1
|
González-Loyola A, Bernier-Latmani J, Roci I, Wyss T, Langer J, Durot S, Munoz O, Prat-Luri B, Delorenzi M, Lutolf MP, Zamboni N, Verdeil G, Petrova TV. c-MAF coordinates enterocyte zonation and nutrient uptake transcriptional programs. J Exp Med 2022; 219:213478. [PMID: 36121415 PMCID: PMC9486085 DOI: 10.1084/jem.20212418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Small intestinal villi are structural and functional units present in higher vertebrates and uniquely adapted to nutrient absorption. Villus enterocytes are organized in transcriptional "zones" dedicated to specialized tasks such as absorption of specific nutrients. We report that the transcription factor c-MAF is expressed in differentiated lower and mid-villus enterocytes and is a target of BMP signaling. Maf inactivation perturbed the villus zonation program by increasing carbohydrate-related transcripts while suppressing transcripts linked to amino-acid and lipid absorption. The formation of cytoplasmic lipid droplets, shuttling dietary fat to chylomicrons, was impaired upon Maf loss indicating its role in dietary lipid handling. Maf inactivation under homeostatic conditions expanded tuft cells and led to compensatory gut lengthening, preventing weight loss. However, delayed Maf-/- enterocyte maturation impaired weight recovery after acute intestinal injury, resulting in reduced survival. Our results identify c-MAF as a regulator of the intestinal villus zonation program, while highlighting the importance of coordination between stem/progenitor and differentiation programs for intestinal regeneration.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Irena Roci
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Tania Wyss
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jakob Langer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Olivia Munoz
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Borja Prat-Luri
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Mauro Delorenzi
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Way H, Roh J, Venteicher B, Chandra S, Thomas AA. Synthesis of ribavirin 1,2,3- and 1,2,4-triazolyl analogs with changes at the amide and cytotoxicity in breast cancer cell lines. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:38-64. [PMID: 35929908 DOI: 10.1080/15257770.2022.2107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We report the synthesis and cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells of novel 1,2,3- and 1,2,4-triazolyl analogs of ribavirin. We modified ribavirin's carboxamide moiety to test the effects of lipophilic groups. 1-β-D-Ribofuranosyl-1H-1,2,3-triazoles were prepared using Click Chemistry, whereas an unprecedented application of a prior 1,2,4-triazole ring synthesis was used for 1-β-D-ribofuranosyl-1H-1,2,4-triazole analogs. Though cytotoxicity was mediocre and there was no correlation with lipophilicity, we discovered that a structurally similar concentrative nucleoside transporter 2 (CNT2) inhibitor was modestly cytotoxic (MCF-7 IC50 of 42 µM). These syntheses could be used to efficiently investigate variation in the nucleobase.
Collapse
Affiliation(s)
- Hannah Way
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Joshua Roh
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Brooklynn Venteicher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| |
Collapse
|
3
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Ye C, Han K, Lei J, Zeng K, Zeng S, Ju H, Yu L. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state. Br J Pharmacol 2018; 175:4209-4217. [PMID: 30076612 DOI: 10.1111/bph.14467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The concentrative nucleoside transporter 2 (CNT2) mediates the uptake of both natural nucleosides and nucleoside-derived drugs. Therefore, it is important both physiologically and pharmacologically. However, CNT2 expression is significantly repressed in colorectal cancer (CRC). Here, we have elucidated the mechanism(s) underlying CNT2 repression in CRC. EXPERIMENTAL APPROACH Repression of CNT2 in tumour samples from patients with CRC was identified using Western blot and RT-qPCR. The histone acetylation state at the CNT2 promoter region was then evaluated with chromatin immunoprecipitation and trichostatin A (TSA) treatment. To find the key enzyme responsible for hypoacetylation at the CNT2 promoter region, siRNA knockdown and RT-qPCR were used. Effects of combining HDAC inhibitors and cladribine were studied in HCT15 and HT29 cells. KEY RESULTS Histone deacetylase 7 was significantly up-regulated in CRC, leading to histone hypoacetylation at the CNT2 promoter region, especially at sites H3K9Ac, H3K18Ac and H4Ac. This hypoacetylation condensed the chromatin structure and reduced CNT2 expression. All these effects were reversed by treatment with TSA, a histone deacetylase inhibitor. In HCT15 and HT29 cells, inhibition of histone deacetylase increased cell uptake and decreased IC50 for cladribine. CONCLUSIONS AND IMPLICATIONS Histone hypoacetylation due to increased levels of histone deacetylase 7 results in CNT2 repression in CRC tumour tissue and could lead to decreased uptake of and consequent resistance to nucleoside anti-cancer agents. Such resistance could be overcome by combining inhibitors of histone deacetylase with the nucleoside anti-cancer agent.
