1
|
Gallo-Oller G, de Ståhl TD, Alaiya A, Nilsson S, Holmberg AR, Márquez-Méndez M. Cytotoxicity of poly-guanidine in medulloblastoma cell lines. Invest New Drugs 2023; 41:688-698. [PMID: 37556022 PMCID: PMC10560188 DOI: 10.1007/s10637-023-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor. The therapy frequently causes serious side effects, and new selective therapies are needed. MB expresses hyper sialylation, a possible target for selective therapy. The cytotoxic efficacy of a poly guanidine conjugate (GuaDex) incubated with medulloblastoma cell cultures (DAOY and MB-LU-181) was investigated. The cells were incubated with 0.05-8 µM GuaDex from 15 min to 72 h. A fluorometric cytotoxicity assay (FMCA) measured the cytotoxicity. Labeled GuaDex was used to study tumor cell interaction. FITC-label Sambucus nigra confirmed high expression of sialic acid (Sia). Immunofluorescence microscopy was used to visualize the cell F-actin and microtubules. The cell interactions were studied by confocal and fluorescence microscopy. Annexin-V assay was used to detect apoptosis. Cell cycle analysis was done by DNA content determination. A wound-healing migration assay determined the effects on the migratory ability of DAOY cells after GuaDex treatment. IC50 for GuaDex was 223.4 -281.1 nM. FMCA showed potent growth inhibition on DAOY and MB-LU-181 cells at 5 uM GuaDex after 4 h of incubation. GuaDex treatment induced G2/M phase cell cycle arrest. S. nigra FITC-label lectin confirmed high expression of Sia on DAOY medulloblastoma cells. The GuaDex treatment polymerized the cytoskeleton (actin filaments and microtubules) and bound to DNA, inducing condensation. The Annexin V assay results were negative. Cell migration was inhibited at 0.5 µM GuaDex concentration after 24 h of incubation. GuaDex showed potent cytotoxicity and invasion-inhibitory effects on medulloblastoma cells at low micromolar concentrations. GuaDex efficacy was significant and warrants further studies.
Collapse
Affiliation(s)
- Gabriel Gallo-Oller
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Ayodele Alaiya
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre Oncology Centre, Riyadh, Saudi Arabia
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders R Holmberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Márquez-Méndez
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Center for Research and Development in Health Sciences, Autonomous University of Nuevo León, Monterrey, N.L., Mexico.
| |
Collapse
|
2
|
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023; 108:423-431. [PMID: 37459849 DOI: 10.1159/000531319] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumour. Recently, there has been outstanding progress in the treatment of GBM. In addition to the newest form of GBM removal using fluorescence, three-dimensional (3D) imaging, tomoradiotherapy, moderate electro-hyperthermia, and adjuvant temozolomide (post-operative chemotherapy), new developments have been made in the fields of immunology, molecular biology, and virotherapy. An unusual and modern treatment has been created, especially for stage 4 GBM, using the latest therapeutic techniques, including immunotherapy and virotherapy. Modern oncological medicine is producing extraordinary and progressive therapeutic methods. Oncological therapy includes individual analysis of the properties of a tumour and targeted therapy using small-molecule inhibitors. Individualised medicine covers the entire patient (tumour and host) in the context of immunotherapy. An example is individualised multimodal immunotherapy (IMI), which relies on individual immunological tumour-host interactions. In addition, IMI is based on the concept of oncolytic virus-induced immunogenic tumour cell death. SUMMARY In this review, we outline current knowledge of the various available treatment options used in the therapy of GBM including both traditional therapeutic strategy and modern therapies, such as tomotherapy, electro-hyperthermia, and oncolytic virotherapy, which are promising treatment strategies with the potential to improve prognosis in patients with GBM. KEY MESSAGES This newest therapy, immunotherapy combined with virotherapy (oncolytic viruses and cancer vaccines), is displaying encouraging signs for combating GBM. Additionally, the latest 3D imaging is compared to conventional two-dimensional imaging.
Collapse
Affiliation(s)
- Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Borowska
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeremi Kościński
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Patryk Graczyk
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Hałas
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Vítovcová B, Skarková V, Havelek R, Soukup J, Pande A, Caltová K, Rudolf E. Flubendazole exhibits anti-glioblastoma effect by inhibiting STAT3 and promoting cell cycle arrest. Sci Rep 2023; 13:5993. [PMID: 37045903 PMCID: PMC10097688 DOI: 10.1038/s41598-023-33047-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells. FLU exerted its effect by affecting microtubule structure and our results also suggest that FLU influences tubulins expression to a certain degree. Moreover, FLU effects decreased activation of STAT3 and also partially inhibited its expression, leading to upregulation of p53 signaling pathway and subsequent cell cycle arrest at G2/M phase as well as caspase-dependent cell death in GBM cells. These results suggest FLU as a promising agent to be used in GBM treatment and prompting further testing of its effects on GBM.
Collapse
Affiliation(s)
- Barbora Vítovcová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic.
| | - Veronika Skarková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Jiří Soukup
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Ananya Pande
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Quantitative Evaluation of Stem-like Markers of Human Glioblastoma Using Single-Cell RNA Sequencing Datasets. Cancers (Basel) 2023; 15:cancers15051557. [PMID: 36900348 PMCID: PMC10001303 DOI: 10.3390/cancers15051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like markers lack validation and comparison with common standards regarding their efficiency and feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM patients, we obtained a large pool of 2173 GBM stem-like marker candidates. To evaluate and select these candidates quantitatively, we characterized the efficiency of the candidate markers in targeting the GBM stem-like cells by their frequencies and significance of being the stem-like cluster markers. This was followed by further selection based on either their differential expression in GBM stem-like cells compared with normal brain cells or their relative expression level compared with other expressed genes. The cellular location of the translated protein was also considered. Different combinations of selection criteria highlight different markers for different application scenarios. By comparing the commonly used GSCs marker CD133 (PROM1) with markers selected by our method regarding their universality, significance, and abundance, we revealed the limitations of CD133 as a GBM stem-like marker. Overall, we propose BCAN, PTPRZ1, SOX4, etc. for laboratory-based assays with samples free of normal cells. For in vivo targeting applications that require high efficiency in targeting the stem-like subtype, the ability to distinguish GSCs from normal brain cells, and a high expression level, we recommend the intracellular marker TUBB3 and the surface markers PTPRS and GPR56.
