1
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Slighoua M, Amrati FEZ, Chebaibi M, Mahdi I, Al Kamaly O, El Ouahdani K, Drioiche A, Saleh A, Bousta D. Quercetin and Ferulic Acid Elicit Estrogenic Activities In Vivo and In Silico. Molecules 2023; 28:5112. [PMID: 37446770 DOI: 10.3390/molecules28135112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we examined the sub-acute toxicity of quercetin and ferulic acid and evaluated their effects on protein, cholesterol, and estrogen levels in vivo. Six groups of female Wistar rats were fed by gavage. The first and second groups represent the positive (Clomiphene citrate 10 mg/kg) and negative (NaCl 0.9%) control groups, while the other groups received quercetin and ferulic acid at doses of 5 and 10 mg/kg/day for 28 days. The sub-acute toxicity was monitored by examining the weights, biochemical parameters (AST, ALT, ALP, urea, and CREA), and histological changes in the kidneys and liver of the treated animals. Furthermore, the in vivo estrogenic effects were studied in terms of the serum and ovarian cholesterol levels, serum estradiol, and uterine proteins. Finally, Docking studies were conducted to evaluate the binding affinity of quercetin and ferulic acid for alpha and beta estrogen receptors. Results showed that both compounds were devoid of any signs of nephrotoxicity or hepatotoxicity. Additionally, quercetin and ferulic acid caused significant estrogenic effects evidenced by an increase of 8.7 to 22.48% in serum estradiol, though to a lesser amount than in the reference drug-treated group (64.21%). Moreover, the two compounds decreased the serum cholesterol levels (12.26-32.75%) as well as the ovarian cholesterol level (11.9% to 41.50%) compared to the negative control. The molecular docking in estrogen alpha and estrogen beta active sites showed high affinity of quercetin (-10.444 kcal/mol for estrogen alpha and -10.662 kcal/mol for estrogen beta) and ferulic acid (-6.377 kcal/mol for estrogen alpha and -6.3 kcal/mol for estrogen beta) to these receptors. This study provides promising insights into the potential use of quercetin as a therapeutic agent for the management of female fertility issues.
Collapse
Affiliation(s)
- Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ismail Mahdi
- AgroBioSciences Research Division, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khadija El Ouahdani
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay 19 Ismail University, Meknes 50070, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University 7 Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| |
Collapse
|
3
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Quercetin and Its Fermented Extract as a Potential Inhibitor of Bisphenol A-Exposed HT-29 Colon Cancer Cells’ Viability. Int J Mol Sci 2023; 24:ijms24065604. [PMID: 36982678 PMCID: PMC10052295 DOI: 10.3390/ijms24065604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Bisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA. Polyphenols were quantified in FEQ by HPLC and their antioxidant capacity by DPPH and ORAC. Q and 3,4-dihydroxyphenylacetic acid (DOPAC) were quantified in FEQ. Q and FEQ exhibited antioxidant capacity. Cell viability with Q+BPA and FEQ+BPA was 60% and 50%, respectively; less than 20% of dead cells were associated with the necrosis process (LDH). Treatments with Q and Q+BPA induced cell cycle arrest in the G0/G1 phase, and FEQ and FEQ+BPA in the S phase. Compared with other treatments, Q positively modulated ESR2 and GPR30 genes. Using a gene microarray of the p53 pathway, Q, Q+BPA, FEQ and FEQ+BPA positively modulated genes involved in apoptosis and cell cycle arrest; bisphenol inhibited the expression of pro-apoptotic and cell cycle repressor genes. In silico analyses demonstrated the binding affinity of Q > BPA > DOPAC molecules for ERα and ERβ. Further studies are needed to understand the role of disruptors in colon cancer.
Collapse
|
5
|
Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int J Mol Sci 2023; 24:ijms24032952. [PMID: 36769274 PMCID: PMC9918234 DOI: 10.3390/ijms24032952] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.
Collapse
|
6
|
Boretti A. Quercetin as a cancer chemopreventive or chemotherapeutic agent: Where we stand. Phytother Res 2022; 37:1227-1231. [PMID: 36444390 DOI: 10.1002/ptr.7699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Quercetin has a wide range of potential health benefits, working as a direct or indirect agent or an adjuvant following different principles. It may be used as a generally useful or exclusive supplement, but also specifically used to treat an acute or chronic condition. Quercetin may work as a cancer chemopreventive and chemotherapeutic agent, because this versatile substance, which owns antioxidant and anti-inflammatory properties, may also kill cancer cells and also holds senolytic properties. While both the specific chemo-preventive or chemotherapeutic uses as a drug need clinical trials, it may be used without any contraindication as a general chemo-preventive supplement.