Collapse
Affiliation(s)
- Chaonan Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kun Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinxiu Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kui Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018; 175:1156-1167.e15. [PMID: 30270040 DOI: 10.1016/j.cell.2018.08.063] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterium-rich environment. It is unknown whether these tasks are spatially zonated along the villus axis. Here, we extracted a large panel of landmark genes characterized by transcriptomics of laser capture microdissected villus segments and utilized it for single-cell spatial reconstruction, uncovering broad zonation of enterocyte function along the villus. We found that enterocytes at villus bottoms express an anti-bacterial gene program in a microbiome-dependent manner. They next shift to sequential expression of carbohydrates, peptides, and fat absorption machineries in distinct villus compartments. Finally, they induce a Cd73 immune-modulatory program at the villus tips. Our approach can be used to uncover zonation patterns in other organs when prior knowledge of landmark genes is lacking.
Collapse
Affiliation(s)
- Andreas E Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efi E Massasa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Milena Rozenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Pastor-Anglada M, Pérez-Torras S. Emerging Roles of Nucleoside Transporters. Front Pharmacol 2018; 9:606. [PMID: 29928232 PMCID: PMC5997781 DOI: 10.3389/fphar.2018.00606] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Since human Nucleoside Transporters (hNTs) were identified by their activity as transport systems, extensive work has been done to fully characterize them at the molecular and physiological level. Many efforts have been addressed to the identification of their selectivity for natural substrates and nucleoside analogs used to treat several diseases. hNTs belong to two different gene families, SLC28 and SLC29, encoding human Concentrative Nucleoside Transporters (hCNTs) and human Equilibrative Nucleoside Transporters (hENTs), respectively. hCNTs and hENTs are integral membrane proteins, albeit structurally unrelated. Both families share common features as substrate selectivity and often tissue localization. This apparent biological redundancy may anticipate some different roles for hCNTs and hENTs in cell physiology. Thus, hENTs may have a major role in maintaining nucleoside homeostasis, whereas hCNTs could contribute to nucleoside sensing and signal transduction. In this sense, the ascription of hCNT1 to a transceptor reinforces this hypothesis. Moreover, some evidences could suggest a putative role of hCNT2 and hCNT3 as transceptors. The interacting proteins identified for hCNT2 suggest a link to energy metabolism. Moreover, the ability of hCNT2 and hCNT3 to transport adenosine links both proteins to purinergic signaling. On the other hand, the broad selectivity transporters hENTs have a crucial role in salvage pathways and purinergic signaling by means of nucleoside pools regulation. In particular, the two new hENT2 isoforms recently described together with hENT2 seem to be key elements controlling nucleoside and nucleotide pools for DNA synthesis. This review focuses on all these NTs functions beyond their mere translocation ability.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Jiraskova L, Cerveny L, Karbanova S, Ptackova Z, Staud F. Expression of Concentrative Nucleoside Transporters ( SLC28A) in the Human Placenta: Effects of Gestation Age and Prototype Differentiation-Affecting Agents. Mol Pharm 2018; 15:2732-2741. [PMID: 29782174 DOI: 10.1021/acs.molpharmaceut.