Collapse
|
5
|
Vaidya M, Sreerama S, Gonzalez-Vega M, Smith J, Field M, Sugaya K. Coculture with Neural Stem Cells May Shift the Transcription Profile of Glioblastoma Multiforme towards Cancer-Specific Stemness. Int J Mol Sci 2023; 24:ijms24043242. [PMID: 36834653 PMCID: PMC9962301 DOI: 10.3390/ijms24043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.e., NSCs modify cancer cells by conferring them with cancer-specific stemness, or NSCs themselves are transformed into CSCs due to the tumor environment created by cancer cells. To test the theories and to investigate the transcriptional regulation of the genes involved in CSC formation, we cocultured NSC and GBM cell lines together. Where genes related to cancer stemness, drug efflux, and DNA modification were upregulated in GBM, they were downregulated in NSCs upon coculture. These results indicate that cancer cells shift the transcriptional profile towards stemness and drug resistance in the presence of NSCs. Concurrently, GBM triggers NSCs differentiation. Because the cell lines were separated by a membrane (0.4 µm pore size) to prevent direct contact between GBM and NSCs, cell-secreted signaling molecules and extracellular vesicles (EVs) are likely involved in reciprocal communication between NSCs and GBM, causing transcription modification. Understanding the mechanism of CSC creation will aid in the identification of precise molecular targets within the CSCs to exterminate them, which, in turn, will increase the efficacy of chemo-radiation treatment.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Maxine Gonzalez-Vega
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
6
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
7
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Grube S, Freitag D, Kalff R, Ewald C, Walter J. Characterization of adherent primary cell lines from fresh human glioblastoma tissue, defining glial fibrillary acidic protein as a reliable marker in establishment of glioblastoma cell culture. Cancer Rep (Hoboken) 2020; 4:e1324. [PMID: 33251771 PMCID: PMC8451382 DOI: 10.1002/cnr2.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Primary adherent glioblastoma cell lines are an important tool in investigating cellular and molecular tumor biology, as well as treatment options for patients. AIM The phenotypical and immunocytochemical characterization of primary cell lines from glioblastoma specimens during establishment is of great importance, in order to reliably identify these cell lines as primary glioblastoma cell lines. METHODS AND RESULTS Sixteen primary adherent cell lines out of 34 glioblastoma samples (47%) were established and further characterized. For phenotypical characterization, morphology and growth characteristics of the cells were classified. The cell lines had a high growth rate with a doubling time of 2 to 14 days. Morphologically, the cells displayed spindle-form or polygonal to amorphous shapes and grow as monolayer or in foci without evidence of contact inhibition. The cells were able to migrate and to form colonies. For further characterization, the protein expression of the astrocyte-specific protein glial fibrillary acidic protein (GFAP), the glial marker S100B, the neuronal marker TUBB3, and malignancy marker VIM, as well as the progenitor markers NES and SOX2, the proliferation marker MKI67, and the fibroblast marker TE7 were determined. Based on the immunocytochemical validation criterion of a coexpression of GFAP and S100B, 15 out of these 16 cell lines (94%) were defined as primary glioblastoma cell lines (pGCL). All 15 pGCL expressed TUBB3 and VIM. NES and SOX2 were stained positively in 13/15 and 6/15 pGCL. MKI67 was expressed in 11/15 and TE7 in 2/15 pGCL. CONCLUSION These results point out that in self-established primary adherent glioblastoma cell lines, the expression of the specific astrocytic and glial markers GFAP and S100B and of the malignancy and progenitor markers VIM, NES, and SOX2 has to be validated. These data show that primary cell lines of glioblastoma origin with high malignant potential are reliably to establish using standardized validation criteria.
Collapse
Affiliation(s)
- Susanne Grube
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Rolf Kalff
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Brandenburg, Germany
| | - Jan Walter
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Clinical Center Saarbruecken GmbH, Saarbrücken, Germany
| |
Collapse
|
10
|
Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis 2020; 11:673. [PMID: 32826850 PMCID: PMC7442654 DOI: 10.1038/s41419-020-02800-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Diffuse intrinsic pontine gliomas (DIPG) are the most aggressive brain tumors in children with 5-year survival rates of only 2%. About 85% of all DIPG are characterized by a lysine-to-methionine substitution in histone 3, which leads to global H3K27 hypomethylation accompanied by H3K27 hyperacetylation. Hyperacetylation in DIPG favors the action of the Bromodomain and Extra-Terminal (BET) protein BRD4, and leads to the reprogramming of the enhancer landscape contributing to the activation of DIPG super enhancer-driven oncogenes. The activity of the acetyltransferase CREB-binding protein (CBP) is enhanced by BRD4 and associated with acetylation of nucleosomes at super enhancers (SE). In addition, CBP contributes to transcriptional activation through its function as a scaffold and protein bridge. Monotherapy with either a CBP (ICG-001) or BET inhibitor (JQ1) led to the reduction of tumor-related characteristics. Interestingly, combined treatment induced strong cytotoxic effects in H3.3K27M-mutated DIPG cell lines. RNA sequencing and chromatin immunoprecipitation revealed that these effects were caused by the inactivation of DIPG SE-controlled tumor-related genes. However, single treatment with ICG-001 or JQ1, respectively, led to activation of a subgroup of detrimental super enhancers. Combinatorial treatment reversed the inadvertent activation of these super enhancers and rescued the effect of ICG-001 and JQ1 single treatment on enhancer-driven oncogenes in H3K27M-mutated DIPG, but not in H3 wild-type pedHGG cells. In conclusion, combinatorial treatment with CBP and BET inhibitors is highly efficient in H3K27M-mutant DIPG due to reversal of inadvertent activation of detrimental SE programs in comparison with monotherapy.
Collapse
|
11
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
1,2,3-Triazole tethered 2-mercaptobenzimidazole derivatives: design, synthesis and molecular assessment toward C6 glioma cell line. Future Med Chem 2020; 12:689-708. [PMID: 32193951 DOI: 10.4155/fmc-2019-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Glioblastoma multiforme (GBM) is an aggressive cancer with very limited clinical therapies. Herein, we have designed novel mercaptobenzimidazole derivatives (1-7) as multitarget antineoplastic drugs and assessed their antiproliferative profiles on an experimental model for GBM, the C6 glioma line. Results: The target compounds were synthesized in few steps with reasonable yields (33-90%). Compounds 1 (∼18 μM) and 4 (∼20 μM) showed dose-dependent antiproliferative effects on C6 glioma and significantly increased early apoptosis, but only 4 disrupted the cell cycle progression and did not induce autophagy. Docking simulations suggested these compounds as dual kinase and colchicine binding site inhibitors. Conclusion: In spite of the limited selective toxicity, 4 hold the potential to be further optimized for the treatment of GBM.
Collapse
|
13
|
Balaguer FDA, Mühlethaler T, Estévez-Gallego J, Calvo E, Giménez-Abián JF, Risinger AL, Sorensen EJ, Vanderwal CD, Altmann KH, Mooberry SL, Steinmetz MO, Oliva MÁ, Prota AE, Díaz JF. Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. Int J Mol Sci 2019; 20:ijms20061392. [PMID: 30897704 PMCID: PMC6471726 DOI: 10.3390/ijms20061392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
It has been proposed that one of the mechanisms of taxane-site ligand-mediated tubulin activation is modulation of the structure of a switch element (the M-loop) from a disordered form in dimeric tubulin to a folded helical structure in microtubules. Here, we used covalent taxane-site ligands, including cyclostreptin, to gain further insight into this mechanism. The crystal structure of cyclostreptin-bound tubulin reveals covalent binding to βHis229, but no stabilization of the M-loop. The capacity of cyclostreptin to induce microtubule assembly compared to other covalent taxane-site agents demonstrates that the induction of tubulin assembly is not strictly dependent on M-loop stabilization. We further demonstrate that most covalent taxane-site ligands are able to partially overcome drug resistance mediated by βIII-tubulin (βIII) overexpression in HeLa cells, and compare their activities to pironetin, an interfacial covalent inhibitor of tubulin assembly that displays invariant growth inhibition in these cells. Our findings suggest a relationship between a diminished interaction of taxane-site ligands with βIII-tubulin and βIII tubulin-mediated drug resistance. This supports the idea that overexpression of βIII increases microtubule dynamicity by counteracting the enhanced microtubule stability promoted by covalent taxane-site binding ligands.
