1
|
Heng E, Thanedar S, Heng HH. The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research. Methods Mol Biol 2024; 2825:79-111. [PMID: 38913304 DOI: 10.1007/978-1-0716-3946-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, Stanford, CA, USA
| | - Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Ye JC, Heng HH. The New Era of Cancer Cytogenetics and Cytogenomics. Methods Mol Biol 2024; 2825:3-37. [PMID: 38913301 DOI: 10.1007/978-1-0716-3946-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The promises of the cancer genome sequencing project, combined with various -omics technologies, have raised questions about the importance of cancer cytogenetic analyses. It is suggested that DNA sequencing provides high resolution, speed, and automation, potentially replacing cytogenetic testing. We disagree with this reductionist prediction. On the contrary, various sequencing projects have unexpectedly challenged gene theory and highlighted the importance of the genome or karyotype in organizing gene network interactions. Consequently, profiling the karyotype can be more meaningful than solely profiling gene mutations, especially in cancer where karyotype alterations mediate cellular macroevolution dominance. In this chapter, recent studies that illustrate the ultimate importance of karyotype in cancer genomics and evolution are briefly reviewed. In particular, the long-ignored non-clonal chromosome aberrations or NCCAs are linked to genome or chromosome instability, genome chaos is linked to genome reorganization under cellular crisis, and the two-phased cancer evolution reconciles the relationship between genome alteration-mediated punctuated macroevolution and gene mutation-mediated stepwise microevolution. By further synthesizing, the concept of karyotype coding is discussed in the context of information management. Altogether, we call for a new era of cancer cytogenetics and cytogenomics, where an array of technical frontiers can be explored further, which is crucial for both basic research and clinical implications in the cancer field.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel) 2023; 14:493. [PMID: 36833419 PMCID: PMC9956237 DOI: 10.3390/genes14020493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The powerful utilities of current DNA sequencing technology question the value of developing clinical cytogenetics any further. By briefly reviewing the historical and current challenges of cytogenetics, the new conceptual and technological platform of the 21st century clinical cytogenetics is presented. Particularly, the genome architecture theory (GAT) has been used as a new framework to emphasize the importance of clinical cytogenetics in the genomic era, as karyotype dynamics play a central role in information-based genomics and genome-based macroevolution. Furthermore, many diseases can be linked to elevated levels of genomic variations within a given environment. With karyotype coding in mind, new opportunities for clinical cytogenetics are discussed to integrate genomics back into cytogenetics, as karyotypic context represents a new type of genomic information that organizes gene interactions. The proposed research frontiers include: 1. focusing on karyotypic heterogeneity (e.g., classifying non-clonal chromosome aberrations (NCCAs), studying mosaicism, heteromorphism, and nuclear architecture alteration-mediated diseases), 2. monitoring the process of somatic evolution by characterizing genome instability and illustrating the relationship between stress, karyotype dynamics, and diseases, and 3. developing methods to integrate genomic data and cytogenomics. We hope that these perspectives can trigger further discussion beyond traditional chromosomal analyses. Future clinical cytogenetics should profile chromosome instability-mediated somatic evolution, as well as the degree of non-clonal chromosomal aberrations that monitor the genomic system's stress response. Using this platform, many common and complex disease conditions, including the aging process, can be effectively and tangibly monitored for health benefits.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sanjana Thanedar
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Henry H. Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Heng J, Heng HH. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel) 2021; 13:genes13010101. [PMID: 35052441 PMCID: PMC8774498 DOI: 10.3390/genes13010101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 16 Divinity Ave, Cambridge, MA 02138, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
6
|
Heng J, Heng HH. Two-phased evolution: Genome chaos-mediated information creation and maintenance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:29-42. [PMID: 33992670 DOI: 10.1016/j.pbiomolbio.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Cancer is traditionally labeled a "cellular growth problem." However, it is fundamentally an issue of macroevolution where new systems emerge from tissue by breaking various constraints. To study this process, we used experimental platforms to "watch evolution in action" by comparing the profiles of karyotypes, transcriptomes, and cellular phenotypes longitudinally before, during, and after key phase transitions. This effort, alongside critical rethinking of current gene-based genomic and evolutionary theory, led to the development of the Genome Architecture Theory. Following a brief historical review, we present four case studies and their takeaways to describe the pattern of genome-based cancer evolution. Our discoveries include 1. The importance of non-clonal chromosome aberrations or NCCAs; 2. Two-phased cancer evolution, comprising a punctuated phase and a gradual phase, dominated by karyotype changes and gene mutation/epigenetic alterations, respectively; 3. How the karyotype codes system inheritance, which organizes gene interactions and provides the genomic basis for physiological regulatory networks; and 4. Stress-induced genome chaos, which creates genomic information by reorganizing chromosomes for macroevolution. Together, these case studies redefine the relationship between cellular macro- and microevolution: macroevolution does not equal microevolution + time. Furthermore, we incorporate genome chaos and gene mutation in a general model: genome reorganization creates new karyotype coding, then diverse cancer gene mutations can promote the dominance of tumor cell populations. Finally, we call for validation of the Genome Architecture Theory of cancer and organismal evolution, as well as the systematic study of genomic information flow in evolutionary processes.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Danilenko M, Clifford SC, Schwalbe EC. Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma. Pharmacol Ther 2021; 228:107828. [PMID: 33662447 DOI: 10.1016/j.pharmthera.2021.107828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant CNS tumor of childhood, affecting ~350 patients/year in the USA. In 2020, most children are cured of their disease, however, survivors are left with life-long late-effects as a consequence of intensive surgery, and application of chemo- and radio-therapy to the developing brain. A major contributor to improvements in patient survival has been the development of risk-stratified treatments derived from a better understanding of the prognostic value of disease biomarkers. The characterization and validation of these biomarkers has engendered a comprehensive understanding of the extensive heterogeneity that exists within the disease, which can occur both between and within tumors (inter- and intra-tumoral heterogeneity, respectively). In this review, we discuss inter-tumoral heterogeneity, describing the early characterization of clinical and histopathological disease heterogeneity, the more recent elucidation of molecular disease subgroups, and the potential for novel therapies based on specific molecular defects. We reflect on the limitations of current approaches when applied to a rare disease. We then review early investigations of intra-tumoral heterogeneity using FISH and immunohistochemical approaches, and focus on the application of next generation sequencing on bulk tumors to elucidate intra-tumoral heterogeneity. Finally, we critically appraise the applications of single-cell sequencing approaches and discuss their potential to drive next biological insights, and for routine clinical application.