Collapse
|
7
|
ZHANG BY, ZHENG YF, ZHAO J, KANG D, WANG Z, XU LJ, LIU AL, DU GH. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation. Chin J Nat Med 2022; 20:332-351. [DOI: 10.1016/s1875-5364(22)60180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/03/2022]
|
8
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
10
|
Tezerji S, Nazari Robati F, Abdolazimi H, Fallah A, Talaei B. Quercetin's effects on colon cancer cells apoptosis and proliferation in a rat model of disease. Clin Nutr ESPEN 2022; 48:441-445. [DOI: 10.1016/j.clnesp.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|
11
|
Reboleira J, Silva S, Chatzifragkou A, Niranjan K, Lemos MF. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
VEGFR-Mediated Cytotoxic Activity of Pulicaria undulata Isolated Metabolites: A Biological Evaluation and In Silico Study. Life (Basel) 2021; 11:life11080759. [PMID: 34440504 PMCID: PMC8398779 DOI: 10.3390/life11080759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/25/2023] Open
Abstract
Natural products play a remarkable role not only in the synthesis, design, and discovery of new drugs but also as the most prominent source of drugs and bioactive substances. Adding to the search for new sources of safe innovative antitumor drugs, here we reported a phytochemical study on Pulicaria undulata which revealed promising antiangiogenic agents. Six compounds were isolated and identified as xanthoxyline (1), stigmasterol (2), oleanolic acid (3), salvigenin (4), rhamnetin (5) and dihydroquercetin-4′-methyl ether (6) using nuclear magnetic resonance (NMR) spectroscopic techniques. Compound 3 and 4 are first reported in Pulicaria genus. Both the extract and isolated compounds were evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7). In vivo antiproliferative activity against Ehrlich’s ascites carcinoma (EAC) were also assessed. The P. undulata extract and isolates showed significant reduction in tumor weight, decreased both serum vascular endothelial growth factor B (VEGF-B) levels and vascular endothelial growth factor receptor 2 (VEGFR-2) expression significantly compared to the control EAC group, suggesting an antiangiogenic activity through the inhibition of VEGF signaling. Besides, they displayed reduction in CD34 expression, confirming their antiangiogenic effect. Moreover, the potential affinity of isolated compounds to human estrogen nuclear receptor-alpha (hER-α), the most recognized modulator of VEGFR-2 expression, was virtually estimated through molecular modeling studies. The most promising activity profiles were assigned to the investigated flavonoids, compounds 4–6, as well as the alkyl-phenylketone, compound 1. Additionally, these four top active compounds showed respective high to intermediate docking scores while possessing preferential binding with hER-α critical pocket residues. Based on the provided data, these isolated compounds illustrated promising inhibitors of VEGF-stimulated angiogenesis, which could be a possible mechanism for their anticancer activity.
Collapse
|
13
|
Jamieson S, Wallace CE, Das N, Bhattacharyya P, Bishayee A. Guava ( Psidium guajava L.): a glorious plant with cancer preventive and therapeutic potential. Crit Rev Food Sci Nutr 2021; 63:192-223. [PMID: 34289769 DOI: 10.1080/10408398.2021.1945531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Guava (Psidium guajava L.) tree (Myrtaceae family) bears fruit rich in vitamins, fiber, and other nutrients. While native to Latin America, guava is grown in many tropical and subtropical regions across the globe where it has long been used in traditional medicine to treat a myriad of ailments. Guava has been shown to exhibit a number of biological and pharmacological activities, such as antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, antidiabetic, and anticancer properties. Several parts of the plant, including the leaves, fruits, seeds, peels, pulp, bark, and oil, produce phytochemicals with medicinal properties. Emerging research has found that guava bioactive phytochemicals exert antitumorigenic effects against various human malignancies through multiple mechanisms. While there are numerous individual studies that document the anticancer effects of guava constituents, an up-to-date, comprehensive, and critical review of available research data has not been performed. Therefore, the purpose of this review is to present a complete analysis of the cancer preventive and anticancer therapeutic potential of guava-derived products and guava constituents, with a focus on the cellular and molecular mechanisms of action. The bioavailability, pharmacokinetics, and toxicity of guava as well as limitations, challenges, and future directions of research have also been discussed.