Collapse
Affiliation(s)
- Francisco de Asís Balaguer
- Structural and Chemical Biology Department. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Tobias Mühlethaler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | - Juan Estévez-Gallego
- Structural and Chemical Biology Department. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Enrique Calvo
- Unidad de Proteómica. Centro Nacional de Investigaciones Cardiovasculares, CNIC. Melchor Fernández de Almagro 3, 28029 Madrid, Spain.
| | - Juan Francisco Giménez-Abián
- Structural and Chemical Biology Department. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - April L Risinger
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Christopher D Vanderwal
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA.
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland.
| | - Susan L Mooberry
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
- University of Basel, Biozentrum, 4056 Basel, Switzerland.
| | - María Ángela Oliva
- Structural and Chemical Biology Department. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | - J Fernando Díaz
- Structural and Chemical Biology Department. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Solingapuram Sai KK, Prabhakaran J, Ramanathan G, Rideout S, Whitlow C, Mintz A, Mann JJ, Kumar JSD. Radiosynthesis and Evaluation of [ 11C]HD-800, a High Affinity Brain Penetrant PET Tracer for Imaging Microtubules. ACS Med Chem Lett 2018; 9:452-456. [PMID: 29795758 DOI: 10.1021/acsmedchemlett.8b00060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Microtubules (MTs) are highly abundant throughout the cytoskeleton, and their dysfunction is implicated in the pathogenesis of malignancies, various neurodegenerative disorders, and brain injuries. Validated radiotracers reported so far for MTs are [11C]paclitaxel, [18F]fluoropaclitaxel, and [11C]docetaxel; however, they are well-characterized substrates of efflux transporters and consequently have poor uptake into the brain due to minimal blood brain barrier (BBB) penetration. PET imaging of MT expression requires radiolabeled BBB penetrating MT ligands, and it may offer a direct and more sensitive approach for early diagnosis, monitoring disease progression, and treatment effects in brain diseases and assessing the clinical potential of targeted therapeutics and treatments. We have identified N-(4-methoxyphenyl)-N-5-dimethylfuro[2,3-d]pyrimidin-4-amine (HD-800) as a high affinity and selective colchicine site tubuline inhibitor amenable to radiolabel with C-11, a positron emitting isotope. HD-800 and desmethyl-HD-800 were synthesized in one step with 75% and 80% yields respectively from commercial synthons. The radiosynthesis of [11C]HD-800 was achieved in 45 ± 5% yield at EOS. Ex vivo biodistribution binding data of [11C]HD-800 indicate that the radioligand penetrated the BBB and it was retained in brain with 75% specific binding. Apart from the brain, specific binding was observed in muscle (55%), heart (50%), lungs (43%), blood (37%), and pancreas (30%). MicroPET imaging in mice showed excellent binding in brain that was blocked by preadministration of unlabeled HD-800 and a colchicine site binding MT ligand MPC-6827. The above results indicate that [11C]HD-800 may be a suitable PET ligand for the in vivo quantification of MT inside and outside the brain.
Collapse
Affiliation(s)
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, United States
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Gayathri Ramanathan
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States
| | - Stephanie Rideout
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, United States
| | - J. John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, United States
- Department of Psychiatry, Columbia University Medical Center, New York, United States
- Department of Radiology, Columbia University Medical Center, New York, United States
| | - J. S. Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, United States
| |
Collapse
|
15
|
Kumar JSD, Solingapuram Sai KK, Prabhakaran J, Oufkir HR, Ramanathan G, Whitlow CT, Dileep H, Mintz A, Mann JJ. Radiosynthesis and in Vivo Evaluation of [ 11C]MPC-6827, the First Brain Penetrant Microtubule PET Ligand. J Med Chem 2018; 61:2118-2123. [PMID: 29457976 DOI: 10.1021/acs.jmedchem.8b00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormalities of microtubules (MTs) are implicated in the pathogenesis of many CNS diseases. Despite the potential of an MT imaging agents, no PET ligand is currently available for in vivo imaging of MTs in the brain. We radiolabeled [11C]MPC-6827, a high affinity MTA, and demonstrated its specific binding in rat and mice brain using PET imaging. Our experiments show that [11C]MPC-6827 has specific binding to MT in brain, and it is the first MT-binding PET ligand.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States
| | | | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Hakeem R Oufkir
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Gayathri Ramanathan
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Christopher T Whitlow
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Hima Dileep
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Akiva Mintz
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - J John Mann
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
16
|
Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation. Oncotarget 2018; 7:34395-419. [PMID: 27284014 PMCID: PMC5085164 DOI: 10.18632/oncotarget.9118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the profuse development of multidrug resistance in cancer.
Collapse
|
17
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
18
|
Sengodan SK, Rajan A, Hemalatha SK, Nadhan R, Jaleel A, Srinivas P. Proteomic Profiling of β-hCG-Induced Spheres in BRCA1 Defective Triple Negative Breast Cancer Cells. J Proteome Res 2017; 17:276-289. [DOI: 10.1021/acs.jproteome.7b00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Arathi Rajan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Sreelatha Krishnakumar Hemalatha
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Revathy Nadhan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Abdul Jaleel
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Priya Srinivas
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
19
|
Nienstedt JC, Gröbe A, Clauditz T, Simon R, Muenscher A, Knecht R, Sauter G, Moebius C, Blessmann M, Heiland M, Pflug C. High-level βIII-tubulin overexpression occurs in most head and neck cancers but is unrelated to clinical outcome. J Oral Pathol Med 2017. [PMID: 28640948 DOI: 10.1111/jop.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND βIII-tubulin (TUBB3) is an isotype of microtubules, which are involved in crucial cellular roles including maintenance of cell shape, intracellular transport, and mitosis. Overexpression of TUBB3 was found to be associated with poor prognosis and resistance to tubulin-binding drugs and in several solid tumors including head and neck squamous cell carcinomas (HNSCC). Considering the potential high importance of a prognostic biomarker in these cancers, this study aimed to investigate the clinical relevance of immunohistochemical TUBB3 expression in HNSCC. METHODS Tissue microarray (TMA) sections containing samples from 667 cancers of oral cavity, oro- and hypopharynx, and larynx for which follow-up data were available were analyzed for TUBB3 expression by immunohistochemistry. RESULTS Over 90% of our analyzed cancers showed unequivocal cytoplasmic TUBB3 expression. Staining was considered weak in 69 (15.5%), moderate in 149 (33.5%), and strong in 188 (42.2%) of cancers. The frequent TUBB3 overexpression showed no significant correlation with pathological grading, tumor stage, nodal status, or surgical margin and had no impact on patient outcomes. CONCLUSION Despite lacking prognostic utility in HNSCC, the remarkable high prevalence of TUBB3 expression in HNSCC emphasizes its putative relevance as a target for future drugs targeting TUBB3.