Collapse
Affiliation(s)
- Marina Danilenko
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol Med 2020; 17:805-827. [PMID: 33299637 PMCID: PMC7721097 DOI: 10.20892/j.issn.2095-3941.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.
Collapse
Affiliation(s)
- Jiadong Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
9
|
Ye CJ, Sharpe Z, Heng HH. Origins and Consequences of Chromosomal Instability: From Cellular Adaptation to Genome Chaos-Mediated System Survival. Genes (Basel) 2020; 11:E1162. [PMID: 33008067 PMCID: PMC7601827 DOI: 10.3390/genes11101162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
When discussing chromosomal instability, most of the literature focuses on the characterization of individual molecular mechanisms. These studies search for genomic and environmental causes and consequences of chromosomal instability in cancer, aiming to identify key triggering factors useful to control chromosomal instability and apply this knowledge in the clinic. Since cancer is a phenomenon of new system emergence from normal tissue driven by somatic evolution, such studies should be done in the context of new genome system emergence during evolution. In this perspective, both the origin and key outcome of chromosomal instability are examined using the genome theory of cancer evolution. Specifically, chromosomal instability was linked to a spectrum of genomic and non-genomic variants, from epigenetic alterations to drastic genome chaos. These highly diverse factors were then unified by the evolutionary mechanism of cancer. Following identification of the hidden link between cellular adaptation (positive and essential) and its trade-off (unavoidable and negative) of chromosomal instability, why chromosomal instability is the main player in the macro-cellular evolution of cancer is briefly discussed. Finally, new research directions are suggested, including searching for a common mechanism of evolutionary phase transition, establishing chromosomal instability as an evolutionary biomarker, validating the new two-phase evolutionary model of cancer, and applying such a model to improve clinical outcomes and to understand the genome-defined mechanism of organismal evolution.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Ye CJ, Chen J, Liu G, Heng HH. Somatic Genomic Mosaicism in Multiple Myeloma. Front Genet 2020; 11:388. [PMID: 32391059 PMCID: PMC7189895 DOI: 10.3389/fgene.2020.00388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jason Chen
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Ye CJ, Sharpe Z, Alemara S, Mackenzie S, Liu G, Abdallah B, Horne S, Regan S, Heng HH. Micronuclei and Genome Chaos: Changing the System Inheritance. Genes (Basel) 2019; 10:genes10050366. [PMID: 31086101 PMCID: PMC6562739 DOI: 10.3390/genes10050366] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Micronuclei research has regained its popularity due to the realization that genome chaos, a rapid and massive genome re-organization under stress, represents a major common mechanism for punctuated cancer evolution. The molecular link between micronuclei and chromothripsis (one subtype of genome chaos which has a selection advantage due to the limited local scales of chromosome re-organization), has recently become a hot topic, especially since the link between micronuclei and immune activation has been identified. Many diverse molecular mechanisms have been illustrated to explain the causative relationship between micronuclei and genome chaos. However, the newly revealed complexity also causes confusion regarding the common mechanisms of micronuclei and their impact on genomic systems. To make sense of these diverse and even conflicting observations, the genome theory is applied in order to explain a stress mediated common mechanism of the generation of micronuclei and their contribution to somatic evolution by altering the original set of information and system inheritance in which cellular selection functions. To achieve this goal, a history and a current new trend of micronuclei research is briefly reviewed, followed by a review of arising key issues essential in advancing the field, including the re-classification of micronuclei and how to unify diverse molecular characterizations. The mechanistic understanding of micronuclei and their biological function is re-examined based on the genome theory. Specifically, such analyses propose that micronuclei represent an effective way in changing the system inheritance by altering the coding of chromosomes, which belongs to the common evolutionary mechanism of cellular adaptation and its trade-off. Further studies of the role of micronuclei in disease need to be focused on the behavior of the adaptive system rather than specific molecular mechanisms that generate micronuclei. This new model can clarify issues important to stress induced micronuclei and genome instability, the formation and maintenance of genomic information, and cellular evolution essential in many common and complex diseases such as cancer.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Stephanie Mackenzie
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Batoul Abdallah
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steve Horne
