1
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
2
|
Reyes BAS, Zhang XY, Dufourt EC, Bhatnagar S, Valentino RJ, Van Bockstaele EJ. Neurochemically distinct circuitry regulates locus coeruleus activity during female social stress depending on coping style. Brain Struct Funct 2019; 224:1429-1446. [PMID: 30767070 DOI: 10.1007/s00429-019-01837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Stress-related psychiatric diseases are nearly twice as prevalent in women compared to men. We recently showed in male rats that the resident-intruder model of social stress differentially engages stress-related circuitry that regulates norepinephrine-containing neurons of the locus coeruleus (LC) depending on coping strategy as determined by the latency to assume a defeat posture. Here, we determined whether this social stress had similar effects in female rats. LC afferents were retrogradely labeled with Fluorogold (FG) and rats had one or five daily exposures to an aggressive resident. Sections through the nucleus paragigantocellularis (PGi), a source of enkephalin (ENK) afferents to the LC, and central nucleus of the amygdala (CeA), a source of corticotropin-releasing factor (CRF) afferents to the LC, were processed for immunocytochemical detection of c-fos, a marker of neuronal activity, FG and ENK or CRF. Like male rats, female rats defeated with a relatively short latency (SL) in response to a single resident-intruder exposure and showed significant c-fos activation of LC neurons, PGi-ENK LC afferents, and CeA-CRF-LC afferents. With repeated exposure, some rats exhibited a long latency to defeat (LL). LC neurons and CeA-CRF-LC afferents were activated in SL rats compared to control and LL, whereas PGi-ENK LC afferents were not. Conversely, in LL rats, PGi-ENK LC and CeA-CRF-LC afferents were activated compared to controls but not LC neurons. CRF type 1 receptor (CRF1) and µ-opioid receptor (MOR) expression levels in LC were decreased in LL rats. Finally, electron microscopy showed a relative increase in MOR on the plasma membrane of LL rats and a relative increase in CRF1 on the plasma membrane of SL rats. Together, these results suggest that as is the case for males, social stress engages divergent circuitry to regulate the LC in female rats depending on coping strategy, with a bias towards CRF influence in more subordinate rats and opioid influence in less subordinate rats.
Collapse
Affiliation(s)
- Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA.
| | - Xiao-Yan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elsa C Dufourt
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
3
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
4
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Pei H, Zhai C, Li H, Yan F, Qin J, Yuan H, Zhang R, Wang S, Zhang W, Chang M, Wang Y, Pei X. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes. Stem Cell Res Ther 2017; 8:252. [PMID: 29116012 PMCID: PMC5678556 DOI: 10.1186/s13287-017-0703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. METHODS In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. RESULTS In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. CONCLUSIONS Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.
Collapse
Affiliation(s)
- Haiyun Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Chao Zhai
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Huilin Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Fang Yan
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Jinhua Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Hongfeng Yuan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Rui Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Shuyong Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Wencheng Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Mingyang Chang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Yunfang Wang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| |
Collapse
|
6
|
Shi L, Qin E, Zhou J, Zhao J, Nie W, Jiang T, Chen W, Wu D, Huang L, Liu L, Lv L, Zhao M, Zhang Z, Wang F. HIV and HCV Co-Culture Promotes Profibrogenic Gene Expression through an Epimorphin-Mediated ERK Signaling Pathway in Hepatic Stellate Cells. PLoS One 2016; 11:e0158386. [PMID: 27362846 PMCID: PMC4928874 DOI: 10.1371/journal.pone.0158386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
Accelerated fibrosis in patients co-infected with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) has been a major cause of mortality in the highly active anti-retroviral therapy (HAART) era. However, the role of co-infection in accelerating the progression of liver fibrosis, particularly with regard to the effects of co-infection on hepatic stellate cells (HSCs), remains unclear. We hypothesized that HIV and HCV induce liver fibrosis synergistically by altering the regulation of epimorphin production, and thereby indirectly alter HSC function. Here, we examined the effects of epimorphin on HSC proliferation and invasion, and the changes in fibrogenesis-related gene activity in HSCs (LX2) in the presence of inactivated CXCR4-tropic HIV and HCV (JFH1). The combination of HIV and HCV significantly increased epimorphin expression, which increased the proliferation and invasion capabilities of HSCs. Epimorphin also induced the expression of profibrogenic tissue inhibitor of metalloproteinase 1 (TIMP1) in an extracellular signal-regulated kinase (ERK)-dependent manner. These data indicated that the effects of HIV/HCV co-infection on hepatic fibrosis might be mediated in part by EPM. Strategies to limit the expression of EPM might represent a novel therapeutic approach to prevent the progression of hepatic fibrosis during HIV/HCV co-infection.