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Equilibrative ( SLC29A) and concentrative ( SLC28A) nucleoside transporters contribute to proper placental development and mediate uptake of nucleosides/nucleoside-derived drugs. We analyzed placental expression of SLC28A mRNA during gestation. Moreover, we studied in choriocarcinoma-derived BeWo cells whether SLC29A and SLC28A mRNA levels can be modulated by activity of adenylyl cyclase, retinoic acid receptor activation, CpG islands methylation, or histone acetylation, using forskolin, all- trans-retinoic acid, 5-azacytidine, and sodium butyrate/sodium valproate, respectively. We found that expression of SLC28A1, SLC28A2, and SLC28A3 increases during gestation and reveals considerable interindividual variability. SLC28A2 was shown to be a dominant subtype in the first-trimester and term human placenta, while SLC28A1 exhibited negligible expression in the term placenta only. In BeWo cells, we detected mRNA of SLC28A2 and SLC28A3. Levels of the latter were affected by 5-azacytidine and all- trans-retinoic acid, while the former was modulated by sodium valproate (but not sodium butyrate), all- trans-retinoic acid, 5-azacytidine, and forskolin that caused 25-fold increase in SLC28A2 mRNA; we documented by analysis of syncytin-1 that the observed changes in SLC28A expression do not correlate with the morphological differentiation state of BeWo cells. Upregulated SLC28A2 mRNA was reflected in elevated uptake of [3H]-adenosine, high-affinity substrate of concentrative nucleoside transporter 2. Using KT-5720 and inhibitors of phosphodiesterases, we subsequently confirmed importance of cAMP/protein kinase A pathway in SLC28A2 regulation. On the other hand, SLC29A genes exhibited constitutive expression and none of the tested compounds increased SLC28A1 expression to detectable levels. In conclusion, we provide the first evidence that methylation status and activation of retinoic acid receptor affect placental SLC28A2 and SLC28A3 transcription and substrates of concentrative nucleoside transporter 2 might be taken up in higher extent in placentas with overactivated cAMP/protein kinase A pathway and likely in the term placenta.
Collapse
Affiliation(s)
- Lucie Jiraskova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Sara Karbanova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| |
Collapse
|
8
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
9
|
Grañé-Boladeras N, Pérez-Torras S, Lozano JJ, Romero MR, Mazo A, Marín JJ, Pastor-Anglada M. Pharmacogenomic analyzis of the responsiveness of gastrointestinal tumor cell lines to drug therapy: A transportome approach. Pharmacol Res 2016; 113:364-375. [DOI: 10.1016/j.phrs.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023]
|
10
|
Xiang R, Oddy VH, Archibald AL, Vercoe PE, Dalrymple BP. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 2016; 4:e1762. [PMID: 26989612 PMCID: PMC4793311 DOI: 10.7717/peerj.1762] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E-46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT.
Collapse
Affiliation(s)
| | - Victor Hutton Oddy
- NSW Department of Primary Industries, Beef Industry Centre, University of New England , Armidale, NSW , Australia
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush , UK
| | - Phillip E Vercoe
- School of Animal Biology and Institute of Agriculture, The University of Western Australia , Perth, Western Australia , Australia
| | | |
Collapse
|
11
|
Zhao G, Lu H, Li C. Proapoptotic activities of protein disulfide isomerase (PDI) and PDIA3 protein, a role of the Bcl-2 protein Bak. J Biol Chem 2015; 290:8949-63. [PMID: 25697356 DOI: 10.1074/jbc.m114.619353] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 01/28/2023] Open
Abstract
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.