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Chin TF, Ibrahim K, Thirunavakarasu T, Azanan MS, Oh L, Lum SH, Yap TY, Ariffin H. Nonclonal Chromosomal Aberrations in Childhood Leukemia Survivors. Fetal Pediatr Pathol 2018; 37:243-253. [PMID: 30273079 DOI: 10.1080/15513815.2018.1492054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Survivors of childhood cancer are at risk of developing a second malignancy. One possible mechanism for neoplastic transformation of cells is through induction of persistent genomic instability. This study aims to seek evidence of chromosomal instability in long-term childhood leukemia survivors (CLS) in one of the largest pediatric academic oncology centers in South East Asia. METHODS 50 asymptomatic (subjects have remained leukemia-free since treatment cessation) CLS and 50 healthy controls were recruited in this cross-sectional study. Of 50 CLS, 44 had acute lymphoblastic leukemia and 6 had acute myeloid leukemia. G-banded karyotyping was performed on unstimulated peripheral blood leukocytes of all subjects. RESULTS CLS had significantly higher occurrence of karyotypic abnormalities compared to controls. Five CLS harbored six nonclonal abnormalities (mostly aneuploidy) while none were found in controls. CONCLUSION Subpopulations with nonclonal chromosomal aberrations were present in peripheral blood leukocytes of our cohort of childhood leukemia long-term survivors.
Collapse
Affiliation(s)
- Tong Foh Chin
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Paediatrics , University of Malaya Medical Centre , Kuala Lumpur , Malaysia
| | - Kamariah Ibrahim
- c Department of Biomedical Science, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Tharshanadevasheri Thirunavakarasu
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Paediatrics , University of Malaya Medical Centre , Kuala Lumpur , Malaysia
| | - Mohamad Shafiq Azanan
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Paediatrics , University of Malaya Medical Centre , Kuala Lumpur , Malaysia
| | - Lixian Oh
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Paediatrics , University of Malaya Medical Centre , Kuala Lumpur , Malaysia
| | - Su Han Lum
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Tsiao Yi Yap
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Hany Ariffin
- a Department of Paediatrics, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Paediatrics , University of Malaya Medical Centre , Kuala Lumpur , Malaysia
| |
Collapse
|
13
|
Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 2018; 11:31. [PMID: 29760781 PMCID: PMC5946397 DOI: 10.1186/s13039-018-0376-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. RESULTS Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. CONCLUSION Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
14
|
Heng HH, Horne SD, Chaudhry S, Regan SM, Liu G, Abdallah BY, Ye CJ. A Postgenomic Perspective on Molecular Cytogenetics. Curr Genomics 2018; 19:227-239. [PMID: 29606910 PMCID: PMC5850511 DOI: 10.2174/1389202918666170717145716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The postgenomic era is featured by massive data collection and analyses from various large scale-omics studies. Despite the promising capability of systems biology and bioinformatics to handle large data sets, data interpretation, especially the translation of -omics data into clinical implications, has been challenging. DISCUSSION In this perspective, some important conceptual and technological limitations of current systems biology are discussed in the context of the ultimate importance of the genome beyond the collection of all genes. Following a brief summary of the contributions of molecular cytogenetics/cytogenomics in the pre- and post-genomic eras, new challenges for postgenomic research are discussed. Such discussion leads to a call to search for a new conceptual framework and holistic methodologies. CONCLUSION Throughout this synthesis, the genome theory of somatic cell evolution is highlighted in contrast to gene theory, which ignores the karyotype-mediated higher level of genetic information. Since "system inheritance" is defined by the genome context (gene content and genomic topology) while "parts inheritance" is defined by genes/epigenes, molecular cytogenetics and cytogenomics (which directly study genome structure, function, alteration and evolution) will play important roles in this postgenomic era.
Collapse
Affiliation(s)
- Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven D. Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sarah M. Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Batoul Y. Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine J. Ye
- The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Vazquez-Martin A, Anatskaya OV, Giuliani A, Erenpreisa J, Huang S, Salmina K, Inashkina I, Huna A, Nikolsky NN, Vinogradov AE. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature. Oncotarget 2018; 7:75235-75260. [PMID: 27655693 PMCID: PMC5342737 DOI: 10.18632/oncotarget.12118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 12/30/2022] Open
Abstract
The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer.
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, St-Petersburg, Russian Federation, Russia
| | | | | | - Sui Huang
- Systems Biology Institute, Seattle, USA
| | | | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Anda Huna
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | |
Collapse
|
16
|
Abstract
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
17
|
Stepanenko AA, Heng HH. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:91-103. [DOI: 10.1016/j.mrrev.2017.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/15/2022]
|
18
|
New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response. Genes (Basel) 2017; 8:genes8060155. [PMID: 28587191 PMCID: PMC5485519 DOI: 10.3390/genes8060155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers.
