1
|
Zhang X, Guo J, Liu J, Liu J, Li Z, Chen J, Jiang J, Zhang K, Zhou B. Exosomal Src from hypoxic vascular smooth muscle cells exacerbates ischemic brain injury by promoting M1 microglial polarization. Neurochem Int 2024; 179:105819. [PMID: 39084350 DOI: 10.1016/j.neuint.2024.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Inflammatory response mediated by M1 microglia is a crucial factor leading to the exacerbation of brain injury after ischemic stroke (IS). Under the stimulation of IS, vascular smooth muscle cells (VSMCs) switch to the synthetic phenotype characterized by exosome secretion. Previous studies have shown that exosomes play an important role in the regulation of microglial polarization. We reported that exosomes derived from primary human brain VSMCs under hypoxia (HExos), but not those under normoxia (Exos), significantly promoted primary human microglia (HM1900) shift to M1 phenotype. Proteomic analysis showed that the Src protein enriched in HExos was a potential pro-inflammatory mediator. In vitro experiments showed that the expression of Src and M1 markers were upregulated in HM1900 co-incubated with HExos. However, the Src inhibitor dasatinib (DAS) significantly promoted the transformation of HM1900 phenotype from M1 to M2. In vivo experiments of pMCAO mice also revealed that DAS could effectively inhibit the activation of M1 microglia/macrophages, protect neurons from apoptosis, and improve neuronal function. These data suggested that hypoxic-VSMCs-derived exosomes were involved in post-IS inflammation by promoting M1 microglial polarization through Src transmission. Targeting inhibition of Src potentially acts as an effective strategy for treating brain injury after IS.
Collapse
MESH Headings
- Animals
- Exosomes/metabolism
- Microglia/metabolism
- Microglia/drug effects
- Humans
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Male
- src-Family Kinases/metabolism
- src-Family Kinases/antagonists & inhibitors
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Cell Hypoxia/physiology
- Cell Hypoxia/drug effects
- Cell Polarity/physiology
- Cell Polarity/drug effects
- Cells, Cultured
Collapse
Affiliation(s)
- Xiaoting Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingpei Guo
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Junbin Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Junfeng Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhaozhu Li
- Department of Medical Ultrasonics, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, Guangdong Province, 528211, China
| | - Jiayao Chen
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiawei Jiang
- College of Education, Jinan University, Zhuhai, Guangdong Province, 519000, China
| | - Ke Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
2
|
Chadid T, Morris A, Surowiec A, Robinson S, Sasaki M, Galipeau J, Pollack BP, Brewster LP. Reversible secretome and signaling defects in diabetic mesenchymal stem cells from peripheral arterial disease patients. J Vasc Surg 2018; 68:137S-151S.e2. [PMID: 30104096 DOI: 10.1016/j.jvs.2018.05.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Regenerative medicine seeks to stall or to reverse the pathologic consequences of chronic diseases. Many people with diabetes have peripheral arterial disease (PAD), which increases their already high risk of major amputation. Cellular therapies are a promising regenerative medicine approach to PAD that can be used to focally inject regenerative cells to endangered tissue beds. Mesenchymal stem cells (MSCs) are known to promote tissue regeneration through stromal support and paracrine stimulation of new blood vessels (angiogenesis). Whereas little is known about human diabetic MSCs (dMSCs), particularly those from patients with PAD, dMSCs have a limited expansion capacity but can be improved with human platelet lysate (PL) supplementation. PL is rich in many growth factors, including epidermal growth factor (EGF), which is known to be important to cell proliferation and survival signaling pathways. We hypothesize that dMSCs have a reversible defect in EGF receptor pathways. The objective of this work was to test this hypothesis using dMSCs from PAD patients. METHODS The secretome expression of EGF and prominent angiogens was characterized from bone marrow (BM)-derived and adipose tissue-derived (ATD) dMSCs from five patients (six limbs) undergoing major amputation. Western blot was used to characterize the AKT and extracellular signal-regulated protein kinases 1 and 2 expression in dMSCs under standard culture (5% fetal bovine serum plus fibroblast growth factor 2 [FGF2]), 5% human PL, or 5% fetal bovine serum plus EGF. Healthy donor MSCs were control cells. The angiogenic activity of BM- and ATD-dMSCs was tested on human umbilical vein endothelial cells (ECs). Paired t-test, analysis of variance, and Kruskal-Wallis tests were used as appropriate. RESULTS Both BM- and ATD-dMSCs had typical MSC surface marker expression and similar expansion profiles, and they did not express EGF in their secretome. PL supplementation of dMSCs improved AKT signaling, but they were resistant to FGF2 activation of extracellular signal-regulated protein kinases 1 and 2. EGF supplementation led to similar AKT expression as with PL, but PL had greater phosphorylation of AKT at 30 and 60 minutes. The conditioned media from both BM- and ATD-dMSCs had robust levels of prominent angiogens (vascular endothelial growth factor, monocyte chemoattractant protein 1, hepatocyte growth factor), which stimulated EC proliferation and migration, and the co-culture of dMSCs with ECs led to significantly longer EC sprouts in three-dimensional gel than EC-alone pellets. CONCLUSIONS PL and EGF supplementation improves AKT expression in dMSCs over that of FGF2, but PL improved pAKT over that of EGF. Thus, PL supplementation strategies may improve AKT signaling, which could be important to MSC survival in cellular therapies. Furthermore, BM- and ATD-dMSCs have similar secretomes and robust in vitro angiogenic activity, which supports pursuing dMSCs from both reservoirs in regenerative medicine strategies.