Collapse
Affiliation(s)
- Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Carly E Wallace
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, Tripura, India
| | - Piyali Bhattacharyya
- Department of Nutrition, School of Health Sciences, Ana G. Méndez University, Gurabo, Puerto Rico, USA
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
14
|
Yang Y, Wu Y, Zou J, Wang YH, Xu MX, Huang W, Yu DJ, Zhang L, Zhang YY, Sun XD. Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Enhancing Energy Expenditure and Regulating Autophagy via AMPK. Front Pharmacol 2021; 12:687095. [PMID: 34163366 PMCID: PMC8215389 DOI: 10.3389/fphar.2021.687095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The prevalence of non-alcoholic fatty liver disease (NAFLD) keeps growing recently. Purpose: To investigate the effects and mechanisms of naringenin (NAR) on NAFLD. Methods: High-fat diet (HFD)-induced NAFLD rats were orally administered with NAR at 10, 30, and 90 mg/kg for 2 weeks. The serum level of triglyceride (TG), total cholesterol (TC), glutamic-oxaloacetic transaminase (AST), and glutamic-pyruvic transaminase (ALT) was measured. The hepatic histology was detected by H&E and oil red O staining. L02 and Huh-7 cells were induced by sodium oleate to establish a NAFLD cell model. The effects of NAR on lipid accumulation were detected by oil red O staining. The glucose uptake and ATP content of 3T3-L1 adipocytes and C2C12 myotubes were measured. The expression of proteins of the AMPK signaling pathway in 3T3-L1 adipocytes and C2C12 myotubes was assessed by Western blotting. The mitochondrial biogenesis of 3T3-L1 adipocytes and C2C12 myotubes was measured by mitotracker orange staining and Western blotting. The biomarkers of autophagy were detected by Western blotting and immunofluorescence. The binding of NAR to AMPKγ1 was analyzed by molecular docking. Chloroquine and compound C were employed to block autophagic flux and AMPK, respectively. Results: NAR alleviated HFD-induced NAFLD in rats at 10, 30, and 90 mg/kg. NAR attenuated lipid accumulation in L02 and Huh-7 cells at 0.7, 2.2, 6.7, and 20 μM. NAR increased glucose uptake, decreased the ATP content, activated the CaMKKβ/AMPK/ACC pathway, and enhanced the mitochondrial biogenesis in 3T3-L1 adipocytes and C2C12 myotubes. NAR increased autophagy and promoted the initiation of autophagic flux in 3T3-L1 preadipocytes and C2C12 myoblasts, while it inhibited autophagy in NAFLD rats, 3T3-L1 adipocytes, and C2C12 myotubes. Molecular docking showed that NAR binds to AMPKγ1. Compound C blocked effects of NAR on lipid accumulation and autophagy in L02 cells. Conclusion: NAR alleviates NAFLD by increasing energy expenditure and regulating autophagy via activating AMPK directly and indirectly. The direct binding of NAR and AMPKγ1 needs further validation.
Collapse
Affiliation(s)
- Ying Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yue Wu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jie Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu-Hao Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Meng-Xia Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dao-Jiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
15
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
16
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent Effects of Daidzein and its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12010167. [PMID: 31936631 PMCID: PMC7017042 DOI: 10.3390/cancers12010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023] Open
Abstract
Although soy consumption is associated with breast cancer prevention, the low bioavailability and the extensive metabolism of soy-active components limit their clinical application. Here, the impact of daidzein (D) and its metabolites on estrogen-dependent anti-apoptotic pathway has been evaluated in breast cancer cells. In estrogen receptor α-positive breast cancer cells treated with D and its metabolites, single or in mixture, ERα activation and Neuroglobin (NGB) levels, an anti-apoptotic estrogen/ERα-inducible protein, were evaluated. Moreover, the apoptotic cascade activation, as well as the cell number after stimulation was assessed in the absence/presence of paclitaxel to determine the compound effects on cell susceptibility to a chemotherapeutic agent. Among the metabolites, only D-4'-sulfate maintains the anti-estrogenic effect of D, reducing the NGB levels and rendering breast cancer cells more prone to the paclitaxel treatment, whereas other metabolites showed estrogen mimetic effects, or even estrogen independent effects. Intriguingly, the co-stimulation of D and gut metabolites strongly reduced D effects. The results highlight the important and complex influence of metabolic transformation on isoflavones physiological effects and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consumption of soy isoflavones in cancer.
