1
|
Driscoll S, Merkuri F, Chain FJJ, Fish JL. Splicing is dynamically regulated during limb development. Sci Rep 2024; 14:19944. [PMID: 39198579 PMCID: PMC11358489 DOI: 10.1038/s41598-024-68608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Modifications to highly conserved developmental gene regulatory networks are thought to underlie morphological diversification in evolution and contribute to human congenital malformations. Relationships between gene expression and morphology have been extensively investigated in the limb, where most of the evidence for alterations to gene regulation in development consists of pre-transcriptional mechanisms that affect expression levels, such as epigenetic alterations to regulatory sequences and changes to cis-regulatory elements. Here we report evidence that alternative splicing (AS), a post-transcriptional process that modifies and diversifies mRNA transcripts, is dynamic during limb development in two mammalian species. We evaluated AS patterns in mouse (Mus musculus) and opossum (Monodelphis domestica) across the three key limb developmental stages: the ridge, bud, and paddle. Our data show that splicing patterns are dynamic over developmental time and suggest differences between the two mammalian taxa. Additionally, multiple key limb development genes, including Fgf8, are differentially spliced across the three stages in both species, with expression levels of the conserved splice variants, Fgf8a and Fgf8b, changing across developmental time. Our data demonstrates that AS is a critical mediator of mRNA diversity in limb development and provides an additional mechanism for evolutionary tweaking of gene dosage.
Collapse
Affiliation(s)
- Sean Driscoll
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
2
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
5
|
Gantert T, Henkel F, Wurmser C, Oeckl J, Fischer L, Haid M, Adamski J, Esser-von Bieren J, Klingenspor M, Fromme T. Fibroblast growth factor induced Ucp1 expression in preadipocytes requires PGE2 biosynthesis and glycolytic flux. FASEB J 2021; 35:e21572. [PMID: 33826782 DOI: 10.1096/fj.202002795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
High uncoupling protein 1 (Ucp1) expression is a characteristic of differentiated brown adipocytes and is linked to adipogenic differentiation. Paracrine fibroblast growth factor 8b (FGF8b) strongly induces Ucp1 transcription in white adipocytes independent of adipogenesis. Here, we report that FGF8b and other paracrine FGFs act on brown and white preadipocytes to upregulate Ucp1 expression via a FGFR1-MEK1/2-ERK1/2 axis, independent of adipogenesis. Transcriptomic analysis revealed an upregulation of prostaglandin biosynthesis and glycolysis upon Fgf8b treatment of preadipocytes. Oxylipin measurement by LC-MS/MS in FGF8b conditioned media identified prostaglandin E2 as a putative mediator of FGF8b induced Ucp1 transcription. RNA interference and pharmacological inhibition of the prostaglandin E2 biosynthetic pathway confirmed that PGE2 is causally involved in the control over Ucp1 transcription. Importantly, impairment of or failure to induce glycolytic flux blunted the induction of Ucp1, even in the presence of PGE2 . Lastly, a screening of transcription factors identified Nrf1 and Hes1 as required regulators of FGF8b induced Ucp1 expression. Thus, we conclude that paracrine FGFs co-regulate prostaglandin and glucose metabolism to induce Ucp1 expression in a Nrf1/Hes1-dependent manner in preadipocytes, revealing a novel regulatory network in control of Ucp1 expression in a formerly unrecognized cell type.
Collapse
Affiliation(s)
- Thomas Gantert
- Department of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - Christine Wurmser
- Department of Animal Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Josef Oeckl
- Department of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lena Fischer
- Department of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark Haid
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - Martin Klingenspor
- Department of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Department of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
7
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
8
|
Fibroblast growth factor 8b induces uncoupling protein 1 expression in epididymal white preadipocytes. Sci Rep 2019; 9:8470. [PMID: 31186471 PMCID: PMC6560125 DOI: 10.1038/s41598-019-44878-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
The number of brown adipocytes residing within murine white fat depots (brite adipocytes) varies a lot by depot, strain and physiological condition. Several endocrine fibroblast growth factors are implicated in the regulation of brite adipocyte abundance. The family of fibroblast growth factors can be categorized by their site of action into endocrine, paracrine and intracellular peptides. We here screened paracrine fibroblast growth factors for their potential to drive brite adipogenesis in differentiating epididymal white adipocytes and identified fibroblast growth factor 8b to induce uncoupling protein 1 expression, but at the same time to interfere in adipogenesis. In an in vivo trial, fibroblast growth factor 8b released into the epididymal fat depot failed to robustly increase the number of brite adipocytes. The specific action of fibroblast growth factor 8b on the uncoupling protein 1 promoter in cultured epididymal adipocytes provides a model system to dissect specific gene regulatory networks.