Collapse
Affiliation(s)
- Julie C Nienstedt
- Center for Clinical Neurosciences, Department of Voice, Speech and Hearing Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Gröbe
- Center for Clinical Neurosciences, Oral & Maxillofacial surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Muenscher
- Center for Clinical Neurosciences, Department of Otolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainald Knecht
- Center for Clinical Neurosciences, Department of Otolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Moebius
- Center for Surgical Sciences, Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Blessmann
- Center for Surgical Sciences, Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Max Heiland
- Center for Clinical Neurosciences, Oral & Maxillofacial surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Pflug
- Center for Clinical Neurosciences, Department of Voice, Speech and Hearing Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Palumbo P, Miconi G, Cinque B, Lombardi F, Torre CL, Dehcordi SR, Galzio R, Cimini A, Giordano A, Cifone MG. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression. Oncotarget 2017; 8:25582-25598. [PMID: 28424427 PMCID: PMC5421953 DOI: 10.18632/oncotarget.16106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gianfranca Miconi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina La Torre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Soheila Raysi Dehcordi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
21
|
Laurin Y, Eyer J, Robert CH, Prevost C, Sacquin-Mora S. Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes. Biochemistry 2017; 56:1746-1756. [PMID: 28290671 DOI: 10.1021/acs.biochem.6b00988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/βI- and αI/βIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two β-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the βI isotype, but not the βIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the βI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress βIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.
Collapse
Affiliation(s)
- Yoann Laurin
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire , Angers, France
| | - Charles H Robert
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prevost
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
22
|
Benedetti E, d'Angelo M, Ammazzalorso A, Gravina GL, Laezza C, Antonosante A, Panella G, Cinque B, Cristiano L, Dhez AC, Astarita C, Galzio R, Cifone MG, Ippoliti R, Amoroso R, Di Cesare E, Giordano A, Cimini A. PPARα Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells. J Cell Physiol 2016; 232:1458-1466. [PMID: 27736000 DOI: 10.1002/jcp.25648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the most common cancer in the brain and with an increasing incidence. Despite major advances in the field, there is no curative therapy for GB to date. Many solid tumors, including GB, experienced metabolic reprogramming in order to sustain uncontrolled proliferation, hypoxic conditions, and angiogenesis. PPARs, member of the steroid hormone receptor superfamily, are particularly involved in the control of energetic metabolism, particularly lipid metabolism, which has been reported deregulated in gliomas. PPARα was previously indicated by us as a potential therapeutic target for this neoplasm, due to the malignancy grade dependency of its expression, being particularly abundant in GB. In this work, we used a new PPARα antagonist on patient-derived GB primary cells, with particular focus on the effects on lipid metabolism and response to radiotherapy. The results obtained demonstrated that blocking PPARα results in cell death induction, increase of radiosensitivity, and decrease of migration. Therefore, AA452 is proposed as a new adjuvant for the gold standard therapies for GB, opening the possibility for preclinical and clinical trials for this class of compounds. J. Cell. Physiol. 232: 1458-1466, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy
| | - Andrea Antonosante
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Panella
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anne Chloè Dhez
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Astarita
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Renato Galzio
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), Assergi, Italy
| |
Collapse
|
23
|
Fujioka H, Sakai A, Tanaka S, Kimura K, Miyamoto A, Iwamoto M, Uchiyama K. Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines. Oncol Lett 2016; 13:289-295. [PMID: 28123557 DOI: 10.3892/ol.2016.5455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel is widely used to treat various cancers; however, resistance to this drug is a major obstacle to breast cancer chemotherapy. To identify the proteins involved in paclitaxel resistance, the present study compared the proteomes of MCF-7 human breast cancer cells and its paclitaxel-resistant subclone MCF-7/PTX. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry, 11 upregulated and 12 downregulated proteins were identified in MCF-7/PTX cells compared with the parental cell line. These 23 proteins were functionally classified as stress-induced chaperones, metabolic enzymes and cytoskeletal proteins. The anti-apoptotic proteins, stress-70 protein, 78-kD glucose-regulated protein, peptidyl-prolyl cis-trans isomerase A (PPIA) and heterogeneous nuclear ribonucleoprotein H3, were also upregulated in MCF-7/PTX cells. Notably, knockdown of the stress-response chaperone PPIA using small interfering RNA in MCF-7/PTX cells restored their sensitivity to paclitaxel. These findings indicated that PPIA may have an important role in paclitaxel resistance in MCF-7/PTX cells.
Collapse
Affiliation(s)
- Hiroya Fujioka
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akiko Sakai
- Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Satoru Tanaka
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kosei Kimura
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akiko Miyamoto
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Mitsuhiko Iwamoto
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhisa Uchiyama
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
24
|
Affiliation(s)
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cellular and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Lépinoux-Chambaud C, Barreau K, Eyer J. The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties. Stem Cells Transl Med 2016; 5:901-13. [PMID: 27177578 DOI: 10.5966/sctm.2015-0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, corresponding to the sequence of a tubulin-binding site on neurofilaments, can target glioblastoma cells, where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets NSCs in vitro and in vivo when injected into the cerebrospinal fluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. SIGNIFICANCE In the present study, the NFL-TBS.40-63 peptide targeted neural stem cells in vitro when isolated from the subventricular zone and in vivo when injected into the cerebrospinal fluid present in the lateral ventricle. The in vitro formation of neurospheres was not altered by the peptide; however, at a high concentration of the peptide, the neural stem cell (NSC) self-renewal capacity and proliferation were reduced and associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Kristell Barreau
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Joël Eyer
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
26
|
Miconi G, Palumbo P, Dehcordi SR, La Torre C, Lombardi F, Evtoski Z, Cimini AM, Galzio R, Cifone MG, Cinque B. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J Cell Biochem 2015; 116:864-76. [PMID: 25559650 DOI: 10.1002/jcb.25043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
Recently, glioma stem cells have been identified as the main cause of glioma propagation and recurrence and a number of several cell markers have been indicated as putative GSC markers. In the present work, a retrospective study to evaluate the prognostic potential of ability to generate GSCs in our series of 15 glioblastoma patients is described. β-tubulin III, nestin, CD133, GFAP, and SOX-2 marker expression, both in primary GBM cultures and in respective glioblastoma stem cells (GSCs), was evaluated by flow cytometric analysis. Our results demonstrated various expression levels of these markers in both cell cultures; of note, only those cells expressing SOX-2 at greater than 30% levels were able to produce in vitro neurospheres. Moreover, statistical analysis revealed that the GSCs generation negatively affected overall survival (OS) (P = 0.000) and progression-free survival (PFS) (P = 0.001). In addition, a very poor OS (P = 0.000) and PFS (P = 0.000) were observed among patients whose tumors expressed Ki67, evaluated by immunohistochemistry, and showed the ability to generate in vitro GSCs. Overall, the results suggest that in vitro GSCs generation associated to the expression of Ki67 and SOX-2 may be useful to identify patients at risk of disease progression.