Collapse
|
19
|
Kaur S, Singla N, Dhawan DK. Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem Toxicol 2019; 42:220-230. [DOI: 10.1080/01480545.2019.1569022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Simranjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - D. K. Dhawan
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
21
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
22
|
Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 2018; 233:6544-6560. [PMID: 29663361 DOI: 10.1002/jcp.26595] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment.
Collapse
Affiliation(s)
- Saber G Darband
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz G Pakdel
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad A Attari
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Naderi
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
23
|
Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Mol Cell Endocrinol 2017; 457:3-12. [PMID: 27816767 DOI: 10.1016/j.mce.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
The hormone 17β-estradiol (E2) contributes to body homeostasis maintenance by regulating many different physiological functions in both male and female organs. E2 actions in reproductive and non-reproductive tissues rely on a complex net of nuclear and extra-nuclear signal transduction pathways triggered by at least two estrogen receptor subtypes (ERα and ERβ). Consequently, the de-regulation of E2:ER signaling contributes to the pathogenesis of many diseases including cancer. Among other factors, the ERα/ERβ ratio is considered one of the pivotal mechanisms at the root of E2 action in cancer progression. Remarkably, several natural or synthetic exogenous chemicals, collectively called xenoestrogens, bind to ERs and interfere with their signals and intracellular functions. In this review, the molecular mechanism(s) through which xenoestrogens influence ERα and ERβ intracellular concentrations and the consequences of this influence on E2-related cancer will be discussed.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
24
|
Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, Forster J, Nielsen J, Borodina I. Metabolic engineering of yeast for fermentative production of flavonoids. BIORESOURCE TECHNOLOGY 2017. [PMID: 28634125 DOI: 10.1016/j.biortech.2017.06.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long biosynthetic pathways, comprising up to eight heterologous genes from plants. The obtained titers of kaempferol 26.57±2.66mgL-1 and quercetin 20.38±2.57mgL-1 exceed the previously reported titers in yeast. This is also the first report of de novo biosynthesis of resokaempferol and fisetin in yeast. The work demonstrates the potential of flavonoid-producing yeast cell factories.
Collapse
Affiliation(s)
- Angelica Rodriguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Tomas Strucko
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Steen Gustav Stahlhut
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Daniel Killerup Svenssen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
25
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
26
|
Abstract
AIM Quercetin (Q1) is a flavonoid widely present in plants and endowed with several pharmacological properties mostly due to its antioxidant potential. Q1 shows anticancer activity and could be useful in cancer prevention. On the other hand, Q1 is poorly soluble in water and unstable in physiological systems, and its bioavailability is very low. METHODS A small set of Q1 derivatives (Q2-Q9) has been synthesized following opportunely modified chemical procedures previously reported. Anticancer activity has been evaluated by MTT assay. Human Topoisomerases inhibition has been performed by direct enzymatic assays. Apoptosis has been evaluated by TUNEL assay. ROS production and scavenging activity have been determined by immunofluorescence. RESULTS The anticancer profile of a small library of Q1 analogues, in which the OH groups were all or partially replaced with hydrophobic functional groups, has been evaluated. Two of the studied compounds demonstrated an interesting cytotoxic profile in two breast cancer models showing the capability to inhibit human Topoisomerases. CONCLUSION The studied compounds represent suitable leads for the development of innovative anticancer drugs. [Formula: see text].
Collapse
|
27
|
Ahmed HH, Aglan HA, Zaazaa AM, Shalby AB, El Toumy SA. Quercetin Confers Tumoricidal Activity Through Multipathway Mechanisms in A N-Methylnitrosourea Rat Model of Colon Cancer. Asian Pac J Cancer Prev 2016; 17:4991-4998. [PMID: 28032729 PMCID: PMC5454709 DOI: 10.22034/apjcp.2016.17.11.4991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: This research was conducted to explore mechanisms behind the potency of quercetin in inhibiting
colon cancer induced in an experimental model. Materials and Methods: Forty adult male rats of Wistar strain were
distributed into 4 groups; a negative control group, a colon cancer bearing group, a quercetin-treated group and a
5-fluorouracil (5-FU)-treated group. Serum TAG72 and GAL3 levels were quantified by ELISA. Colonic Wnt5a and
Axin-1 gene expression was estimated by PCR. In addition, colonic tissues were subjected to immunohistochemical
examination of Bax expression and histological investigation of histopathological alterations. Results: Quercetin elicited
significant reduction in serum TAG72 and GAL3 levels, in addition to significant suppression of colonic Wnt5a gene
expression and amplification of colonic Axin-1 gene expression. Also, it caused moderate positive reaction for Bax in
mucosal epithelium. Conclusion: The present research provides experimental evidence about the activity of quercetin
in the colon cancer of rats. Inhibitory effects on cancer development might be ascribable to regulatory action on Wnt
signaling and induction of apoptosis.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Centre, Giza, Egypt.
