.
Collapse
Affiliation(s)
- Kuei-Li Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
29
|
Antimetastatic effect and mechanism of ovatodiolide in MDA-MB-231 human breast cancer cells. Chem Biol Interact 2011; 194:148-58. [PMID: 22033475 DOI: 10.1016/j.cbi.2011.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023]
Abstract
Cancer metastasis is a primary cause of cancer death. Ovatodiolide, a bioactive cembrane-type diterpenoid isolated from Anisomeles indica (L.) Kuntze (Labiatae), has been shown to inhibit the growth and proliferation of cancer cells. However, the anti-metastatic effects of ovatodiolide on highly metastatic human breast cancer MDA-MB-231 cells remain unclear. In this study, we first noted that ovatodiolide inhibited MDA-MB-231 cell migration and invasion by wound-healing assay and Boyden chamber assay. Western blot, gelatin zymography and reversed transcription-PCR analysis showed that ovatodiolide significantly and selectively suppressed the expression, activation, and mRNA of matrix metalloproteinase-9 (MMP-9) in a concentration-dependent manner. Ovatodiolide significantly decreased the nuclear level of nuclear factor kappaB (NF-κB), increased inhibitor of kappaBα (IκBα) through preventing phosphorylation of upstream signal IκB kinase (IKK). Pretreatment with a specific NF-κB inhibitor (PDTC) and an IκB protease inhibitor (TPCK) also reduced MMP-9 activity, cell migration and cell invasion. Moreover, ovatodiolide can suppress activation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase and Akt, while it did not affect phosphorylation of extracellular signal regulating kinases (ERK)1/2. Additionally, the treatment of inhibitors specific for PI3K (wortmannin), JNK (SP600125) or p38 MAPK (SB203580) to MDA-MB-231 cells could result in a reduced activation of MMP-9, concomitantly with a marked inhibition on cell migration and invasion. Taken together, these results demonstrate that ovatodiolide inhibits the metastatic ability of MDA-MB-231 cells by reducing MMP-9 activity through suppressing JNK, p38 MAPK and PI3K/Akt signaling pathways and inhibiting NF-κB activity. These results are the first to reveal the function of ovatodiolide in tumor metastasis and its underlying molecular mechanism, thus suggesting ovatodiolide to be a promising antimetastatic agent.
Collapse
|
30
|
Berge G, Pettersen S, Grotterød I, Bettum IJ, Boye K, Mælandsmo GM. Osteopontin--an important downstream effector of S100A4-mediated invasion and metastasis. Int J Cancer 2011; 129:780-90. [PMID: 20957651 DOI: 10.1002/ijc.25735] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/21/2010] [Indexed: 01/10/2023]
Abstract
Substantial evidence has linked the small calcium-binding protein S100A4 to metastatic progression. S100A4-mediated effects include stimulation of angiogenesis, regulation of cell death and increased cell motility and invasion, but the exact molecular mechanisms by which the protein exerts these effects are incompletely elucidated. In the present study, we demonstrate that S100A4 induces NF-κB-dependent expression and secretion of osteopontin (OPN) in a selection of osteosarcoma cell lines. OPN is, as S100A4, known to result in a variety of cellular effects potentially leading to increased angiogenesis and metastasis, and several of the activated signaling pathways are common for the two proteins. In our study, extracellular S100A4 was found to upregulate enzymes of the plasminogen activator system and matrix metalloproteinase (MMP) family, especially urokinase plasminogen activator and MMP-13. Furthermore, increased motility and invasion was observed in vitro as a result of S100A4 treatment. OPN expression was inhibited by the use of siRNA molecules, and a partial blocking of S100A4-induced effects on protease expression and invasive capacity was detected. In conclusion, our results suggest regulation of OPN as a downstream molecular mechanism of S100A4 signaling. This novel finding adds more information to how S100A4 mediates tumor development and metastatic progression. The observation of a link between S100A4 and OPN, and also identification of common downstream effect molecules, highlights them, their receptors or downstream proteins, as targets for therapeutic approaches.