Collapse
Affiliation(s)
- Gianfranca Miconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila-Building Delta 6, Coppito, L'Aquila, 67100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Laurin Y, Savarin P, Robert CH, Takahashi M, Eyer J, Prevost C, Sacquin-Mora S. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40–63 Peptide on Tubulin. Biochemistry 2015; 54:3660-9. [DOI: 10.1021/acs.biochem.5b00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoann Laurin
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Savarin
- Université
Paris 13, Sorbonne Paris Cité, CSPBAT, UMR 7244 CNRS, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Charles H. Robert
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Masayuki Takahashi
- School
of Bioscience and Biotechnology, Tokyo Institue of Technology 2-12-1-M6-14
Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire, Angers, France
| | - Chantal Prevost
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique,13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
28
|
Gálvez-Montón C, Fernandez-Figueras MT, Martí M, Soler-Botija C, Roura S, Perea-Gil I, Prat-Vidal C, Llucià-Valldeperas A, Raya Á, Bayes-Genis A. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Res Ther 2015; 6:108. [PMID: 26205795 PMCID: PMC4529715 DOI: 10.1186/s13287-015-0101-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/12/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold. After 30 days, animals were sacrificed and hearts were analyzed with hematoxylin/eosin and Masson's and Gallego's modified trichrome staining. Immunohistochemistry was carried out to detect nerve fibers within the cardiac bioimplant by using βIII tubulin and S100 labeling. Isolectin B4, smooth muscle actin, CD31, von Willebrand factor, cardiac troponin I, and elastin antibodies were used to study scaffold vascularization. Transmission electron microscopy was performed to confirm the presence of vascular and nervous ultrastructures. Left ventricular ejection fraction (LVEF), cardiac output (CO), stroke volume, end-diastolic volume, end-systolic volume, end-diastolic wall mass, and infarct size were assessed by using magnetic resonance imaging (MRI). Newly formed nerve fibers composed of several amyelinated axons as the afferent nerve endings of the heart were identified by immunohistochemistry. Additionally, neovessel formation occurred spontaneously as small and large isolectin B4-positive blood vessels within the scaffold. In summary, this study demonstrates for the first time the neoformation of vessels and nerves in cell-free cardiac scaffolds applied over infarcted tissue. Moreover, MRI analysis showed a significant improvement in LVEF (P = 0.03) and CO (P = 0.01) and a 43 % decrease in infarct size (P = 0.007).
Collapse
Affiliation(s)
- Carolina Gálvez-Montón
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - M Teresa Fernandez-Figueras
- Pathology Department, Hospital Universitari Germans Trias i Pujol Ctra. Canyet, s/n,, Badalona, Barcelona, 08916, Spain.
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Mercè Martí
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Baldiri Reixac, 10, Barcelona, 08028, Spain.
| | - Carolina Soler-Botija
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Santiago Roura
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Isaac Perea-Gil
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Cristina Prat-Vidal
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Aida Llucià-Valldeperas
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, Barcelona, 08003, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Baldiri Reixac, 10, Barcelona, 08028, Spain.
- Institute for Bioengineering of Catalonia (IBEC) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Antoni Bayes-Genis
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles s/n, Badalona, Barcelona, 08916, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Ctra. de Canyet, s/n, Barcelona, Spain, 08916.
- Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
29
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
30
|
Shi X, Chen X, Peng H, Song E, Zhang T, Zhang J, Li J, Swa H, Li Y, Kim S, Liu X, Zhang C. Lentivirus-mediated silencing of spindle and kinetochore-associated protein 1 inhibits the proliferation and invasion of neuronal glioblastoma cells. Mol Med Rep 2015; 11:3533-8. [PMID: 25573192 DOI: 10.3892/mmr.2015.3175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/12/2014] [Indexed: 11/05/2022] Open
Abstract
Spindle and kinetochore‑associated protein 1 (SKA1) is an important component of the human kinetochore, which plays a key role in mitosis. The resent study was designed to investigate the role of SKA1 in human glioblastoma. The results of the present study demonstrated that SKA1 was expressed in human glioblastoma cells. In addition, the knockdown of SKA1 expression in the A172 and U251 human glioblastoma cell lines was accomplished using a lentivirus infection method. An MTT assay demonstrated that downregulation of SKA1 may inhibit cell proliferation, without affecting the cell cycle. Furthermore, knockdown of SKA1 expression resulted in reduced cell invasion. The results of the present study indicated that SKA1 may be a potential target protein for antiproliferative and anti‑invasive therapeutic strategies of human glioblastoma.
Collapse
Affiliation(s)
- Xiujuan Shi
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xianzhen Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hu Peng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - E Song
- Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu 242000, P.R. China
| | - Ting Zhang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Junxiang Zhang
- Xuancheng Central Hospital, Xuancheng, Anhui 242000, P.R. China
| | - Jing Li
- Xuancheng Central Hospital, Xuancheng, Anhui 242000, P.R. China
| | - Himaya Swa
- Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yongxin Li
- Specialized Graduate School Science and Technology Convergence, Department of Marine Bio Convergence Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Sekwon Kim
- Specialized Graduate School Science and Technology Convergence, Department of Marine Bio Convergence Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Xiaoqing Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chen Zhang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
31
|
Bordji K, Grandval A, Cuhna-Alves L, Lechapt-Zalcman E, Bernaudin M. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. FEBS J 2014; 281:5220-36. [DOI: 10.1111/febs.13062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/29/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Karim Bordji
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Alexandra Grandval
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Leilane Cuhna-Alves
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Emmanuèle Lechapt-Zalcman
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
- CHU de Caen; Service d'Anatomie et Cytologie Pathologique; Caen France
| | - Myriam Bernaudin
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| |
Collapse
|
32
|
Glioblastoma multiforme - an overview. Contemp Oncol (Pozn) 2014; 18:307-12. [PMID: 25477751 PMCID: PMC4248049 DOI: 10.5114/wo.2014.40559] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/15/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a central nervous system tumor of grade IV histological malignancy according to the WHO classification. Over 90% of diagnosed glioblastomas multiforme cases are primary gliomas, arising from normal glial cells through multistep oncogenesis. The remaining 10% are secondary gliomas originating from tumors of lower grade. These tumors expand distinctly more slowly. Although genetic alterations and deregulations of molecular pathways leading to both primary and secondary glioblastomas formation differ, morphologically they do not reveal any significant differences. Glioblastoma is a neoplasm that occurs spontaneously, although familial gliomas have also been noted. Caucasians, especially those living in industrial areas, have a higher incidence of glioblastoma. Cases of glioblastoma in infants and children are also reported. The participation of sex hormones and viruses in its oncogenesis was also suggested. Progression of glioblastoma multiforme is associated with deregulation of checkpoint G1/S of a cell cycle and occurrence of multiple genetic abnormalities of tumor cells. Metastases of glioblastoma multiforme are rarely described. Treatment of glioblastoma multiforme includes tumor resection, as well as radiotherapy and chemotherapy. Drugs inhibiting integrin signaling pathways and immunotherapy are also employed. Treatment modalities and prognosis depend on the tumor localization, degree of its malignancy, genetic profile, proliferation activity, patient's age and the Karnofsky performance scale score. Although the biology of glioblastoma multiforme has recently been widely investigated, the studies summarizing the knowledge of its development and treatment are still not sufficient in terms of comprehensive brain tumor analysis.