| | | | | | | | | |
Collapse
|
28
|
John ASP, Ankem MK, Damodaran C. Oxidative Stress: A Promising Target for Chemoprevention. ACTA ACUST UNITED AC 2016; 2:73-81. [PMID: 27088073 DOI: 10.1007/s40495-016-0052-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer is a leading cause of death worldwide, and treating advanced stages of cancer remains clinically challenging. Epidemiological studies have shown that oxidants and free radicals induced DNA damage is one of the predominant causative factors for cancer pathogenesis. Hence, oxidants are attractive targets for chemoprevention as well as therapy. Dietary agents are known to exert an anti-oxidant property which is one of the most efficient preventive strategy in cancer progression. In this article, we highlight dietary agents can potentially target oxidative stress, in turn delaying, preventing, or treating cancer development. Some of these agents are currently in use in basic research, while some have been launched successfully into clinical trials.
Collapse
Affiliation(s)
| | - Murali K Ankem
- Department of Urology, University of Louisville, KY 40202
| | | |
Collapse
|
29
|
Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2986796. [PMID: 26904161 PMCID: PMC4745323 DOI: 10.1155/2016/2986796] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/04/2023]
Abstract
Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection.
Collapse
|
30
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35 Suppl:S25-S54. [PMID: 25892662 PMCID: PMC4898971 DOI: 10.1016/j.semcancer.2015.02.006] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States.
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Jamal Mahajna
- MIGAL-Galilee Technology Center, Cancer Drug Discovery Program, Kiryat Shmona, Israel
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dipali Sharma
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj K Saxena
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Neetu Singh
- Tissue and Cell Culture Unit, CSIR-Central Drug Research Institute, Council of Scientific & Industrial Research, Lucknow, India
| | | | - Shanchun Guo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sophie Chen
- Department of Research and Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey GU2 7YG, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Asfar S Azmi
- Department of Pathology, Karmonas Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| |
Collapse
|
31
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
32
|
Lee CG, Koo JH, Kim SG. Phytochemical regulation of Fyn and AMPK signaling circuitry. Arch Pharm Res 2015; 38:2093-105. [PMID: 25951818 DOI: 10.1007/s12272-015-0611-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries.
Collapse
Affiliation(s)
- Chan Gyu Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| |
Collapse
|
33
|
Caiazza F, Ryan EJ, Doherty G, Winter DC, Sheahan K. Estrogen receptors and their implications in colorectal carcinogenesis. Front Oncol 2015; 5:19. [PMID: 25699240 PMCID: PMC4313613 DOI: 10.3389/fonc.2015.00019] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022] Open
Abstract
Upon binding their cognate receptors, ERα (ESR1) and ERβ (ESR2), estrogens activate intracellular signaling cascades that have important consequences for cellular behavior. Historically linked to carcinogenesis in reproductive organs, estrogens have also been implicated in the pathogenesis of different cancer types of non-reproductive tissues including the colon. ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium. However, during colon cancer progression, ERβ expression is lost, suggesting that estrogen signaling may play a role in disease progression. Estrogens may in fact exert an anti-tumor effect through selective activation of pro-apoptotic signaling mediated by ERβ, inhibition of inflammatory signals and modulation of the tumor microenvironment. In this review, we analyze the estrogen pathway as a possible therapeutic avenue in colorectal cancer, we report the most recent experimental evidence to explain the cellular and molecular mechanisms of estrogen-mediated protection against colorectal tumorigenesis, and we discuss future challenges and potential avenues for targeted therapy.