Collapse
Affiliation(s)
- Guoping Zhao
- From the Molecular Targets Program, Departments of Medicine, Pharmacology, and Toxicology, University of Louisville, Louisville, Kentucky 40202 and
| | - Huayi Lu
- the Second Hospital, Jilin University, Changchun, Jilin Province, China 130041
| | - Chi Li
- From the Molecular Targets Program, Departments of Medicine, Pharmacology, and Toxicology, University of Louisville, Louisville, Kentucky 40202 and
| |
Collapse
|
12
|
rCNT2 extracellular cysteines, Cys615
and Cys649
, are important for maturation and sorting to the plasma membrane. FEBS Lett 2014; 588:4382-9. [DOI: 10.1016/j.febslet.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
13
|
Hypoxia and P1 receptor activation regulate the high-affinity concentrative adenosine transporter CNT2 in differentiated neuronal PC12 cells. Biochem J 2013; 454:437-45. [PMID: 23819782 DOI: 10.1042/bj20130231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Under several adverse conditions, such as hypoxia or ischaemia, extracellular levels of adenosine are elevated because of increased energy demands and ATP metabolism. Because extracellular adenosine affects metabolism through G-protein-coupled receptors, its regulation is of high adaptive importance. CNT2 (concentrative nucleoside transporter 2) may play physiological roles beyond nucleoside salvage in brain as it does in other tissues. Even though nucleoside transport in brain has mostly been seen as being of equilibrative-type, in the present study, we prove that the rat phaeochromocytoma cell line PC12 shows a concentrative adenosine transport of CNT2-type when cells are differentiated to a neuronal phenotype by treatment with NGF (nerve growth factor). Differentiation of PC12 cells was also associated with the up-regulation of adenosine A1 receptors. Addition of adenosine receptor agonists to cell cultures increased CNT2-related activity by a mechanism consistent with A₁ and A2A receptor activation. The addition of adenosine to the culture medium also induced the phosphorylation of the intracellular regulatory kinase AMPK (AMP-activated protein kinase), with this effect being dependent upon adenosine transport. CNT2-related activity of differentiated PC12 cells was also dramatically down-regulated under hypoxic conditions. Interestingly, the analysis of nucleoside transporter expression after experimental focal ischaemia in rat brain showed that CNT2 expression was down-regulated in the infarcted tissue, with this effect somehow being restricted to other adenosine transporter proteins such as CNT3 and ENT1 (equilibrative nucleoside transporter 1). In summary, CNT2 is likely to modulate extracellular adenosine and cell energy balance in neuronal tissue.
Collapse
|
14
|
Fleischmannova J, Kucerova L, Sandova K, Steinbauerova V, Broz V, Simek P, Zurovec M. Differential response of Drosophila cell lines to extracellular adenosine. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:321-331. [PMID: 22266077 DOI: 10.1016/j.ibmb.2012.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
Adenosine (Ado) is a crucial metabolite that affects a wide range of physiological processes. Key proteins regulating Ado signaling, transport and metabolism are conserved among vertebrates and invertebrates. It is well known that Ado influences proliferation of several vertebrate and invertebrate cells. Here we show that Ado negatively influences viability, changes morphology and mitochondrial polarity of the Drosophila imaginal disc cell line (Cl.8+) via a mechanism exclusively dependent on cellular Ado uptake. High transport of Ado is followed by phosphorylation and ATP production as a part of Ado salvation, which at higher concentrations may interfere with cellular homeostasis. In contrast, hematopoietic cell line Mbn2, which grows well in high Ado concentration, preferentially uses adenosine deaminase as a part of the purine catabolic pathway. Our results show that different types of Drosophila cell lines use different pathways for Ado conversion and suggest that such differences may be an important part of complex mechanisms maintaining energy homeostasis in the body.
Collapse
|
15
|
Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochem J 2012; 442:517-25. [DOI: 10.1042/bj20110605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
rCNT2 (rat concentrative nucleoside transporter 2) (Slc28a2) is a purine-preferring concentrative nucleoside transporter. It is expressed in both non-polarized and polarized cells, where it is localized in the brush border membrane. Since no information about the domains implicated in the plasma membrane sorting of rCNT2 is available, the present study aimed to identify structural and functional requirements for rCNT2 trafficking. The comprehensive topological mapping of the intracellular N-terminal tail revealed two main features: (i) a glutamate-enriched region (NPGLELME) between residues 21 and 28 that seems to be implicated in the stabilization of rCNT2 in the cell surface, since mutagenesis of these conserved glutamates resulted in enhanced endocytosis; and (ii) mutation of a potential protein kinase CK2 domain that led to a loss of brush border-specific sorting. Although the shortest proteins assayed (rCNT2-74AA, -48AA and -37AA) accumulated intracellularly and lost their brush border membrane preference, they were still functional. A deeper analysis of CK2 implication in CNT2 trafficking, using a CK2-specific inhibitor [DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)] and other complementary mutations mimicking the negative charge provided by phosphorylation (S46D and S46E), demonstrated an effect of this kinase on rCNT2 activity. In summary, the N-terminal tail of rCNT2 contains dual sorting signals. An acidic region is responsible for its proper stabilization at the plasma membrane, whereas the putative CK2 domain (Ser46) is implicated in the apical sorting of the transporter.
Collapse
|