Collapse
|
33
|
O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol 2014; 30:45-54. [PMID: 24440897 DOI: 10.1016/j.semcdb.2014.01.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
Abstract
Microtubules are dynamic polymers of tubulin subunits that underpin many essential cellular processes, such as cell division and migration. Spermatogenesis is the process by which spermatogenic stem cells undergo mitotic and meiotic division and differentiation to produce streamlined spermatozoa capable of motility and fertilization. This review summarizes the current knowledge of microtubule-based processes in spermatogenesis. We describe the involvement of microtubule dynamics in Sertoli cell shape and function, as well as in the mitotic and meiotic division of germ cells. The roles of microtubules in sperm head shaping, via the development and function of the manchette, and in sperm flagella development are also discussed. The review brings together data from microscopy studies and genetically modified mouse models, and reveals that the regulation of microtubule dynamics is essential for male fertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia.
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
34
|
Tsai HP, Tsai CY, Lieu AS, Chai CY, Kwan AL, Howng SL, Loh JK. Association of Aurora A and gamma-tubulin expression in astrocytomas and patient survival. Neurol Res 2014; 36:746-51. [PMID: 24620973 DOI: 10.1179/1743132813y.0000000310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The purpose was to evaluate the association of Aurora A and gamma-tubulin expression with disease characteristics and survival in patients with astrocytoma. METHODS This is a retrospective study of patients who had surgical specimens that were pathologically diagnosed as astrocytoma. The expression level of Aurora A and gamma-tubulin in tumor tissue was evaluated by immunohistochemistry. Clinical information, Karnofsky performance status scale, and survival status of patients were collected. RESULTS We found that high protein levels of gamma-tubulin or Aurora A were associated with patients 45 years of age, high tumor grade, more advanced non-fully resectable tumors, and poorer survival status. The survival time for patients whose tumors had high gamma-tubulin and Aurora A expression was about 12 months compared with approximately 41 months for patients with low levels of expression of these proteins. Poor patient performance status following resection was also associated with high levels of gamma-tubulin and Aurora A expression. DISCUSSION The expression levels of gamma-tubulin or Aurora A kinase were associated with patients' age, astrocytoma grade, respectability, as well as patient survival and performance. These findings support the idea that these factors may potentially be important prognostic indicators for patients with astrocytomas.
Collapse
|
35
|
Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, Schlomm T, Graefen M, Huland H, Salomon G, Steuber T, Wilczak W, Sirma H, Simon R, Sauter G, Minner S, Quaas A. βIII-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:609-17. [PMID: 24378408 DOI: 10.1016/j.ajpath.2013.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 02/08/2023]
Abstract
Evidence suggests that class III β-tubulin (βIII-tubulin) may represent a prognostic and predictive molecular marker in prostate cancer. βIII-Tubulin expression was determined by IHC in 8179 prostate cancer specimens in a TMA format. Results were compared with tumor phenotype, biochemical recurrence, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) status, and deletions on PTEN, 3p13, 5q21, and 6q15. βIII-Tubulin expression was detectable in 25.6% of 8179 interpretable cancers. High βIII-tubulin expression was strongly associated with both TMPRSS2:ERG rearrangement and ERG expression (P < 0.0001 each). High βIII-tubulin expression was tightly linked to high Gleason grade, advanced pT stage, and early prostate-specific antigen (PSA) recurrence in all cancers (P < 0.0001 each), but also in the subgroups of ERG-negative and ERG-positive cancers. When all tumors were analyzed, the prognostic role of βIII-tubulin expression was independent of Gleason grade, pT stage, pN stage, surgical margin status, and preoperative PSA. Independent prognostic value became even more evident if the analysis was limited to preoperatively available features, such as biopsy specimen Gleason grade, preoperative PSA, cT stage, and βIII-tubulin expression (P < 0.0001 each). βIII-Tubulin expression was associated with PTEN (P < 0.0001) when all tumors were analyzed, but also in the subgroups of ERG-negative and ERG-positive cancers. βIII-Tubulin expression is an independent prognostic parameter. The significant associations with key genomic alterations of prostate cancer, such as TMPRSS2:ERG fusions and PTEN deletions, suggest interactions with several pivotal pathways involved in prostate cancer.
Collapse
Affiliation(s)
- Maria C Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Prostate Cancer Center, Section for Translational Prostate Cancer Research, the Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Salomon
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Steuber
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hüseyin Sirma
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Quaas
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Abstract
Mitochondrial (mt) dysfunction in gliomas has been linked to abnormalities of mt energy metabolism, marked by a metabolic shift from oxidative phosphorylation to glycolysis ("Warburg effect"), disturbances in mt membrane potential regulation and apoptotic signaling, as well as to somatic mutations involving the Krebs cycle enzyme isocitrate dehydrogenase. Evolving biological concepts with potential therapeutic implications include interaction between microtubule proteins and mitochondria (mt) in the control of closure of voltage-dependent anion channels and in the regulation of mt dynamics and the mt-endoplasmic reticulum network. The cytoskeletal protein βIII-tubulin, which is overexpressed in malignant gliomas, has emerged as a prosurvival factor associated in part with mt and also as a marker of chemoresistance. Mt-targeted therapeutic strategies that are discussed include the following: (1) metabolic modulation with emphasis on dichloroacetate, a pyruvate dehydrogenase kinase inhibitor; (2) tumor cell death via apoptosis induced by tricyclic antidepressants, microtubule-modulating drugs, and small molecules or compounds capable of inflicting reactive oxygen species-dependent tumor cell death; and (3) pretreatment mt priming and mt-targeted prodrug cancer therapy.
Collapse
|
37
|
Dong XT, Yang XJ, Wang HM, Wang W, Yu L, Zhang B, Yu SP, Ming HL. Expression and Distribution Characteristics of Human Ortholog of Mammalian Enabled (hMena) in Glioma. Chin J Cancer Res 2013; 23:312-6. [PMID: 23359755 DOI: 10.1007/s11670-011-0312-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate the utility of hMena, a family of enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), we sought to characterize the expression profile and distribution characteristics of hMena in a large panel of glioma samples and determine whether hMena expression levels might correlate with the pathological grade of glioma. METHODS Sixty-five specimens of glioma with different pathological grades and five control brain tissues were collected. In 6 of the 21 glioblastoma patients, multi-specimens were obtained respectively from the main tumor mass, the junction zone between the tumor and the normal tissue, and adjacent brain tissue 1.5 cm away from the tumor boundary under assistance of neuronavigation system during the operation. Immunohistochemistry was used to detect the expression and distribution characteristics of hMena. hMena expression was analyzed by Western blot in 20 specimens. RESULTS The hMena expression was negative in control brain tissue but positive in different grades of glioma. The expression rate of hMena was positively correlated with the increasing grade of the World Health Orgnization (WHO) classification (r(s)=0.682, P=0.000). hMena was located in cytoplasm. Positive cells only distributed around the vessels within the tumor mass in low grade glioma, while in high grade glioma, these cells were able to be detected not only in the tumor but also in the boundary zone and adjacent brain parenchyma. In the tumor mass, hMena expressed highly and diffusedly. In the junction zone, hMena positive cells formed radiolitic pattern around the vessels. In adjacent brain parenchyma, single positive cell was scattered. hMena expression was markedly elevated in Grade III and IV glioma compared with Grade II and I. CONCLUSION Our data suggested that the expression of hMena is closely related to malignant grade of glioma. hMena can label the migrating cells, and indicate the migrating path of glioma cells from the tumor to adjacent tissue along with the vascular basement membranes and tracts of white matter.