Collapse
Affiliation(s)
- Gisle Berge
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
31
|
Kan JS, Delassus GS, D'Souza KG, Hoang S, Aurora R, Eliceiri GL. Modulators of cancer cell invasiveness. J Cell Biochem 2011; 111:791-6. [PMID: 20677215 DOI: 10.1002/jcb.22794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell invasiveness is essential for cancer metastasis. Many proteins, and more recently also non-coding RNAs, particularly microRNAs (miRNAs), have been reported to affect the cell invasiveness of various cancers. There is an apparent gap between the high number of these macromolecules and the low number of signaling pathways experimentally verified to control cancer invasiveness. We have brought together these various proteins and RNAs because we could not find any publication that filled this important gap. We have noted 589 proteins, 28 miRNAs, and 1 long non-coding RNA that are reported to modulate invasiveness in cells of various cancers. Interestingly, 44 proteins enhance invasiveness in cells of some cancers, but suppress it in cells of others. Almost all of the proteins that show experimentally verified activation/inhibition effects on, or binding interactions with, each other are linked together in a single network, in a "hub-and-spoke" architecture. The accumulated data show trends that point to anticipated future results and highlight gaps in what is known about invasiveness signaling. Identification of cancer invasiveness signaling networks is important for combination and personalized targeted therapies of cancers.
Collapse
Affiliation(s)
- Jean S Kan
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1004, USA
| | | | | | | | | | | |
Collapse
|
32
|
Beshir AB, Ren G, Magpusao AN, Barone LM, Yeung KC, Fenteany G. Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression. Cancer Lett 2010; 299:137-49. [PMID: 20855151 DOI: 10.1016/j.canlet.2010.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 07/23/2010] [Accepted: 08/13/2010] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that Raf kinase inhibitor protein (RKIP), which negatively regulates multiple signaling cascades including the Raf and nuclear factor-κB (NF-κB) pathways, functions as a metastasis suppressor. However, the basis for this activity is not clear. We investigated this question in a panel of breast cancer, colon cancer and melanoma cell lines. We found that RKIP negatively regulated the invasion of the different cancer cells through three-dimensional extracellular matrix barriers by controlling the expression of matrix metalloproteinases (MMPs), particularly, MMP-1 and MMP-2. Silencing of RKIP expression resulted in a highly invasive phenotype and dramatically increased levels of MMP-1 and MMP-2 expression, while overexpression of RKIP decreased cancer cell invasion in vitro and metastasis in vivo of murine tumor allografts. Knockdown of MMP-1 or MMP-2 in RKIP-knockdown cells reverted their invasiveness to normal. In contrast, when examining migration of the different cancer cells in a two-dimensional, barrier-less environment, we found that RKIP had either a positive regulatory activity or no activity, but in no case a negative one (as would be expected if RKIP suppressed metastasis at the level of cell migration itself). Therefore, RKIP's function as a metastasis suppressor appears to arise from its ability to negatively regulate expression of specific MMPs, and thus invasion through barriers, and not from a direct effect on the raw capacity of cells to move. The NF-κB pathway, but not the Raf pathway, appeared to positively control the invasion of breast cancer cells. A regulatory loop involving an opposing relationship between RKIP and the NF-κB pathway may control the level of MMP expression and cell invasion.
Collapse
Affiliation(s)
- Anwar B Beshir
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
33
|
Delassus GS, Cho H, Hoang S, Eliceiri GL. Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to matrix metalloproteinases, differ widely in cells of various cancers. J Cell Physiol 2010; 224:549-58. [PMID: 20432456 DOI: 10.1002/jcp.22157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously we detected new signaling pathways, some downregulatory and others upregulatory, from seven known suppressors of cancer progression to the expression of eight cancer-promoting matrix metalloproteinases (MMPs) in breast cancer cells. The goals of the present study were to test whether the preceding observations occur only in breast cancer cells and, if not, whether the same downregulatory and upregulatory signaling pathways are active in cells of other human cancers, focusing on activator protein-2alpha, E-cadherin, fibulin1D, interleukin 4, p16(INK4alpha), p53, PTEN, and RKIP, and on MMP1, MMP2, MMP7, MMP13, MMP14, MMP16, MMP19, and MMP25. To this end, in the present study we tested the effects of raising the cellular levels of wild-type copies of these known suppressors of cancer progression on the expression of these MMPs. This study yielded several unexpected results. We have detected 53 new signaling pathways in cells of prostate, brain, lung, ovarian and breast human cancers, with an abundance of signaling pathways as high as approximately 40% of the cancer progression regulator/MMP pairs tested in cells of prostate and breast cancers. Cells of various cancers differed widely and sequence-specifically in the identity of their signaling pathways, so that almost 90% of the pathways were different in cells from one cancer to another. In each of 18 out of 51 signaling pathways, a known suppressor of cancer progression stimulated, rather than inhibited, the expression of a cancer-promoting MMP. Ten signaling pathways were upregulatory in cells of some cancers and downregulatory in cells of other cancers.