Collapse
|
9
|
Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy. Int J Mol Sci 2019; 20:ijms20092075. [PMID: 31035542 PMCID: PMC6539236 DOI: 10.3390/ijms20092075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The etiology of cerebral palsy (CP) is complex and remains inadequately understood. Early detection of CP is an important clinical objective as this improves long term outcomes. We performed genome-wide DNA methylation analysis to identify epigenomic predictors of CP in newborns and to investigate disease pathogenesis. Methylation analysis of newborn blood DNA using an Illumina HumanMethylation450K array was performed in 23 CP cases and 21 unaffected controls. There were 230 significantly differentially-methylated CpG loci in 258 genes. Each locus had at least 2.0-fold change in methylation in CP versus controls with a FDR p-value ≤ 0.05. Methylation level for each CpG locus had an area under the receiver operating curve (AUC) ≥ 0.75 for CP detection. Using Artificial Intelligence (AI) platforms/Machine Learning (ML) analysis, CpG methylation levels in a combination of 230 significantly differentially-methylated CpG loci in 258 genes had a 95% sensitivity and 94.4% specificity for newborn prediction of CP. Using pathway analysis, multiple canonical pathways plausibly linked to neuronal function were over-represented. Altered biological processes and functions included: neuromotor damage, malformation of major brain structures, brain growth, neuroprotection, neuronal development and de-differentiation, and cranial sensory neuron development. In conclusion, blood leucocyte epigenetic changes analyzed using AI/ML techniques appeared to accurately predict CP and provided plausible mechanistic information on CP pathogenesis.
Collapse
|
10
|
Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev 2019; 46:54-65. [DOI: 10.1016/j.cytogfr.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023]
|
11
|
Hong S, Hu P, Roessler E, Hu T, Muenke M. Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly. Hum Mol Genet 2019; 27:1989-1998. [PMID: 29584859 DOI: 10.1093/hmg/ddy106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
The utilization of next generation sequencing has been shown to accelerate gene discovery in human disease. However, our confidence in the correct disease-associations of rare variants continues to depend on functional analysis. Here, we employ a sensitive assay of human FGF8 variants in zebrafish to demonstrate that the spectrum of isoforms of FGF8 produced by alternative splicing can provide key insights into the genetic susceptibility to human malformations. In addition, we describe novel mutations in the FGF core structure that have both subtle and profound effects on ligand posttranslational processing and biological activity. Finally, we solve a case of apparent digenic inheritance of novel variants in SHH and FGF8, two genes known to functionally coregulate each other in the developing forebrain, as a simpler case of FGF8 diminished function.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Tommy Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| |
Collapse
|
12
|
Fex Svenningsen Å, Löring S, Sørensen AL, Huynh HUB, Hjæresen S, Martin N, Moeller JB, Elkjær ML, Holmskov U, Illes Z, Andersson M, Nielsen SB, Benedikz E. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1. Cell Mol Life Sci 2017; 74:4561-4572. [PMID: 28726057 PMCID: PMC5663815 DOI: 10.1007/s00018-017-2592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
Collapse
Affiliation(s)
- Åsa Fex Svenningsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark.
| | - Svenja Löring
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Ha Uyen Buu Huynh
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Simone Hjæresen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Nellie Martin
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jesper Bonnet Moeller
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Weill Cornell Medicine, Cornell University, 413 East 69th Street, New York, 10021, USA
| | - Maria Louise Elkjær
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 59, 751 24, Uppsala, Sweden
| | - Solveig Beck Nielsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Eirikur Benedikz
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Faculty of Health, University College Zealand, Parkvej 190, 4700, Næstved, Denmark
| |
Collapse
|
13
|
Abstract
Alternative pre-mRNA splicing is an integral part of gene regulation in eukaryotes. Here we provide a basic overview of the various types of alternative splicing, as well as the functional role, highlighting how alternative splicing varies across phylogeny. Regulated alternative splicing can affect protein function and ultimately impact biological outcomes. We examine the possibility that portions of alternatively spliced transcripts are the result of stochastic processes rather than regulated. We discuss the implications of misregulated alternative splicing and explore of the role of alternative splicing in human disease.