Collapse
Affiliation(s)
- Xue-Tao Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin 300052, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu J, Gao J, Lu Z, Li Y, Shen L. Serum levels of TUBB3 correlate with clinical outcome in Chinese patients with advanced gastric cancer receiving first-line paclitaxel plus capecitabine. Med Oncol 2012; 29:3029-34. [PMID: 22766748 DOI: 10.1007/s12032-012-0292-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/19/2012] [Indexed: 01/14/2023]
Abstract
The overexpression of β-tubulin III (TUBB3) in tumor tissues was reversely related with the efficacy of paclitaxel and clinical outcome in different cancers. In this study, we aimed to investigate the association between serum levels of TUBB3 and clinical outcome in advanced gastric cancer patients receiving first-line paclitaxel plus capecitabine. One hundred and twenty-eight advanced gastric cancer patients receiving first-line paclitaxel plus capecitabine in Peking University Cancer Hospital from December 2006 to October 2010 were enrolled in the study. Serum samples from 32 healthy individuals were used as controls. TUBB3 expression level in advanced gastric cancer was significantly higher than that in healthy control group (31.6 ± 17.8 ng/mL vs. 16.9 ± 3.8 ng/mL, p < 0.001). For all patients, the clinical benefit rate (CBR), median progression-free survival (PFS), and overall survival (OS) were 55.6 %, 179 and 306 days, respectively. The CBR, median PFS, and OS in patients with low (n = 27) and high levels (n = 101) of TUBB3 were 95.8 %/45.1 % (low vs. high, p < 0.001), 190 days/166 days (p = 0.064), and 360 days/297 days (p = 0.023), respectively. Cox multivariate regression analysis demonstrated that the serum levels of TUBB3 were an independent prognostic factor for advanced gastric cancer patients (HR = 1.950; 95 % CI, 1.242-3.062; p = 0.004). This study indicated that low levels of TUBB3 in serum could predict better response and survival for advanced gastric cancer patients receiving paclitaxel plus capecitabine, which could be used to select patients who would benefit from this regimen.
Collapse
Affiliation(s)
- Jingwei Yu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China.
| | | | | | | | | |
Collapse
|
39
|
Pagano A, Honoré S, Mohan R, Berges R, Akhmanova A, Braguer D. Epothilone B inhibits migration of glioblastoma cells by inducing microtubule catastrophes and affecting EB1 accumulation at microtubule plus ends. Biochem Pharmacol 2012; 84:432-43. [PMID: 22634050 DOI: 10.1016/j.bcp.2012.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022]
Abstract
Invasion of normal brain tissue by tumor cells is a major contributing factor to the recurrence of glioblastoma and its resistance to therapy. Here, we have assessed the efficacy of the microtubule (MT) targeting agent Epothilone B (patupilone) on glioblastoma cell migration, a prerequisite for invasive tumor cell behavior. At non-cytotoxic concentrations, patupilone inhibited glioblastoma cell movement, as shown by transwell cell migration, random motility and spheroid assays. This anti-migratory effect was associated with a reduced accumulation of EB1 and other MT plus end tracking proteins at MT ends and with the induction of MT catastrophes, while the MT growth rate and other MT dynamic instability parameters remained unaltered. An increase in MT catastrophes led to the reduction of the number of MTs reaching the leading edge. Analysis of the effect of patupilone on MT dynamics in a reconstituted in vitro system demonstrated that the induction of MT catastrophes and an alteration of EB1 accumulation at MT plus end are intrinsic properties of patupilone activity. We have thus demonstrated that patupilone antagonizes glioblastoma cell migration by a novel mechanism, which is distinct from suppression of MT dynamic instability. Taken together, our results suggest that EB proteins may represent a new potential target for anti-cancer therapy in highly invasive tumors.
Collapse
Affiliation(s)
- Alessandra Pagano
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
40
|
Friesen DE, Barakat KH, Semenchenko V, Perez-Pineiro R, Fenske BW, Mane J, Wishart DS, Tuszynski JA. Discovery of small molecule inhibitors that interact with γ-tubulin. Chem Biol Drug Des 2012; 79:639-52. [PMID: 22268380 DOI: 10.1111/j.1747-0285.2012.01340.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have shown an overexpression of γ-tubulin in human glioblastomas and glioblastoma cell lines. As the 2-year survival rate for glioblastoma is very poor, potential benefit exists for discovering novel chemotherapeutic agents that can inhibit γ-tubulin, which is known to form a ring complex that acts as a microtubule nucleation center. We present experimental evidence that colchicine and combretastatin A-4 bind to γ-tubulin, which are to our knowledge the first drug-like compounds known to interact with γ-tubulin. Molecular dynamics simulations and docking studies were used to analyze the hypothesized γ-tubulin binding domain of these compounds. The suitability of the potential binding modes was evaluated and suggests the subsequent rational design of novel targeted inhibitors of γ-tubulin.
Collapse
|
41
|
Valdiglesias V, Fernández-Tajes J, Pásaro E, Méndez J, Laffon B. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization. BMC Genomics 2012; 13:46. [PMID: 22284234 PMCID: PMC3296583 DOI: 10.1186/1471-2164-13-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/27/2012] [Indexed: 12/02/2022] Open
Abstract
Background Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
42
|
Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, Enger PØ. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer 2011; 11:524. [PMID: 22185371 PMCID: PMC3259117 DOI: 10.1186/1471-2407-11-524] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/20/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established. METHODS The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis. RESULTS Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group. CONCLUSIONS Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.
Collapse
Affiliation(s)
- Tao Yan
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Laurenti G, Benedetti E, D'Angelo B, Cristiano L, Cinque B, Raysi S, Alecci M, Cerù M, Cifone M, Galzio R, Giordano A, Cimini A. Hypoxia induces peroxisome proliferator-activated receptor α (PPARα) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 2011; 112:3891-901. [DOI: 10.1002/jcb.23323] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J Neuropathol Exp Neurol 2011; 70:811-26. [PMID: 21865889 DOI: 10.1097/nen.0b013e31822c256d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We studied the expression and distribution of the microtubule-severing enzyme spastin in 3 human glioblastoma cell lines (U87MG, U138MG, and T98G) and in clinical tissue samples representative of all grades of diffuse astrocytic gliomas (n = 45). In adult human brains, spastin was distributed predominantly in neuronsand neuropil puncta and, to a lesser extent, in glia. Compared with normal mature brain tissues, spastin expression and cellular distribution were increased in neoplastic glial phenotypes, especiallyin glioblastoma (p < 0.05 vs low-grade diffuse astrocytomas). Overlapping punctate and diffuse patterns of localization wereidentified in tumor cells in tissues and in interphase and mitotic cells ofglioblastoma cell lines. There was enrichment of spastin in the leading edges of cells in T98G glioblastoma cell cultures and in neoplastic cell populations in tumor specimens. Real-time polymerase chain reaction and immunoblotting experiments revealed greater levels of spastin messenger RNA and protein expression in theglioblastoma cell lines versus normal human astrocytes. Functional experiments indicated that spastin depletion resulted in reduced cell motility and higher cell proliferation of T98G cells. Toour knowledge, this is the first report of spastin involvement incellmotility. Collectively, our results indicate that spastinexpression in glioblastomas might be linked to tumor cell motility, migration, and invasion.