Collapse
Affiliation(s)
- Tatiana Chadid
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Andrew Morris
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Alexandra Surowiec
- School of Arts and Sciences, Departments of Biological Sciences and Anthropology, Vanderbilt University, Nashville, Tenn
| | - Scott Robinson
- Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Maiko Sasaki
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Jacques Galipeau
- Don and Marilyn Anderson Professor in Oncology and Director, Program for Advanced Cell Therapy, University of Wisconsin-Madison, Madison, Wisc
| | - Brian P Pollack
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Luke P Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Ga; Surgery and Research Services, Atlanta VA Medical Center, Atlanta, Ga.
| |
Collapse
|
3
|
Brewster L, Robinson S, Wang R, Griffiths S, Li H, Peister A, Copland I, McDevitt T. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J Vasc Surg 2016; 65:826-838.e1. [PMID: 26921003 DOI: 10.1016/j.jvs.2015.02.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/18/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Critical limb ischemia (CLI) is a life- and limb-threatening condition affecting 1% to 10% of the population with peripheral arterial disease. Traditional revascularization options are not possible for up to 50% of CLI patients, in which case, the use of cellular therapies, such as bone marrow-derived mesenchymal stem cells (MSCs), hold great promise as an alternative revascularization therapy. However, no randomized, controlled phase 3 trials to date have demonstrated an improvement in limb salvage with cellular therapies. This may be due to poor cell quality (ie, inability to generate a sufficient number of angiogenic MSCs) or to the inadequate retention and viability of MSCs after delivery, or both. Because concerns remain about the expansion and angiogenic potential of autologous MSCs in the CLI population, the objective of this study was to examine the effect of our novel culture media supplement, pooled human platelet lysate (PL), in lieu of the standard fetal bovine serum (FBS), to improve the expansion potential of MSCs from CLI patients. We also characterized the in vitro angiogenic activity of MSCs from the tibia of amputated CLI limbs compared with MSCs from healthy donors. METHODS MSCs were obtained from the tibia of four CLI patients (ISC) and four ISC patients with diabetes mellitus (ISC+DM) undergoing major amputation. Healthy MSCs were aspirated from the iliac crest of four young and healthy donors. MSCs were isolated and expanded in culture with PL or FBS. MSCs from passage 3 to 6 were used for phenotypic marker expression and for adipogenic and osteogenic differentiation and were tested for their in vitro angiogenic activity on human microdermal endothelial cells. In parallel MSCs were cultured to passage 11 for population-doubling calculations. RESULTS MSCs from ISC and ISC+DM patients and from healthy patients exhibited appropriate expression of cell surface markers and differentiation capacity. Population doublings were significantly greater for PL-stimulated compared with FBS-stimulated MSCs in all groups. Biologically active amounts of angiogens were identified in the secretome of all MSCs without consistent trends among groups. PL expansion did not adversely affect the angiogenic activity of MSCs compared with FBS. The ISC and ISC+DM MSCs demonstrated angiogenic effects on endothelial cells similar to those of healthy and ISC MSCs. CONCLUSIONS PL promotes the rapid expansion of MSCs from CLI and healthy persons. Importantly, MSCs expanded from CLI patients demonstrate the desired angiogenic activity compared with their healthy counterparts. We conclude that autologous MSCs from CLI patients can be sufficiently expanded with PL and be expected to deliver requisite angiogenic effects in vivo. We expect the improved expansion of ISC and ISC+DM with PL to be helpful in improving the successful delivery of autologous MSCs to patients with CLI.