Collapse
|
19
|
Matijasevic Z, Krzywicka-Racka A, Sluder G, Gallant J, Jones SN. The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells. Oncogenesis 2016; 5:e262. [PMID: 27694836 PMCID: PMC5117848 DOI: 10.1038/oncsis.2016.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity.
Collapse
Affiliation(s)
- Z Matijasevic
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Krzywicka-Racka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - G Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - S N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
20
|
Heng HHQ, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 2016; 9:15. [PMID: 26877768 PMCID: PMC4752783 DOI: 10.1186/s13039-016-0223-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Current cytogenetics has largely focused its efforts on the identification of recurrent karyotypic alterations, also known as clonal chromosomal aberrations (CCAs). The rationale of doing so seems simple: recurrent genetic changes are relevant for diseases or specific physiological conditions, while non clonal chromosome aberrations (NCCAs) are insignificant genetic background or noise. However, in reality, the vast majority of chromosomal alterations are NCCAs, and it is challenging to identify commonly shared CCAs in most solid tumors. Furthermore, the karyotype, rather than genes, represents the system inheritance, or blueprint, and each NCCA represents an altered genome system. These realizations underscore the importance of the re-evaluation of NCCAs in cytogenetic analyses. In this concept article, we briefly review the definition of NCCAs, some historical misconceptions about them, and why NCCAs are not insignificant "noise," but rather a highly significant feature of the cellular population for providing genome heterogeneity and complexity, representing one important form of fuzzy inheritance. The frequencies of NCCAs also represent an index to measure both internally- and environmentally-induced genome instability. Additionally, the NCCA/CCA cycle is associated with macro- and micro-cellular evolution. Lastly, elevated NCCAs are observed in many disease/illness conditions. Considering all of these factors, we call for the immediate action of studying and reporting NCCAs. Specifically, effort is needed to characterize and compare different types of NCCAs, to define their baseline in various tissues, to develop methods to access mitotic cells, to re-examine/interpret the NCCAs data, and to develop an NCCA database.
Collapse
Affiliation(s)
- Henry H. Q. Heng
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Department of Pathology, Wayne State University School of Medicine, 3226 Scott Hall, 540 E. Canfield, Detroit, MI 48201 USA
| | - Sarah M. Regan
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118 USA
| | - Guo Liu
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Christine J. Ye
- />The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| |
Collapse
|
21
|
Intratumor molecular heterogeneity in pleomorphic adenoma of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121:158-63. [DOI: 10.1016/j.oooo.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
|
22
|
Dayal JHS, Albergante L, Newman TJ, South AP. Quantitation of multiclonality in control and drug-treated tumour populations using high-throughput analysis of karyotypic heterogeneity. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2015. [DOI: 10.1088/2057-1739/1/2/025001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Sheats J, Reifenberger JG, Cao H, Dorfman KD. Measurements of DNA barcode label separations in nanochannels from time-series data. BIOMICROFLUIDICS 2015; 9:064119. [PMID: 26759636 PMCID: PMC4698118 DOI: 10.1063/1.4938732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/14/2015] [Indexed: 05/12/2023]
Abstract
We analyzed time-series data for fluctuations of intramolecular segments of barcoded E. coli genomic DNA molecules confined in nanochannels with sizes near the persistence length of DNA. These dynamic data allowed us to measure the probability distribution governing the distance between labels on the DNA backbone, which is a key input into the alignment methods used for genome mapping in nanochannels. Importantly, this dynamic method does not require alignment of the barcode to the reference genome, thereby removing a source of potential systematic error in a previous study of this type. The results thus obtained support previous evidence for a left-skewed probability density for the distance between labels, albeit at a lower magnitude of skewness. We further show that the majority of large fluctuations between labels are short-lived events, which sheds further light upon the success of the linearized DNA genome mapping technique. This time-resolved data analysis will improve existing genome map alignment algorithms, and the overall idea of using dynamic data could potentially improve the accuracy of genome mapping, especially for complex heterogeneous samples such as cancer cells.
Collapse
Affiliation(s)
- Julian Sheats
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | | | - Han Cao
- BioNano Genomics , 9640 Towne Centre Drive Ste. 100, San Diego, California 92121, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
24
|
Collins DJ, Neild A, deMello A, Liu AQ, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. LAB ON A CHIP 2015; 15:3439-59. [PMID: 26226550 DOI: 10.1039/c5lc00614g] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.
Collapse
Affiliation(s)
- David J Collins
- Engineering Product Design pillar, Singapore University of Technology and Design, Singapore.
| | | | | | | | | |
Collapse
|
25
|
Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity. Mol Aspects Med 2015; 45:3-13. [PMID: 26024970 DOI: 10.1016/j.mam.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.