Collapse
Affiliation(s)
- Gregory S Delassus
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1004, USA
| | | | | | | |
Collapse
|
34
|
Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. Eur J Pharmacol 2010; 627:8-15. [DOI: 10.1016/j.ejphar.2009.09.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
|
35
|
Clinical significance and prognostic value of S100A4 and matrix metalloproteinase-14 in patients with organ-confined bladder cancer. Exp Ther Med 2010; 1:27-31. [PMID: 23136588 DOI: 10.3892/etm_00000005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/29/2009] [Indexed: 02/03/2023] Open
Abstract
Various therapeutic modalities are available for treatment of bladder cancer, and their effectiveness and patient outcome often depend on cancer cell invasiveness. However, the mechanisms underlying the early steps of bladder cancer cell invasion remain unknown. This study aimed to clarify the relationships between S100A4 expression and bladder cancer invasion of surrounding muscles, prognosis and expression of matrix metalloproteinase (MMP)-14 in patients with organ-confined bladder cancer. S100A4 and MMP-14 expression was analyzed in 85 cases of organ-confined (pTa, pT1 and pT2) bladder cancer using immunohistochemical technique. The expression levels were compared among the pTa, pT1 and pT2 tumors. In addition, the predictive values of S100A4 or MMP-14 expression for muscle invasion, metastasis and survival were investigated, as was the possible correlation between the expression of the two proteins. The proportion of S100A4-positive cancer cells in pT2 tumors (53%) was significantly higher (p<0.001) than in pTa (38.7%) or pT1 (40.9%) tumors; there was no difference between pTa and pT1. The results were similar for MMP-14 expression, which was significantly correlated with S100A4 expression (r=0.360, p<0.001). S100A4 expression predicted metastasis-free survival (p=0.009), but not cause-specific survival. The results implicated S100A4 in the early steps of muscle invasion via MMP-14, but not for mucosal invasion. S100A4 is therefore a potential therapeutic target for bladder cancer, and its expression is a risk factor for muscle invasion in patients with superficial tumors. In addition, S100A4 expression may be a useful prognostic factor for metastasis in patients with organ-confined bladder cancer.
Collapse
|
36
|
Morrison CJ, Butler GS, Rodríguez D, Overall CM. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 2009; 21:645-53. [PMID: 19616423 DOI: 10.1016/j.ceb.2009.06.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
Abstract
Proteomics encompasses powerful techniques termed 'degradomics' for unbiased high-throughput protease substrate discovery screens that have been applied to an important family of extracellular proteases, the matrix metalloproteinases (MMPs). Together with the data generated from genetic deletion and transgenic mouse models and genomic profiling, these screens can uncover the diverse range of MMP functions, reveal which MMPs and MMP-mediated pathways exacerbate pathology, and which are involved in protection and the resolution of disease. This information can be used to identify and validate candidate drug targets and antitargets, and is critical for the development of new inhibitors of MMP function. Such inhibitors may target either the MMP directly in a specific manner or pathways upstream and downstream of MMP activity that are mediating deleterious effects in disease. Since MMPs do not operate alone but are part of the 'protease web', it is necessary to use system-wide approaches to understand MMP proteolysis in vivo, to discover new biological roles and their potential for therapeutic modification.
Collapse
Affiliation(s)
- Charlotte J Morrison
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
37
|
Gao R, Wang J, Shen Y, Lei M, Wang Z. Functional expression of voltage-gated sodium channels Nav1.5 in human breast caner cell line MDA-MB-231. ACTA ACUST UNITED AC 2009; 29:64-7. [DOI: 10.1007/s11596-009-0113-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Indexed: 01/26/2023]
|
38
|
Sun Y, Lu N, Ling Y, Gao Y, Chen Y, Wang L, Hu R, Qi Q, Liu W, Yang Y, You Q, Guo Q. Oroxylin A suppresses invasion through down-regulating the expression of matrix metalloproteinase-2/9 in MDA-MB-435 human breast cancer cells. Eur J Pharmacol 2009; 603:22-8. [DOI: 10.1016/j.ejphar.2008.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/18/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|