Collapse
Affiliation(s)
- Francesco Caiazza
- Centre for Colorectal Disease, Saint Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College , Dublin , Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, Saint Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College , Dublin , Ireland
| | - Glen Doherty
- Centre for Colorectal Disease, Saint Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College , Dublin , Ireland
| | - Desmond C Winter
- Centre for Colorectal Disease, Saint Vincent's University Hospital , Dublin , Ireland ; Department of Surgery, St. Vincent's University Hospital, Elm Park , Dublin , Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, Saint Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College , Dublin , Ireland ; Department of Pathology, Saint Vincent's University Hospital , Dublin , Ireland
| |
Collapse
|
34
|
Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:512081. [PMID: 25525446 PMCID: PMC4267163 DOI: 10.1155/2014/512081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we excavated all of the targets of green tea polyphenolics (GTPs) though literature mining and target calculation and analyzed the multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200 Homo sapiens targets were identified for fifteen GTPs. These targets were classified into six groups according to their related disease, which included cancer, diabetes, neurodegenerative disease, cardiovascular disease, muscular disease, and inflammation. Moreover, these targets mapped into 143 KEGG pathways, 26 of which were more enriched, as determined though pathway enrichment analysis and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by analyzing the corresponding “drug-target-pathway-disease” interaction network.
Collapse
|
35
|
Ferrucci A, Leboffe L, Agamennone M, Di Pizio A, Fiocchetti M, Marino M, Ascenzi P, Luisi G. Ac-tLeu-Asp-H is the minimal and highly effective human caspase-3 inhibitor: biological and in silico studies. Amino Acids 2014; 47:153-62. [DOI: 10.1007/s00726-014-1855-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
|
36
|
Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 2014; 72:720-34. [PMID: 25323953 DOI: 10.1111/nure.12152] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sarah L Miles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Margaret McFarland
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Richard M Niles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| |
Collapse
|
37
|
Pellegrini M, Bulzomi P, Galluzzo P, Lecis M, Leone S, Pallottini V, Marino M. Naringenin modulates skeletal muscle differentiation via estrogen receptor α and β signal pathway regulation. GENES AND NUTRITION 2014; 9:425. [PMID: 25156241 DOI: 10.1007/s12263-014-0425-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/29/2014] [Indexed: 01/13/2023]
Abstract
Several experiments sustain healthful benefits of the flavanone naringenin (Nar) against chronic diseases including its protective effects against estrogen-related cancers. These experiments encourage Nar use in replacing estrogen treatment in post-menopausal women avoiding the serious side effects ascribed to this hormone. However, at the present, scarce data are available on the impact of Nar on E2-regulated cell functions. This study was aimed at determining the impact of Nar on the estrogen receptor (ERα and β)-dependent signals important for 17β-estradiol (E2) effect in muscle cells (rat L6 myoblasts, mouse C2C12 myoblasts, and mouse skeletal muscle satellite cells). Dietary relevant concentration of Nar delays the appearance of skeletal muscle differentiation markers (i.e., GLUT4 translocation, myogenin, and both fetal and slow MHC isoforms) and impairs E2 effects specifically hampering ERα ability to activate AKT. Intriguingly, Nar effects are specific for E2-initiating signals because IGF-I-induced AKT activation, and myoblast differentiation markers were not affected by Nar treatment. Only 7 days after Nar stimulation, early myoblast differentiation markers (i.e., myogenin, and fetal MHC) start to be accumulated in myoblasts. On the other hand, Nar stimulation activates, via ERβ, the phosphorylation of p38/MAPK involved in reducing the reactive oxygen species formation in skeletal muscle cells. As a whole, data reported here strongly sustain that although Nar action mechanisms include the impairment of ERα signals which drive muscle cells to differentiation, the effects triggered by Nar in the presence of ERβ could balance this negative effect avoiding the toxic effects produced by oxidative stress .
Collapse
Affiliation(s)
- Marco Pellegrini
- Department of Sciences, Biomedical and Technology Science Section, University Roma Tre, Viale G. Marconi 446, 00146, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Pampaloni B, Palmini G, Mavilia C, Zonefrati R, Tanini A, Brandi ML. In vitro effects of polyphenols on colorectal cancer cells. World J Gastrointest Oncol 2014; 6:289-300. [PMID: 25132926 PMCID: PMC4133796 DOI: 10.4251/wjgo.v6.i8.289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the effects of quercetin and genistein on colon cancer cell proliferation and their estrogen receptor β (ERβ) expression.
METHODS: Colon cancer cells were stably transfected with a mammalian expression vector to overexpress ERβ (HCT8-β8-expressing cells) or a control vector (HCT8-pSV2neo-expressing cells). The proliferation of these cells was examined after treatment with quercetin or genistein (5-100 μmol/L), or 10 nmol/L 17β-estradiol (17β-E2). Cell viability was examined by acridine orange staining following treatments for 48 or 144 h. Effects of quercetin and genistein on ERβ transcriptional transactivation were examined by luciferase activity in HCT8-β8-expressing cells transiently transfected with a pEREtkLUC reporter vector. In addition, the regulation of ERβ transcription by phytoestrogens and 17β-E2 was examined by quantitative polymerase chain reaction.