Collapse
|
26
|
Li Y, Sun B, Zhao X, Zhang D, Wang X, Zhu D, Yang Z, Qiu Z, Ban X. Subpopulations of uPAR+ contribute to vasculogenic mimicry and metastasis in large cell lung cancer. Exp Mol Pathol 2015; 98:136-44. [PMID: 25661888 DOI: 10.1016/j.yexmp.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/03/2015] [Indexed: 01/29/2023]
Abstract
The urokinase plasminogen activator receptor (uPAR) is closely associated with poor prognosis in various aggressive cancers including large-cell lung cancer (LCLC). Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks involving the blood supply in early tumor formation. We demonstrate the statistically positive correlation of uPAR expression with VM formation, metastasis, and poor prognosis of LCLC patients. uPAR(+) cells sorted from the LCLC H460 cell line show higher invasion, migration capacity, and tube structure formation capability on Matrigel compared with uPAR(-) cells. uPAR(+) tumor cells highly expressed vimentin and VE-cadherin; the epithelial marker E-cadherin was low expressed. Higher EMT-regulated protein twist and snail expressions were also observed in these cells. uPAR(+) cells injected subcutaneously into nude mice markedly increased tumor growth, induced VM formation and liver metastasis; by contrast, uPAR(-) cells did not. The data suggest that uPAR expression may predict VM formation, tumor metastasis and poorer prognosis of LCLC patients. The uPAR gene may be used as a novel therapeutic target for inhibiting angiogenesis and metastasis in LCLC.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xudong Wang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhihong Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Zhiqiang Qiu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Xinchao Ban
- Department of Pathology, Tianjin Hospital, Tianjin, China.
| |
Collapse
|
27
|
Stepanenko A, Andreieva S, Korets K, Mykytenko D, Huleyuk N, Vassetzky Y, Kavsan V. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res 2015; 771:56-69. [PMID: 25771981 DOI: 10.1016/j.mrfmmm.2014.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1_CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa_CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293_pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293_CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293_CHI3L1 and HeLa_CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by genome context. Temozolomide treatment of 293_pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa_CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations.
Collapse
Affiliation(s)
- Aleksei Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.
| | - Svitlana Andreieva
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Kateryna Korets
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Dmytro Mykytenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008, Ukraine
| | - Yegor Vassetzky
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805, France
| | - Vadym Kavsan
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| |
Collapse
|
28
|
Piccirillo SGM, Spiteri I, Sottoriva A, Touloumis A, Ber S, Price SJ, Heywood R, Francis NJ, Howarth KD, Collins VP, Venkitaraman AR, Curtis C, Marioni JC, Tavaré S, Watts C. Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone. Cancer Res 2015; 75:194-202. [PMID: 25406193 PMCID: PMC4286248 DOI: 10.1158/0008-5472.can-13-3131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma, the most common and aggressive adult brain tumor, is characterized by extreme phenotypic diversity and treatment failure. Through fluorescence-guided resection, we identified fluorescent tissue in the sub-ependymal zone (SEZ) of patients with glioblastoma. Histologic analysis and genomic characterization revealed that the SEZ harbors malignant cells with tumor-initiating capacity, analogous to cells isolated from the fluorescent tumor mass (T). We observed resistance to supramaximal chemotherapy doses along with differential patterns of drug response between T and SEZ in the same tumor. Our results reveal novel insights into glioblastoma growth dynamics, with implications for understanding and limiting treatment resistance.
Collapse
Affiliation(s)
- Sara GM Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Inmaculada Spiteri
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Andrea Sottoriva
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anestis Touloumis
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Suzan Ber
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stephen J Price
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Richard Heywood
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nicola-Jane Francis
- Department of Oncology and the Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, UK
| | - Karen D Howarth
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vincent P Collins
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ashok R Venkitaraman
- Department of Oncology and the Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, UK
| | - Christina Curtis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John C Marioni
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Colin Watts
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
29
|
Abstract
Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
Collapse
Affiliation(s)
- Larissa Pikor
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, Canada, V5Z 1L3,
| | | | | | | |
Collapse
|
30
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs.
Collapse
Affiliation(s)
- Marco Gerlinger
- Cancer Research UK London Research Institute, London, United Kingdom WC2A 3LY;
| | | | | | | | | | | |
Collapse
|
32
|
Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2014; 136:2012-21. [PMID: 24957955 DOI: 10.1002/ijc.29031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumulation drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of cancer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on individual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original estimation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowledge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be summarized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers, including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolutionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of cancer.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|
33
|
Horne SD, Chowdhury SK, Heng HHQ. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet 2014; 5:92. [PMID: 24795754 PMCID: PMC4005935 DOI: 10.3389/fgene.2014.00092] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/03/2014] [Indexed: 12/27/2022] Open
Abstract
Cells are constantly exposed to various internal and external stresses. The importance of cellular stress and its implication to disease conditions have become popular research topics. Many ongoing investigations focus on the sources of stress, their specific molecular mechanisms and interactions, especially regarding their contributions to many common and complex diseases through defined molecular pathways. Numerous molecular mechanisms have been linked to endoplasmic reticulum stress along with many unexpected findings, drastically increasing the complexity of our molecular understanding and challenging how to apply individual mechanism-based knowledge in the clinic. A newly emergent genome theory searches for the synthesis of a general evolutionary mechanism that unifies different types of stress and functional relationships from a genome-defined system point of view. Herein, we discuss the evolutionary relationship between stress and somatic cell adaptation under physiological, pathological, and somatic cell survival conditions, the multiple meanings to achieve adaptation and its potential trade-off. In particular, we purposely defocus from specific stresses and mechanisms by redirecting attention toward studying underlying general mechanisms.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University Detroit, MI, USA
| | | | - Henry H Q Heng
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University Detroit, MI, USA ; Department of Pathology, School of Medicine, Wayne State University Detroit, MI, USA
| |
Collapse
|
34
|
Stevens JB, Liu G, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Ye CJ, Krawetz SA, Heng HH. Unstable genomes elevate transcriptome dynamics. Int J Cancer 2014; 134:2074-87. [PMID: 24122714 DOI: 10.1002/ijc.28531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023]
Abstract
The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities.