Collapse
Affiliation(s)
- Luke Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga; Surgical and Research Services, Atlanta Veterans Affairs Medical Center, Atlanta, Ga; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga.
| | - Scott Robinson
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Ruoya Wang
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Sarah Griffiths
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga
| | - Haiyan Li
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | | | - Ian Copland
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Ga
| | - Todd McDevitt
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology, Atlanta, Ga
| |
Collapse
|
4
|
Angiogenic endothelial cell invasion into fibrin is stimulated by proliferating smooth muscle cells. Microvasc Res 2013; 90:40-7. [PMID: 23886898 DOI: 10.1016/j.mvr.2013.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022]
Abstract
These studies aimed to determine the effect of smooth muscle cells (SMCs) on angiogenic behavior of endothelial cells (ECs) within fibrin hydrogels, an extracellular matrix (ECM) commonly used in tissue engineering. We developed a 3-D, fibrin-based co-culture assay of angiogenesis consisting of aggregates of SMCs with ECs seeded onto the aggregates' surface. Using digital fluorescence micrography, EC matrix invasion was quantified by average length of sprouts (ALS) and density of sprout formation (DSF). We demonstrated that ECs and SMCs co-invade into the ECM in close proximity to one another. ECs that were co-cultured with SMCs demonstrated increased invasion compared to ECs that were cultured alone at all time points. At Day 19, the ALS of ECs in co-culture was 327+/-58μm versus 70+/-11μm of ECs cultured alone (p=.01). The DSF of co-cultured ECs was also significantly greater than that of ECs cultured alone (p=.007 on Day 19). This appeared to be a function of both increased EC invasion as well as improved persistence of EC sprout networks. At 7days, ECs in co-culture with proliferation-inhibited SMCs previously treated with Mitomycin-C (MMC) demonstrated significantly attenuated sprouting compared to ECs co-cultured with SMCs that were untreated with MMC (82+/-14μm versus 205+/-32μm; p<.05). In assays in which multiple co-culture aggregates were cultured within a single hydrogel, we observed directional invasion of sprouts preferentially towards the other aggregates within the hydrogel. In co-culture assays without early EC/SMC contact, the ALS of ECs cultured in the presence of SMCs was significantly greater than those cultured in the absence of SMCs by Day 3 (320+/-21μm versus 187+/-16μm; p<.005). We conclude that SMCs augment EC matrix invasion into 3-D fibrin hydrogels, at least in part resulting from SMC proliferative and invasive activities. Directed invasion between co-culture aggregates and augmented angiogenesis in the absence of early contact suggests a paracrine mechanism for the observed results.
Collapse
|
5
|
Lagares D, Busnadiego O, García-Fernández RA, Kapoor M, Liu S, Carter DE, Abraham D, Shi-Wen X, Carreira P, Fontaine BA, Shea BS, Tager AM, Leask A, Lamas S, Rodríguez-Pascual F. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. ACTA ACUST UNITED AC 2012; 64:1653-64. [PMID: 22492165 DOI: 10.1002/art.33482] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Enhanced adhesive signaling, including activation of focal adhesion kinase (FAK), is a hallmark of fibroblasts from lung fibrosis patients, and FAK has therefore been hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. METHODS FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor PF-562,271, or with small interfering RNA (siRNA)-mediated silencing of FAK were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and lungs were harvested for histologic and biochemical analysis. Using endothelin 1 (ET-1) as a stimulus, cell adhesion and contraction, as well as profibrotic gene expression, were studied in fibroblasts isolated from wild-type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild-type and β1 integrin-deficient mouse fibroblasts. RESULTS FAK expression and activity were up-regulated in fibroblast foci and remodeled vessels from lung fibrosis patients. Pharmacologic or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis in mice. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by JNK activation through β1 integrin/FAK signaling. CONCLUSION These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases.