RESULTS: Proliferation of HCT8-β8-expressing cells was not reduced low doses (5 μmol/L) of quercetin and genistein, while it was reduced at 25-50 μmol/L with an effect similar to 10 nmol/L 17β-E2. Treatment with doses of phytoestrogens ≥ 75 μmol/L completely blocked cell growth and reduced overall cell counts, however no effects at any dose were observed in HCT8-pSV2neo-expressing cells. These results were supported by viability staining that revealed acridine orange-stained lysosomes with high doses or extended treatment periods. Genistein and quercetin (50 μmol/L) significantly increased ER-responsive luciferase activity similar to 10 nmol/L 17β-E2 (P < 0.05). Furthermore, genistein and quercetin (50 μmol/L), as well as 10 nmol/L 17β-E2 significantly increased ERβ mRNA levels in HCT8-β8-expressing cells (P < 0.05). In addition, treatment of HCT8-pSV2neo-expressing cells with 50 µmol/L quercetin or 10 nmol/L 17β-E2 significantly increased ERβ mRNA levels compared to untreated controls (P < 0.05), though the absolute levels were much lower than in HCT8-β8-expressing cells.
CONCLUSION: The antitumorigenic effects of the phytoestrogenic compounds quercetin and genistein on colon cancers cells occur through ERβ activity and expression.
Collapse
|
39
|
Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC. J Cell Physiol 2014; 229:1061-8. [PMID: 24347325 DOI: 10.1002/jcp.24530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
Abstract
Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms.
Collapse
|
40
|
In vitro chronic administration of ERbeta selective ligands and prostate cancer cell growth: hypotheses on the selective role of 3beta-adiol in AR-positive RV1 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801473. [PMID: 24877132 PMCID: PMC4022250 DOI: 10.1155/2014/801473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PC) progression from androgen-dependent (AD) to castration-resistant (CR) disease is a process caused by modifications of different signal transduction pathways within tumor microenvironment. Reducing cell proliferation, estrogen receptor beta (ERbeta) is emerging as a potential target in PC chemoprevention. Among the known selective ERbeta ligands, 3beta-Adiol, the endogenous ligand in the prostate, has been proved to counteract PC progression. This study compares the effects of chronic exposure (1–12 weeks) to different ERbeta selective ligands (DPN, 8beta-VE2, 3beta-Adiol) on proliferation of human androgen-responsive CWR22Rv1 cells, representing an intermediate phenotype between the AD- and CR-PC. 3beta-Adiol (10 nM) is the sole ligand decreasing cell proliferation and increasing p21 levels. In vitro transcriptional activity assays were performed to elucidate different behavior between 3beta-Adiol and the other ligands; in these experiments the endogenous and the main ERbeta subtype activation were considered. It is concluded that ERbeta activation has positive effects also in androgen-responsive PC. The underlying mechanisms are still to be clarified and may include the interplay among different ERbeta subtypes and the specific PC microenvironment. ERbeta agonists might be useful in counteracting PC progression, although the final outcome may depend upon the molecular pattern specific to each PC lesion.
Collapse
|
41
|
Marino M. Xenoestrogens challenge 17β-estradiol protective effects in colon cancer. World J Gastrointest Oncol 2014; 6:67-73. [PMID: 24653796 PMCID: PMC3955780 DOI: 10.4251/wjgo.v6.i3.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Several epidemiological, cellular, and molecular studies demonstrate the role of environmental chemicals with endocrine disrupting activities, typical of Westernized societies, in the pathogenesis of numerous diseases including cancer. Nonetheless this information, the design and execution of studies on endocrine disruptors are not yet cognizant that the specific actions of individual hormones often change with development and ageing, they may be different in males and females and may be mediated by different receptors isoforms expressed in different tissues or at different life stages. These statements are particularly true when assessing the hazard of endocrine disruptors against 17β-estradiol (E2) actions in that this hormone is crucial determinant of sex-related differences in anatomical, physiological, and behavioral traits which characterize male and female physiology. Moreover, E2 is also involved in carcinogenesis. The oncogenic effects of E2 have been investigated extensively in breast and ovarian cancers where hormone-receptor modulators are now an integral part of targeted treatment. Little is known about the E2 preventive signalling in colorectal cancer, although this disease is more common in men than women, the difference being more striking amongst pre-menopausal women and age-matched men. This review aims to dissect the role and action mechanisms of E2 in colorectal cancer evaluating the ability of estrogen disruptors (i.e., xenoestrogens) in impair these E2 actions. Data discussed here lead to define the possible role of xenoestrogens in the impairment and/or activation of E2 signals important for colorectal cancer prevention.