Collapse
|
35
|
Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, Ye CJ, Chen DJ, Heng HH. Genome chaos: survival strategy during crisis. Cell Cycle 2013; 13:528-37. [PMID: 24299711 DOI: 10.4161/cc.27378] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Collapse
Affiliation(s)
- Guo Liu
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Joshua B Stevens
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Steven D Horne
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | - Steven W Bremer
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Christine J Ye
- Department of Hematology Oncology; Karmanos Cancer Institute; Detroit, MI USA
| | - David J Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology; The University of Texas Southwestern Medical Center; Dallas TX USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA; Department of Pathology; Wayne State University School of Medicine; Detroit, MI USA
| |
Collapse
|
36
|
Murugaesu N, Chew SK, Swanton C. Adapting clinical paradigms to the challenges of cancer clonal evolution. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1962-71. [PMID: 23708210 DOI: 10.1016/j.ajpath.2013.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Emerging evidence suggests that cancer branched evolution may affect biomarker validation, clinical outcome, and emergence of drug resistance. The changing spatial and temporal nature of cancer subclonal architecture during the disease course suggests the need for longitudinal prospective studies of cancer evolution and robust and clinically implementable pathologic definitions of intratumor heterogeneity, genetic diversity, and chromosomal instability. Furthermore, subclonal heterogeneous events in tumors may evade detection through conventional biomarker strategies and influence clinical outcome. Minimally invasive methods for the study of cancer evolution and new approaches to clinical study design, incorporating understanding of the dynamics of tumor clonal architectures through treatment and during acquisition of drug resistance, have been suggested as important areas for development. Coordinated efforts will be required by the scientific and clinical trial communities to adapt to the challenges of detecting infrequently occurring somatic events that may influence clinical outcome and to understand the dynamics of cancer evolution and the waxing and waning of tumor subclones over time in advanced metastatic epithelial malignancies.
Collapse
Affiliation(s)
- Nirupa Murugaesu
- University College London Cancer Institute, London, United Kingdom
| | | | | |
Collapse
|
37
|
Abdallah BY, Horne SD, Kurkinen M, Stevens JB, Liu G, Ye CJ, Barbat J, Bremer SW, Heng HHQ. Ovarian cancer evolution through stochastic genome alterations: defining the genomic role in ovarian cancer. Syst Biol Reprod Med 2013; 60:2-13. [PMID: 24147962 DOI: 10.3109/19396368.2013.837989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the fifth leading cause of death among women worldwide. Characterized by complex etiology and multi-level heterogeneity, its origins are not well understood. Intense research efforts over the last decade have furthered our knowledge by identifying multiple risk factors that are associated with the disease. However, it is still unclear how genetic heterogeneity contributes to tumor formation, and more specifically, how genome-level heterogeneity acts as the key driving force of cancer evolution. Most current genomic approaches are based on 'average molecular profiling.' While effective for data generation, they often fail to effectively address the issue of high level heterogeneity because they mask variation that exists in a cell population. In this synthesis, we hypothesize that genome-mediated cancer evolution can effectively explain diverse factors that contribute to ovarian cancer. In particular, the key contribution of genome replacement can be observed during major transitions of ovarian cancer evolution including cellular immortalization, transformation, and malignancy. First, we briefly review major updates in the literature, and illustrate how current gene-mediated research will offer limited insight into cellular heterogeneity and ovarian cancer evolution. We next explain a holistic framework for genome-based ovarian cancer evolution and apply it to understand the genomic dynamics of a syngeneic ovarian cancer mouse model. Finally, we employ single cell assays to further test our hypothesis, discuss some predictions, and report some recent findings.
Collapse
|
38
|
Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, Krawetz SA, Gorelick R, Heng HH. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013; 12:3640-9. [PMID: 24091732 DOI: 10.4161/cc.26580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since "outliers" play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the "average" cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.
Collapse
Affiliation(s)
- Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Heng HHQ, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Chowdhury SK, Ye CJ. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 2013; 139:144-57. [PMID: 23571381 DOI: 10.1159/000348682] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a departure from traditional gene-centric thinking with regard to cytogenetics and cytogenomics, the recently introduced genome theory calls upon a re-focusing of our attention on karyotype analyses of disease conditions. Karyotype heterogeneity has been demonstrated to be directly involved in the somatic cell evolution process which is the basis of many common and complex diseases such as cancer. To correctly use karyotype heterogeneity and apply it to monitor system instability, we need to include many seemingly unimportant non-specific chromosomal aberrations into our analysis. Traditionally, cytogenetic analysis has been focused on identifying recurrent types of abnormalities, particularly those that have been linked to specific diseases. In this perspective, drawing on the new framework of 4D-genomics, we will briefly review the importance of studying karyotype heterogeneity. We have also listed a number of overlooked chromosomal aberrations including defective mitotic figures, chromosome fragmentation as well as genome chaos. Finally, we call for the systematic discovery/characterization and classification of karyotype abnormalities in human diseases, as karyotype heterogeneity is the common factor that is essential for somatic cell evolution.