Collapse
Affiliation(s)
- Stacey D Wagner
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
14
|
García-Hernández S, Potashner SJ, Morest DK. Role of fibroblast growth factor 8 in neurite outgrowth from spiral ganglion neurons in vitro. Brain Res 2013; 1529:39-45. [PMID: 23891716 PMCID: PMC5217747 DOI: 10.1016/j.brainres.2013.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022]
Abstract
Many neurons degenerate after injuries resulting from overstimulation, drugs, genetic mutations, and aging. Although several growth factors and neurotrophins delay degeneration and promote regrowth of neural processes, the role of fibroblast growth factor 8 (FGF8) in mammalian spiral ganglion neurons (SGN) neurite outgrowth has not been examined. This study develops and uses SGN cell cultures suitable for experimental analysis, it investigates whether FGF8a and FGF8b isoforms affect the neurite outgrowth from SGN cultured in vitro. We found that both FGF8a and FGF8b promoted the outgrowth of neurites from cultured SGN. This response is mediated by FGF receptors and involves the activation of IκBα-mediated NFκB signaling pathway. These findings suggest that, besides its morphogenetic role during development, FGF8 may have trophic functions in the adult which are relevant to regeneration.
Collapse
Affiliation(s)
- Sofía García-Hernández
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
15
|
Kaitaniemi S, Grön K, Elovaara H, Salmi M, Jalkanen S, Elima K. Functional modulation of vascular adhesion protein-1 by a novel splice variant. PLoS One 2013; 8:e54151. [PMID: 23349812 PMCID: PMC3548902 DOI: 10.1371/journal.pone.0054151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/07/2012] [Indexed: 12/22/2022] Open
Abstract
Vascular Adhesion Protein-1 (VAP-1) is an endothelial adhesion molecule belonging to the primary amine oxidases. Upon inflammation it takes part in the leukocyte extravasation cascade facilitating transmigration of leukocytes into the inflamed tissue. Screening of a human lung cDNA library revealed the presence of an alternatively spliced shorter transcript of VAP-1, VAP-1Δ3. Here, we have studied the functional and structural characteristics of VAP-1Δ3, and show that the mRNA for this splice variant is expressed in most human tissues studied. In comparison to the parent molecule this carboxy-terminally truncated isoform lacks several of the amino acids important in the formation of the enzymatic groove of VAP-1. In addition, the conserved His684, which takes part in coordinating the active site copper, is missing from VAP-1Δ3. Assays using the prototypic amine substrates methylamine and benzylamine demonstrated that VAP-1Δ3 is indeed devoid of the semicarbazide-sensitive amine oxidase (SSAO) activity characteristic to VAP-1. When VAP-1Δ3-cDNA is transfected into cells stably expressing VAP-1, the surface expression of the full-length molecule is reduced. Furthermore, the SSAO activity of the co-transfectants is diminished in comparison to transfectants expressing only VAP-1. The observed down-regulation of both the expression and enzymatic activity of VAP-1 may result from a dominant-negative effect caused by heterodimerization between VAP-1 and VAP-1Δ3, which was detected in co-immunoprecipitation studies. This alternatively spliced transcript adds thus to the repertoire of potential regulatory mechanisms through which the cell-surface expression and enzymatic activity of VAP-1 can be modulated.
Collapse
Affiliation(s)
- Sam Kaitaniemi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Microbiology and Immunology, University of Turku, Turku, Finland
| | - Kirsi Grön
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Heli Elovaara
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Microbiology and Immunology, University of Turku, Turku, Finland
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Holland LZ. Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol 2013; 24:101-9. [PMID: 23291260 DOI: 10.1016/j.semcdb.2012.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/25/2012] [Indexed: 12/31/2022]
Abstract
Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| |
Collapse
|