Collapse
Affiliation(s)
- David Lagares
- Centro de Biología Molecular Severo Ochoa, CSIC and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Koshman YE, Chu M, Engman SJ, Kim T, Iyengar R, Robia SL, Samarel AM. Focal adhesion kinase-related nonkinase inhibits vascular smooth muscle cell invasion by focal adhesion targeting, tyrosine 168 phosphorylation, and competition for p130(Cas) binding. Arterioscler Thromb Vasc Biol 2012; 31:2432-40. [PMID: 21852560 DOI: 10.1161/atvbaha.111.235549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal adhesion kinase-related nonkinase (FRNK), the C-terminal domain of focal adhesion kinase (FAK), is a tyrosine-phosphorylated, vascular smooth muscle cell (VSMC)-specific inhibitor of cell migration. FRNK inhibits both FAK and proline-rich tyrosine kinase 2 (PYK2) in cultured VSMCs, and both kinases may be involved in VSMC invasion during vascular remodeling. METHODS AND RESULTS Adenovirally mediated gene transfer of green fluorescent protein-tagged, wild-type (wt) FRNK into balloon-injured rat carotid arteries confirmed that FRNK overexpression inhibited both FAK and PYK2 phosphorylation and downstream signaling in vivo. To identify which kinase was involved in regulating VSMC invasion, adenovirally mediated expression of specific short hairpin RNAs was used to knock down FAK versus PYK2 in cultured VSMCs, but only FAK short hairpin RNA was effective in reducing VSMC invasion. The role of FRNK tyrosine phosphorylation was then examined using adenoviruses expressing nonphosphorylatable (Tyr168Phe-, Tyr232Phe-, and Tyr168,232Phe-) green fluorescent protein-FRNK mutants. wtFRNK and all FRNK mutants localized to FAs, but only Tyr168 phosphorylation was required for FRNK to inhibit invasion. Preventing Tyr168 phosphorylation also increased FRNK-paxillin interaction, as determined by coimmunoprecipitation, total internal reflection fluorescence microscopy, and fluorescence recovery after photobleaching. Furthermore, wtFRNK competed with FAK for binding to p130(Cas) (a critically important regulator of cell migration) and prevented its phosphorylation. However, Tyr168Phe-FRNK was unable to bind p130(Cas). CONCLUSION We propose a 3-stage mechanism for FRNK inhibition: focal adhesion targeting, Tyr168 phosphorylation, and competition with FAK for p130 binding and phosphorylation, which are all required for FRNK to inhibit VSMC invasion.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Li F, Zhang X, Jin YP, Mulder A, Reed EF. Antibody ligation of human leukocyte antigen class I molecules stimulates migration and proliferation of smooth muscle cells in a focal adhesion kinase-dependent manner. Hum Immunol 2011; 72:1150-9. [PMID: 22001078 PMCID: PMC3563264 DOI: 10.1016/j.humimm.2011.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 01/04/2023]
Abstract
Chronic rejection manifests as transplant vasculopathy, which is characterized by intimal thickening of the vessels of the allograft. Intimal thickening is thought to result from the migration and proliferation of vascular smooth muscle cells (SMC) in the vessel media, followed by deposition of extracellular matrix proteins. The development of post-transplantation anti-human leukocyte antigen (HLA) antibodies (Ab) is strongly correlated with the development of transplant vasculopathy and graft loss. Here we demonstrate that cross-linking of HLA class I molecules on the surface of human SMC with anti-HLA class I Ab induced cell proliferation and migration. Class I ligation also increased phosphorylation of focal adhesion kinase (FAK), Akt, and ERK1/2 in SMC. Knockdown of FAK by siRNA attenuated class I-induced phosphorylation of Akt and ERK1/2, as well as cell proliferation and migration. These results indicate that ligation of HLA class I molecules induces SMC migration and proliferation in a FAK-dependent manner, which may be important in promoting transplant vasculopathy.
