1
|
Chebotarev O, Ugodnikov A, Simmons CA. Porous Membrane Electrical Cell-Substrate Impedance Spectroscopy for Versatile Assessment of Biological Barriers In Vitro. ACS APPLIED BIO MATERIALS 2024; 7:2000-2011. [PMID: 38447196 DOI: 10.1021/acsabm.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cell culture models of endothelial and epithelial barriers typically use porous membrane inserts (e.g., Transwell inserts) as a permeable substrate on which barrier cells are grown, often in coculture with other cell types on the opposite side of the membrane. Current methods to characterize barrier function in porous membrane inserts can disrupt the barrier or provide bulk measurements that cannot isolate barrier cell resistance alone. Electrical cell-substrate impedance sensing (ECIS) addresses these limitations, but its implementation on porous membrane inserts has been limited by costly manufacturing, low sensitivity, and lack of validation for barrier assessment. Here, we present porous membrane ECIS (PM-ECIS), a cost-effective method to adapt ECIS technology to porous substrate-based in vitro models. We demonstrate high fidelity patterning of electrodes on porous membranes that can be incorporated into well plates of a variety of sizes with excellent cell biocompatibility with mono- and coculture set ups. PM-ECIS provided sensitive, real-time measurement of isolated changes in endothelial cell barrier impedance with cell growth and barrier disruption. Barrier function characterized by PM-ECIS resistance correlated well with permeability coefficients obtained from simultaneous molecular tracer permeability assays performed on the same cultures, validating the device. Integration of ECIS into conventional porous cell culture inserts provides a versatile, sensitive, and automated alternative to current methods to measure barrier function in vitro, including molecular tracer assays and transepithelial/endothelial electrical resistance.
Collapse
Affiliation(s)
- Oleg Chebotarev
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
2
|
Morsing SKH, Zeeuw van der Laan E, van Stalborch AD, van Buul JD, Vlaar APJ, Kapur R. Endothelial cells of pulmonary origin display unique sensitivity to the bacterial endotoxin lipopolysaccharide. Physiol Rep 2022; 10:e15271. [PMID: 35439361 PMCID: PMC9017980 DOI: 10.14814/phy2.15271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 06/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major clinical problem without available therapies. Known risks for ARDS include severe sepsis, SARS-CoV-2, gram-negative bacteria, trauma, pancreatitis, and blood transfusion. During ARDS, blood fluids and inflammatory cells enter the alveoli, preventing oxygen exchange from air into blood vessels. Reduced pulmonary endothelial barrier function, resulting in leakage of plasma from blood vessels, is one of the major determinants in ARDS. It is, however, unknown why systemic inflammation particularly targets the pulmonary endothelium, as endothelial cells (ECs) line all vessels in the vascular system of the body. In this study, we examined ECs of pulmonary, umbilical, renal, pancreatic, and cardiac origin for upregulation of adhesion molecules, ability to facilitate neutrophil (PMN) trans-endothelial migration (TEM) and for endothelial barrier function, in response to the gram-negative bacterial endotoxin LPS. Interestingly, we found that upon LPS stimulation, pulmonary ECs showed increased levels of adhesion molecules, facilitated more PMN-TEM and significantly perturbed the endothelial barrier, compared to other types of ECs. These observations could partly be explained by a higher expression of the adhesion molecule ICAM-1 on the pulmonary endothelial surface compared to other ECs. Moreover, we identified an increased expression of Cadherin-13 in pulmonary ECs, for which we demonstrated that it aids PMN-TEM in pulmonary ECs stimulated with LPS. We conclude that pulmonary ECs are uniquely sensitive to LPS, and intrinsically different, compared to ECs from other vascular beds. This may add to our understanding of the development of ARDS upon systemic inflammation.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eveline Zeeuw van der Laan
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anne‐Marieke D. van Stalborch
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM)Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS)University of AmsterdamAmsterdamThe Netherlands
| | | | - Rick Kapur
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Scholz N, Monk KR, Kittel RJ, Langenhan T. Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. Handb Exp Pharmacol 2017; 234:221-247. [PMID: 27832490 DOI: 10.1007/978-3-319-41523-9_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.