Collapse
Affiliation(s)
- H H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Mich. 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jaiswal AS, Panda H, Pampo CA, Siemann DW, Gairola CG, Hromas R, Narayan S. Adenomatous polyposis coli-mediated accumulation of abasic DNA lesions lead to cigarette smoke condensate-induced neoplastic transformation of normal breast epithelial cells. Neoplasia 2013; 15:454-60. [PMID: 23555190 PMCID: PMC3612917 DOI: 10.1593/neo.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022]
Abstract
Adenomatous polyposis coli (APC) is a multifunctional protein having diverse cellular functions including cell migration, cell-cell adhesion, cell cycle control, chromosomal segregation, and apoptosis. Recently, we found a new role of APC in base excision repair (BER) and showed that it interacts with DNA polymerase β and 5'-flap endonuclease 1 and interferes in BER. Previously, we have also reported that cigarette smoke condensate (CSC) increases expression of APC and enhances the growth of normal human breast epithelial (MCF10A) cells in vitro. In the present study, using APC overexpression and knockdown systems, we have examined the molecular mechanisms by which CSC and its major component, Benzo[α]pyrene, enhances APC-mediated accumulation of abasic DNA lesions, which is cytotoxic and mutagenic in nature, leading to enhanced neoplastic transformation of MCF10A cells in an orthotopic xenograft model.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
- Department of Medicine, University of Florida, Gainesville, FL
| | - Harekrushna Panda
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
| | - Christine A Pampo
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| | - C Gary Gairola
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY
| | - Robert Hromas
- Department of Medicine, University of Florida, Gainesville, FL
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
| |
Collapse
|
42
|
Watching the grin fade: tracing the effects of polyploidy on different evolutionary time scales. Semin Cell Dev Biol 2013; 24:320-31. [PMID: 23466286 DOI: 10.1016/j.semcdb.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Polyploidy, or whole-genome duplication (WGD), is a recurrent mutation both in cell lineages and over evolutionary time. By globally changing the relationship between gene copy number and other cellular entities, it can induce dramatic changes at the cellular and phenotypic level. Perhaps surprisingly, then, the insights that these events can bring to understanding other cellular features are not as well appreciated as they could be. In this review, we draw on examples of polyploidy from animals, plants and yeast to explore how investigations of polyploid cells have improved our understanding of the cell cycle, biological network complexity, metabolic phenotypes and tumor biology. We argue that the study of polyploidy across organisms, cell types, and time scales serves not only as a window into basic cell biology, but also as a basis for a predictive biology with applications ranging from crop improvement to treating cancer.
Collapse
|
43
|
Horne SD, Abdallah BY, Stevens JB, Liu G, Ye KJ, Bremer SW, Heng HH. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Syst Biol Reprod Med 2013; 59:124-30. [DOI: 10.3109/19396368.2012.754969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
|
45
|
Horne SD, Stevens JB, Abdallah BY, Liu G, Bremer SW, Ye CJ, Heng HH. Why imatinib remains an exception of cancer research. J Cell Physiol 2012; 228:665-70. [DOI: 10.1002/jcp.24233] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/27/2012] [Indexed: 12/26/2022]
|
46
|
Casalà C, Gil-Guiñón E, Ordóñez JL, Miguel-Queralt S, Rodríguez E, Galván P, Lavarino C, Munell F, de Alava E, Mora J, de Torres C. The calcium-sensing receptor is silenced by genetic and epigenetic mechanisms in unfavorable neuroblastomas and its reactivation induces ERK1/2-dependent apoptosis. Carcinogenesis 2012; 34:268-76. [PMID: 23108190 DOI: 10.1093/carcin/bgs338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastic tumors (NTs) include the neuroblastomas, ganglioneuroblastomas and ganglioneuromas. We have reported previously that the calcium-sensing receptor is expressed in differentiated, favorable NTs but almost undetectable in unfavorable neuroblastomas. We have now detected hypermethylation of a particular region within the CpG island encompassing the CaSR gene promoter 2 in neuroblastoma cell lines and 25% primary neuroblastomas. Hypermethylation of this region was associated with reduced CaSR messenger RNA expression and several predictors of poor outcome in neuroblastomas, including MYCN amplification. Treatment with 5'aza-2-deoxycitidine and/or trichostatin A restored CaSR expression in MYCN-amplified cell lines. Following 5'aza-2-deoxycitidine exposure, decreased percentages of methylated CpG sites were observed at the above-mentioned region. By interphase fluorescence in situ hybridization, variable percentages of nuclei with monosomy of chromosome 3, where the human CaSR gene resides, were observed in more than 90% of primary NTs of all subgroups. Nuclei harboring this alteration were heterogeneously distributed among tumor cells. Ectopic overexpression of the calcium-sensing receptor in two MYCN-amplified neuroblastoma cell lines in which this gene is silenced by promoter hypermethylation significantly reduced their in vitro proliferation rates and almost abolished their capacity to generate xenografts in immunocompromised mice. Finally, upon acute exposure to calcium, the primary activator of this receptor, calcium-sensing receptor-overexpressing neuroblastoma cells underwent apoptosis, a process dependent on sustained activation of ERK1/2. These data would support the hypothesis that epigenetic silencing of the CaSR gene is neither an in vitro artefact in neuroblastoma cell lines nor an irrelevant, secondary event in primary NTs, but a significant mechanism for neuroblastoma survival.