Collapse
MESH Headings
- Antibodies/adverse effects
- Antibodies/immunology
- Antibodies/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/immunology
- Cell Movement/drug effects
- Cell Movement/immunology
- Cell Proliferation/drug effects
- Cells, Cultured
- Flow Cytometry
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/immunology
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation/immunology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Survival/immunology
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Organ Transplantation
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction/immunology
- Transfection
Collapse
Affiliation(s)
- Fang Li
- UCLA Immunogenetics Center, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Xiaohai Zhang
- UCLA Immunogenetics Center, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yi-Ping Jin
- UCLA Immunogenetics Center, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Elaine F. Reed
- UCLA Immunogenetics Center, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
8
|
Zhao B, Luo X, Shi H, Ma D. Tissue factor pathway inhibitor-2 is downregulated by ox-LDL and inhibits ox-LDL induced vascular smooth muscle cells proliferation and migration. Thromb Res 2011; 128:179-85. [PMID: 21458846 DOI: 10.1016/j.thromres.2011.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/13/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Tissue factor pathway inhibitor-2 (TFPI-2) is a member of the Kunitz-type family of serine protease inhibitors, which inhibits several matrix metalloproteinases activity involved in extracellular matrix degradation. Studies have shown low TFPI-2 expression in the shoulder regions of atherosclerotic plaques. But studies evaluating its role in the progression of atherosclerotic plaque are scarce. Vascular smooth muscle cells (VSMCs) are important components of atherosclerotic plaques and oxidized low density lipoprotein (ox-LDL) is an important detrimental factor of atherosclerosis. The aim of this study is to elucidate the effect of TFPI-2 on smooth muscle cell proliferation and migration induced by ox-LDL. METHODS Retroviruses expressing human TFPI-2 were constructed. Cell proliferation was determined by CCK-8 assay. Cell apoptosis was analyzed by double staining of FITC-Annexin V and propidium iodide. Cell migration was studied through a Transwell chamber and with a scratch-wound assay. The matrix metalloproteinase-2 and -9 activities were analyzed by gelatin zymography. Phosphorylation of FAK was analyzed by western blot. RESULTS TFPI-2 over-expression of mRNA and protein was confirmed in infected cells. CCK-8 assay showed that TFPI-2 inhibit VSMCs proliferation induced by ox-LDL while without cytotoxicity to VSMCs. Transwell and scratch wound assay confirmed TFPI-2 over-expression can inhibit VSMC migration. Zymography assay showed that TFPI-2 can inhibit MMP-2, 9 activity induced by ox-LDL. Western blot assay showed TFPI-2 can inhibit cyclinD1 expression and FAK phosphorylation. CONCLUSION TFPI-2 over-expression may strongly inhibit the proliferation and migration of VSMCs and suppresses MMP-2, 9 activity induced by ox-LDL, making it a promising candidate for treatment of atherosclerotic process.
Collapse
Affiliation(s)
- Bilian Zhao
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
9
|
Koshman YE, Kim T, Chu M, Engman SJ, Iyengar R, Robia SL, Samarel AM. FRNK inhibition of focal adhesion kinase-dependent signaling and migration in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2010; 30:2226-33. [PMID: 20705914 DOI: 10.1161/atvbaha.110.212761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether interference with FRNK targeting to focal adhesions (FAs) affects its inhibitory activity and tyrosine phosphorylation. METHODS AND RESULTS Focal adhesion kinase and its autonomously expressed C-terminal inhibitor, focal adhesion kinase-related nonkinase (FRNK), regulate vascular smooth muscle cell (VSMC) signaling and migration. FRNK-paxillin binding was reduced by a point mutation in its FA targeting domain (L341S-FRNK). Green fluorescent protein-tagged wild type and L341S-FRNK were then adenovirally expressed in VSMCs. L341S-FRNK targeted to VSMC FAs, despite previous studies in other cell types. L341S-FRNK affected FA binding kinetics (assessed by total internal reflection fluorescnece [TIRF] microscopy and fluorescence recovery after photobleaching [FRAP]) and reduced its steady-state paxillin interaction (determined by coimmunoprecipitation). Both wt-FRNK and L341S-FRNK lowered basal and angiotensin II-stimulated focal adhesion kinase, paxillin, and extracellular signal-regulated kinase 1/2 phosphorylation. However, the degree of inhibition was significantly reduced by L341S-FRNK. L341S-FRNK also demonstrated significantly greater migratory activity compared with wt-FRNK-expressing VSMCs. Angiotensin II-induced Y168 phosphorylation was Src dependent, as evident by a significant reduction in Y168 phosphorylation by the Src family kinase inhibitor PP2 is 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Surprisingly, Y168 phosphorylation was unaffected by its targeting. Furthermore, Y232 phosphorylation increased approximately 3-fold in L341S-FRNK, which was less sensitive to PP2. CONCLUSIONS FRNK inhibition of VSMC migration requires both FA targeting and Y168 phosphorylation by Src family kinases. FRNK-Y232 phosphorylation occurs outside of FAs, probably by a PP2-insensitive kinase.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Cardiovascular Institute, Loyola University Medical Center, 2160 S First Ave, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|