Collapse
Affiliation(s)
- Nicole Scholz
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| | - Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany
| | - Tobias Langenhan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
5
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
6
|
Sustained High Levels of Both Total and High Molecular Weight Adiponectin in Plasma during the Convalescent Phase of Haemorrhagic Fever with Renal Syndrome Are Associated with Disease Severity. J Immunol Res 2017; 2017:6468097. [PMID: 28424792 PMCID: PMC5382360 DOI: 10.1155/2017/6468097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Haemorrhagic fever with renal syndrome (HFRS) is characterised by an uncontrolled immune response that causes vascular leakage. Adiponectin (APN) is an adipocytokine involved in prorevascularisation and immunomodulation. To investigate the possible effects of APN in the pathogenesis of HFRS, total and high molecular weight (HMW) APN levels in the plasma of patients with HFRS were quantified using enzyme-linked immunosorbent assay (ELISA). Compared with those in healthy controls, the plasma total and HMW APN levels in patients were elevated to different degrees from the fever onset and remained high at the convalescent phase. Consistent with these results, western blot analysis additionally showed that low molecular weight (LMW), middle molecular weight (MMW), and HMW APN levels were all elevated and contributed to the elevation of the total APN level. Importantly, sustained high levels of total and HMW APN at the convalescent phase were significantly higher in patients with critical disease than those in patients with mild or moderate disease. Moreover, total and HMW APN levels negatively correlated with white blood cell count and positively correlated with platelet count and serum albumin level. These results may provide insights into understanding the roles of total and HMW APN in the pathogenesis of HFRS.
Collapse
|
7
|
Wang H, Tao L, Ambrosio A, Yan W, Summer R, Lau WB, Wang Y, Ma X. T-cadherin deficiency increases vascular vulnerability in T2DM through impaired NO bioactivity. Cardiovasc Diabetol 2017; 16:12. [PMID: 28103886 PMCID: PMC5244578 DOI: 10.1186/s12933-016-0488-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Background Endothelial dysfunction plays a critical role in the development of type 2 diabetes (T2DM). T-cadherin (T-cad) has gained recognition as a regulator of endothelial cell (EC) function. The present study examined whether T-cad deficiency increases vascular vulnerability in T2DM. Methods Vascular segments were isolated from WT or T-cad knockout mice. Endothelial function, total NO accumulation, and the expression of T-cad related proteins were determined. Results Ach and acidified NaNO2 induced similar vasorelaxation in WT groups. T-cad KO mice exhibited normal response to acidified NaNO2, but manifested markedly reduced response to Ach. NO accumulation was also decreased in T-cad KO group. T-cad expression was reduced in WT mice fed 8 weeks of high fat diet (HFD). Furthermore, exacerbated reduction of vasorelaxation was observed in T-cad KO mice fed 8 weeks of HFD. Conclusions In the current study, we provide the first in vivo evidence that T-cadherin deficiency causes endothelial dysfunction in T2DM vascular segments, suggesting the involvement of T-cad deficiency in T2DM pathogenesis.
Collapse
Affiliation(s)
- Han Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 147 West Changle Rd, Xi'an, 710032, Shaanxi, China.,Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, 808 College Building, Philadelphia, PA, 19107, USA
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 147 West Changle Rd, Xi'an, 710032, Shaanxi, China.
| | - Anastasia Ambrosio
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, 808 College Building, Philadelphia, PA, 19107, USA
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 147 West Changle Rd, Xi'an, 710032, Shaanxi, China
| | - Ross Summer
- Department of Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building, Philadelphia, PA, 19107, USA
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, 808 College Building, Philadelphia, PA, 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, 808 College Building, Philadelphia, PA, 19107, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, 808 College Building, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Martin LJ. Implications of adiponectin in linking metabolism to testicular function. Endocrine 2014; 46:16-28. [PMID: 24287788 DOI: 10.1007/s12020-013-0102-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022]
Abstract
Obesity is a major health problem, contributing to the development of various diseases with aging. In humans, obesity has been associated with reduced testosterone production and subfertility. Adipose tissue is an important source of hormones having influences on both metabolism and reproduction. Among them, the production and secretion of adiponectin is inversely correlated to the severity of obesity. The purpose of this review of literature is to present the current state of knowledge on adiponectin research to determine whether this hormone affects reproduction in men. Surprisingly, evidences show negative influences of adiponectin on GnRH secretion from the hypothalamus, LH and FSH secretion from the pituitary and testosterone at the testicular level. Thus far, the involvement of adiponectin in the influence of metabolism on reproduction in men is limited. However, adiponectin and its receptors are expressed by different cell types of the male gonad, including Leydig cells, spermatozoa, and epididymis. In addition, actions of adiponectin at the testicular level have been shown to promote spermatogenesis and sperm maturation. Therefore, autocrine/paracrine actions of adiponectin in the testis may contribute to support male reproductive function.
Collapse
Affiliation(s)
- Luc J Martin
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada,
| |
Collapse
|
9
|
Novel mechanism regulating endothelial permeability via T-cadherin-dependent VE-cadherin phosphorylation and clathrin-mediated endocytosis. Mol Cell Biochem 2013; 387:39-53. [PMID: 24136461 PMCID: PMC3904039 DOI: 10.1007/s11010-013-1867-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions—conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.
Collapse
|
10
|
Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne) 2011; 2:62. [PMID: 22649379 PMCID: PMC3355882 DOI: 10.3389/fendo.2011.00062] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022] Open
Abstract
The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin's beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York UniversityToronto, ON, Canada
| | - Ying Liu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York UniversityToronto, ON, Canada
- Institut Pasteur KoreaSeoul, South Korea
| |
Collapse
|