Collapse
Affiliation(s)
- Lei Shi
- Medical School of Chinese PLA, Beijing, China
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Enqiang Qin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Junnian Zhou
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Juanjuan Zhao
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Weimin Nie
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Tianjun Jiang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Weiwei Chen
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Dan Wu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Liying Liu
- Tumor Radiotherapy Center, Beijing 302 Hospital, Beijing, China
| | - Liping Lv
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zheng Zhang
- Medical School of Chinese PLA, Beijing, China
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
- * E-mail: (FW); (ZZ)
| | - Fusheng Wang
- Medical School of Chinese PLA, Beijing, China
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
- * E-mail: (FW); (ZZ)
| |
Collapse
|
7
|
Galán-Cobo A, Ramírez-Lorca R, Echevarría M. Role of aquaporins in cell proliferation: What else beyond water permeability? Channels (Austin) 2016; 10:185-201. [PMID: 26752515 PMCID: PMC4954585 DOI: 10.1080/19336950.2016.1139250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
In addition to the extensive data demonstrating the importance of mammalian AQPs for the movement of water and some small solutes across the cell membrane, there is now a growing body of evidence indicating the involvement of these proteins in numerous cellular processes seemingly unrelated, at least some of them in a direct way, to their canonical function of water permeation. Here, we have presented a broad range of evidence demonstrating that these proteins have a role in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation during cell division; by affecting progression of cell cycle and helping maintain the balance between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis pathways of cell structural components. In the end, however, after discussing all these data that strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude that all these other functions attributed to AQPs occur completely independently of their water permeability, and there is a need for new experiments designed specifically to address this interesting issue.
Collapse
Affiliation(s)
- Ana Galán-Cobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Reposo Ramírez-Lorca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| |
Collapse
|
8
|
Galán-Cobo A, Ramírez-Lorca R, Toledo-Aral JJ, Echevarría M. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression. J Cell Physiol 2015; 231:243-56. [DOI: 10.1002/jcp.25078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Galán-Cobo
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
- Biomedical Research Centre Network for Neurodegenerative Diseases (CIBERNED); Madrid Spain
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES); Madrid Spain
| |
Collapse
|
9
|
Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells. PLoS One 2014; 9:e100091. [PMID: 24971829 PMCID: PMC4074045 DOI: 10.1371/journal.pone.0100091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Background and Aims Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM) deposition from activated hepatic stellate cells (HSCs). Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM) has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs), in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9). Methods Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP). Results During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1), and α- Smooth muscle actin (α-SMA). Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN), while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13). Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. Conclusion These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.
Collapse
|
10
|
Ding ZY, Liang HF, Jin GN, Chen WX, Wang W, Datta PK, Zhang MZ, Zhang B, Chen XP. Smad6 suppresses the growth and self-renewal of hepatic progenitor cells. J Cell Physiol 2014; 229:651-60. [PMID: 24446200 DOI: 10.1002/jcp.24488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Activation of hepatic progenitor cells (HPCs) is commonly observed in chronic liver disease and Wnt/β-catenin signaling plays a crucial role in the expansion of HPCs. However, the molecular mechanisms that regulate the activation of Wnt/β-catenin signaling in the liver, especially in HPCs, remain largely elusive. Here, we reported that ectopic expression of Smad6 suppressed the proliferation and self-renewal of WB-F344 cells, a HPC cell line. Mechanistically, we found that Smad6 inhibited Wnt/β-catenin signaling through promoting the interaction of C-terminal binding protein (CtBP) with β-catenin/T-cell factor (TCF) complex to inhibit β-catenin mediated transcriptional activation in WB-F344 cells. We used siRNA targeting β-catenin to demonstrate that Wnt/β-catenin signaling was required for the proliferation and self-renewal of HPCs. Taken together, these results suggest that Smad6 is a regulatory molecule which regulates the proliferation, self-renewal and Wnt/β-catenin signaling in HPCs.
Collapse
Affiliation(s)
- Ze-Yang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu WH, Ren LN, Chen T, Liu LY, Tang LJ. Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells. World J Gastroenterol 2013; 19:7032-7041. [PMID: 24222945 PMCID: PMC3819537 DOI: 10.3748/wjg.v19.i41.7032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It’s the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.