Collapse
|
45
|
Khrapunovich-Baine M, Menon V, Yang CPH, Northcote PT, Miller JH, Angeletti RH, Fiser A, Horwitz SB, Xiao H. Hallmarks of molecular action of microtubule stabilizing agents: effects of epothilone B, ixabepilone, peloruside A, and laulimalide on microtubule conformation. J Biol Chem 2011; 286:11765-78. [PMID: 21245138 DOI: 10.1074/jbc.m110.162214] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microtubule stabilizing agents (MSAs) comprise a class of drugs that bind to microtubule (MT) polymers and stabilize them against disassembly. Several of these agents are currently in clinical use as anticancer drugs, whereas others are in various stages of development. Nonetheless, there is insufficient knowledge about the molecular modes of their action. Recent studies from our laboratory utilizing hydrogen-deuterium exchange in combination with mass spectrometry (MS) provide new information on the conformational effects of Taxol and discodermolide on microtubules isolated from chicken erythrocytes (CET). We report here a comprehensive analysis of the effects of epothilone B, ixabepilone (IXEMPRA(TM)), laulimalide, and peloruside A on CET conformation. The results of our comparative hydrogen-deuterium exchange MS studies indicate that all MSAs have significant conformational effects on the C-terminal H12 helix of α-tubulin, which is a likely molecular mechanism for the previously observed modulations of MT interactions with microtubule-associated and motor proteins. More importantly, the major mode of MT stabilization by MSAs is the tightening of the longitudinal interactions between two adjacent αβ-tubulin heterodimers at the interdimer interface. In contrast to previous observations reported with bovine brain tubulin, the lateral interactions between the adjacent protofilaments in CET are particularly strongly stabilized by peloruside A and laulimalide, drugs that bind outside the taxane site. This not only highlights the significance of tubulin isotype composition in modulating drug effects on MT conformation and stability but also provides a potential explanation for the synergy observed when combinations of taxane and alternative site binding drugs are used.
Collapse
Affiliation(s)
- Marina Khrapunovich-Baine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Egevad L, Valdman A, Wiklund NP, Sève P, Dumontet C. Beta-tubulin III expression in prostate cancer. ACTA ACUST UNITED AC 2010; 44:371-7. [PMID: 20831453 DOI: 10.3109/00365599.2010.515612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Beta-tubulin isotype III is a microtubule component associated with resistance to chemotherapy and poor outcome in various cancers. This study aimed to investigate its expression in prostate cancer and its role as a prognostic factor in this setting. MATERIAL AND METHODS A tissue microarray was constructed of 289 prostate cancers from radical prostatectomy specimens with a median follow-up of 48.9 months. Slides were immunostained for β-tubulin III. The intensity and extent of immunoreactivity and their product [immunoreactivity product (IRP)] were evaluated. RESULTS Tubulin III was expressed in the cytoplasm of prostate cancer cells but not in benign glands. Only 11.6% of cancers were positive for tubulin III. Among low-grade (Gleason score 5-6) and high-grade (Gleason score 7-10) cancers, 6.0% and 16.6% were positive, respectively (p = 0.006). β-Tubulin III expression was more often seen in high-stage disease and more often in metastases (62.5%) than in primary lesions (11.6%) (p < 0.001). The intensity, extent and IRP of tubulin III all predicted biochemical recurrence in univariate Cox analysis (p = 0.02, p = 0.048 and p = 0.012, respectively). IRP was an independent predictor of prognosis when adjusted for serum prostate-specific antigen in a multivariate Cox analysis (p = 0.005), but not when the Gleason score was added to the model (p = 0.17). CONCLUSION β-Tubulin III predicts biochemical recurrence after radical prostatectomy in a subset of patients. Its practical utility is limited by the low number of cases positive for this biomarker.
Collapse
Affiliation(s)
- Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Caracciolo V, D'Agostino L, Dráberová E, Sládková V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarévian JP, Legido A, Giordano A, Dráber P, Katsetos CD. Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 2010; 223:519-29. [PMID: 20162618 DOI: 10.1002/jcp.22077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous studies, we have shown overexpression and ectopic subcellular distribution of gamma-tubulin and betaIII-tubulin in human glioblastomas and glioblastoma cell lines (Katsetos et al., 2006, J Neuropathol Exp Neurol 65:455-467; Katsetos et al., 2007, Neurochem Res 32:1387-1398). Here we determined the expression of gamma-tubulin in surgically excised medulloblastomas (n = 20) and in the human medulloblastoma cell lines D283 Med and DAOY. In clinical tissue samples, the immunohistochemical distribution of gamma-tubulin labeling was pervasive and inversely related to neuritogenesis. Overexpression of gamma-tubulin was widespread in poorly differentiated, proliferating tumor cells but was significantly diminished in quiescent differentiating tumor cells undergoing neuritogenesis, highlighted by betaIII-tubulin immunolabeling. By quantitative real-time PCR, gamma-tubulin transcripts for TUBG1, TUBG2, and TUBB3 genes were detected in both cell lines but expression was less prominent when compared with the human glioblastoma cell lines. Immunoblotting revealed comparable amounts of gamma-tubulin and betaIII-tubulin in different phases of cell cycle; however, a larger amount of gamma-tubulin was detected in D283 Med when compared with DAOY cells. Interphase D283 Med cells exhibited predominantly diffuse cytoplasmic gamma-tubulin localization, in addition to the expected centrosome-associated distribution. Robust betaIII-tubulin immunoreactivity was detected in mitotic spindles of DAOY cells. Our data indicate that overexpression of gamma-tubulin may be linked to phenotypic dedifferentiation (anaplasia) and tumor progression in medulloblastomas and may potentially serve as a promising tumor marker.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Microtubules are dynamic structures composed of alpha-beta-tubulin heterodimers that are essential in cell division and are important targets for cancer drugs. Mutations in beta-tubulin that affect microtubule polymer mass and/or drug binding are associated with resistance to tubulin-binding agents such as paclitaxel. The aberrant expression of specific beta-tubulin isotypes, in particular betaIII-tubulin, or of microtubule-regulating proteins is important clinically in tumour aggressiveness and resistance to chemotherapy. In addition, changes in actin regulation can also mediate resistance to tubulin-binding agents. Understanding the molecular mechanisms that mediate resistance to tubulin-binding agents will be vital to improve the efficacy of these agents.
Collapse
Affiliation(s)
- Maria Kavallaris
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW 2031, Australia.
| |
Collapse
|