Collapse
Affiliation(s)
- Carla Casalà
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Huang S. Tumor progression: Chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:69-86. [DOI: 10.1016/j.pbiomolbio.2012.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 02/05/2023]
|
48
|
Guyader C, Céraline J, Gravier E, Morin A, Michel S, Erdmann E, de Pinieux G, Cabon F, Bergerat JP, Poupon MF, Oudard S. Risk of hormone escape in a human prostate cancer model depends on therapy modalities and can be reduced by tyrosine kinase inhibitors. PLoS One 2012; 7:e42252. [PMID: 22879924 PMCID: PMC3412862 DOI: 10.1371/journal.pone.0042252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022] Open
Abstract
Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape -frequency and delay- are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation treatment and the risk of recurrence using nude mice bearing the high grade, hormone-dependent human prostate cancer xenograft PAC120. Tumor-bearing mice were treated by Luteinizing-Hormone Releasing Hormone (LHRH) antagonist alone, continuous or intermittent regimen, or combined with androgen receptor (AR) antagonists (bicalutamide or flutamide). Tumor growth was monitored. Biological changes were studied as for genomic alterations, AR mutations and protein expression in a large series of recurrent tumors according to hormone therapy modalities. Therapies targeting Her-2 or AKT were tested in combination with castration. All statistical tests were two-sided. Tumor growth was inhibited by continuous administration of the LH-RH antagonist degarelix (castration), but 40% of tumors recurred. Intermittent castration or complete blockade induced by degarelix and antiandrogens combination, inhibited tumor growth but increased the risk of recurrence (RR) as compared to continuous castration (RRintermittent: 14.5, RRcomplete blockade: 6.5 and 1.35). All recurrent tumors displayed new quantitative genetic alterations and AR mutations, whatever the treatment modalities. AR amplification was found after complete blockade. Increased expression of Her-2/neu with frequent ERK/AKT activation was detected in all variants. Combination of castration with a Her-2/neu inhibitor decreased recurrence risk (0.17) and combination with an mTOR inhibitor prevented it. Anti-hormone treatments influence risk of recurrence although tumor growth inhibition was initially similar. Recurrent tumors displayed genetic instability, AR mutations, and alterations of phosphorylation pathways. We postulated that Her-2/AKT pathways allowed salvage of tumor cells under castration and we demonstrated that their inhibition prevented tumor recurrence in our model.
Collapse
Affiliation(s)
| | - Jocelyn Céraline
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | - Eléonore Gravier
- Translational Research Department, Institut Curie, Paris, France
- Biostatistics Department, Institut Curie, Paris, France
- U900, INSERM, Paris, France
- Ecole des Mines de Paris, ParisTech, Fontainebleau, France
| | | | - Sandrine Michel
- Biomarker Research and Validation Department, BioMérieux, Marcy l’Etoile, France
| | - Eva Erdmann
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | | | | | - Jean-Pierre Bergerat
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | | | - Stéphane Oudard
- Medical Oncology, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris V René Descartes, Paris, France
- * E-mail:
| |
Collapse
|
49
|
Stepanenko AA, Kavsan VM. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. A. Stepanenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. M. Kavsan
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
50
|
Heng HHQ, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 2012; 112:217-53. [PMID: 21925306 DOI: 10.1016/b978-0-12-387688-1.00008-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recently introduced genome theory of cancer evolution provides a new framework for evolutionary studies on cancer. In particular, the established relationship between the large number of individual molecular mechanisms and the general evolutionary mechanism of cancer calls upon a change in our strategies that have been based on the characterization of common cancer gene mutations and their defined pathways. To further explain the significance of the genome theory of cancer evolution, a brief review will be presented describing the various attempts to illustrate the evolutionary mechanism of cancer, followed by further analysis of some key components of somatic cell evolution, including the diversity of biological systems, the multiple levels of information systems and control systems, the two phases (the punctuated or discontinuous phase and gradual Darwinian stepwise phase) and dynamic patterns of somatic cell evolution where genome replacement is the driving force. By linking various individual molecular mechanisms to the level of genome population diversity and tumorigenicity, the general mechanism of cancer has been identified as the evolutionary mechanism of cancer, which can be summarized by the following three steps including stress-induced genome instability, population diversity or heterogeneity, and genome-mediated macroevolution. Interestingly, the evolutionary mechanism is equal to the collective aggregate of all individual molecular mechanisms. This relationship explains why most of the known molecular mechanisms can contribute to cancer yet there is no single dominant mechanism for the majority of clinical cases. Despite the fact that each molecular mechanism can serve as a system stress and initiate the evolutionary process, to achieve cancer, multiple cycles of genome-mediated macroevolution are required and are a stochastically determined event. Finally, the potential clinical implications of the evolutionary mechanism of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, MI, USA
| | | | | | | | | | | |
Collapse
|