Collapse
|
12
|
Bascom JL, Radisky DC, Koh E, Fata JE, Lo A, Mori H, Roosta N, Hirai Y, Bissell MJ. Epimorphin is a novel regulator of the progesterone receptor isoform-a. Cancer Res 2013; 73:5719-29. [PMID: 23867473 DOI: 10.1158/0008-5472.can-13-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epimorphin/syntaxin-2 is a membrane-tethered protein localized extracellularly (Epim) and intracellularly (Stx-2). The extracellular form Epim stimulates morphogenic processes in a range of tissues, including in murine mammary glands where its overexpression in luminal epithelial cells is sufficient to drive hyperplasia and neoplasia. We analyzed WAP-Epim transgenic mice to gain insight into how Epim promotes malignancy. Ectopic overexpression of Epim during postnatal mammary gland development led to early side-branching onset, precocious bud formation, and increased proliferation of mammary epithelial cells. Conversely, peptide-based inhibition of Epim function reduced side branching. Because increased side branching and hyperplasia occurs similarly in mice upon overexpression of the progesterone receptor isoform-a (Pgr-a), we investigated whether Epim exhibits these phenotypes through Pgr modulation. Epim overexpression indeed led to a steep upregulation of both total Pgr mRNA and Pgr-a protein levels. Notably, the Pgr antagonist RU486 abrogated Epim-induced ductal side branching, mammary epithelial cell proliferation, and bud formation. Evaluation of Epim signaling in a three-dimensional ex vivo culture system showed that its action was dependent on binding to its extracellular receptor, integrin-αV, and on matrix metalloproteinase 3 activity downstream of Pgr-a. These findings elucidate a hitherto unknown transcriptional regulator of Pgr-a, and shed light on how overexpression of Epim leads to malignancy.
Collapse
Affiliation(s)
- Jamie L Bascom
- Authors' Affiliations: Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California; Mayo Clinic Cancer Center, Jacksonville, Florida; College of Staten Island, City University of New York, Staten Island, New York; and Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen WW, Zeng Z, Zhu WX, Fu GH. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl) 2013; 91:989-1000. [PMID: 23619912 DOI: 10.1007/s00109-013-1037-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 12/14/2022]
Abstract
Studies have shown that the expression of CD133, leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5), and ATP binding cassette (ABC)G2 proteins is associated with malignancy and poor prognosis in colon cancer. However, molecular regulation mechanism of the three proteins has not been elucidated. Here, we report that microRNA-142-3p (miR-142-3p) inhibits the expression of CD133, Lgr5, and ABCG2 in colon cancer cells by binding to both the 3'-untranslated region and the coding sequences of the three genes. The miR-142-3p was markedly decreased in colon cancer specimens, in which it was negatively correlated with the expression of CD133, Lgr5, and ABCG2. Reduction of miR-142-3p corresponds to poor differentiation and bigger tumor size in colon cancers. Moreover, miR-142-3p levels were reduced in cells that formed spheres compared to cells that were cultured in regular media. Transfection of miR-142-3p mimics in colon cancer cells downregulated cyclin D1 expression, induced G1 phase cell cycle arrest, and elevated the sensitivity of the cells to 5-fluorouracil. Furthermore, OCT4 suppressed miR-142-3p, and hypomethylation of the OCT4 promoter was associated with a reduction in miR-142-3p. Finally, the miR-142-3p inhibited the growth of colon cancer cells in vivo, which was accompanied by the downregulation of CD133, Lgr5, and ABCG2 in tumor tissues. Our results elucidate a novel regulation pathway in colon cancer cells and suggest a potential therapeutic approach for colon cancer therapy.
Collapse
Affiliation(s)
- Wei-Wei Shen
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Zhou J, Chen H, Li S, Xie Y, He W, Nan X, Yue W, Liu B, Pei X. Fibroblastic Potential of CD41+Cells in the Mouse Aorta-Gonad-Mesonephros Region and Yolk Sac. Stem Cells Dev 2012; 21:2592-605. [DOI: 10.1089/scd.2011.0572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Haixu Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Siting Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yifan Xie
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
- Department of Histology and Embryology, Inner Mongolia Medical College, Inner Mongolia, China
| | - Wenyan He
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Bing Liu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
15
|
Portincasa P, Calamita G. Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 2012; 33:651-64. [PMID: 22487565 DOI: 10.1016/j.mam.2012.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
Abstract
An essential function of the liver is the formation and secretion of bile, a complex aqueous solution of organic and inorganic compounds essential as route for the elimination of body cholesterol as unesterified cholesterol or as bile acids. In bile, a considerable amount of otherwise insoluble cholesterol is solubilized by carriers including two other classes of lipids, namely phospholipid and bile acids. Formation of bile and generation of bile flow are driven by the active secretion of bile acids, lipids and electrolytes into the canalicular and bile duct lumens followed by the parallel movement of water. Thus, water has to cross rapidly into and out of the cell interior driven by osmotic forces. Bile as a fluid, results from complicated interplay of hepatocyte and cholangiocyte uptake and secretion, concentration, by involving a number of transporters of lipids, anions, cations, and water. The discovery of the aquaporin water channels, has clarified the mechanisms by which water, the major component of bile (more than 95%), moves across the hepatobiliary epithelia. This review is focusing on novel acquisitions in liver membrane lipidic and water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Involvement of aquaporins in a series of clinically relevant hepatobiliary disorders are also discussed.
Collapse
Affiliation(s)
- Piero Portincasa
- University of Bari Medical School, Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, Policlinico Hospital, 70124 Bari, Italy.
| | | |
Collapse
|