Collapse
|
42
|
Bądziul D, Jakubowicz-Gil J, Langner E, Rzeski W, Głowniak K, Gawron A. The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro. Pharmacol Rep 2014; 66:292-300. [PMID: 24911084 DOI: 10.1016/j.pharep.2013.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND High expression of HSP27 and HSP72 in glioma cells has been closely associated with chemoresistance and decreased sensitivity to programmed cell death induction. Therefore, it is important to devise therapies that effectively target invasive cancer cells by inducing cell death. The aim of our study was to assess the effect of quercetin and imperatorin applied separately and in combinations on the apoptosis and autophagy induction in human T98G cells cultured in vitro. METHODS Cell death induction was analyzed by the staining method. The Western blotting technique and fluorimetric measurements of activity were used to assess the expression of marker proteins of apoptosis and autophagy. The specific siRNA transfected method was used for blocking of the expression of HSP27 and HSP72 genes. RESULTS The experiments revealed the highest percentage of apoptotic cells after using a 50?M concentration of both compounds. Simultaneous quercetin and imperatorin administration induced apoptosis more effectively than incubation with single drugs. These results were accompanied with decreased HSP27 and HSP72 expression, and a high level of caspase-3 and caspase-9 activity. Autophagy was not observed. Additional experiments were performed on a cell line with blocked Hsp27 and Hsp72 expression and significant increase the sensitivity to apoptosis induction upon quercetin and imperatorin treatment was noticed. CONCLUSIONS The present study indicates that quercetin and imperatorin are potent apoptosis inducers, especially when they act synergistically, which may be a promising combination useful in glioma therapy. Our results also demonstrated that blocking the HSP27 and HSP72 gene expression might serve as a therapeutic target for the human brain cancer.
Collapse
Affiliation(s)
- Dorota Bądziul
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland.
| | - Joanna Jakubowicz-Gil
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Ewa Langner
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland; Department of Immunology and Virology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Poland
| | - Kazimierz Głowniak
- Department of Pharmacognosy with Medical Plant Unit, Medical University, Lublin, Poland
| | - Antoni Gawron
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
43
|
Erejuwa OO, Sulaiman SA, Wahab MSA. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014; 19:2497-522. [PMID: 24566317 PMCID: PMC6270987 DOI: 10.3390/molecules19022497] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Honey is a natural product known for its varied biological or pharmacological activities-ranging from anti-inflammatory, antioxidant, antibacterial, antihypertensive to hypoglycemic effects. This review article focuses on the role of honey in modulating the development and progression of tumors or cancers. It reviews available evidence (some of which is very recent) with regards to the antimetastatic, antiproliferative and anticancer effects of honey in various forms of cancer. These effects of honey have been thoroughly investigated in certain cancers such as breast, liver and colorectal cancer cell lines. In contrast, limited but promising data are available for other forms of cancers including prostate, bladder, endometrial, kidney, skin, cervical, oral and bone cancer cells. The article also underscores the various possible mechanisms by which honey may inhibit growth and proliferation of tumors or cancers. These include regulation of cell cycle, activation of mitochondrial pathway, induction of mitochondrial outer membrane permeabilization, induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and inhibition of angiogenesis. Honey is highly cytotoxic against tumor or cancer cells while it is non-cytotoxic to normal cells. The data indicate that honey can inhibit carcinogenesis by modulating the molecular processes of initiation, promotion, and progression stages. Thus, it may serve as a potential and promising anticancer agent which warrants further experimental and clinical studies.
Collapse
Affiliation(s)
- Omotayo O Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Siti A Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd S Ab Wahab
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
44
|
La Rosa P, Pellegrini M, Totta P, Acconcia F, Marino M. Xenoestrogens alter estrogen receptor (ER) α intracellular levels. PLoS One 2014; 9:e88961. [PMID: 24586459 PMCID: PMC3930606 DOI: 10.1371/journal.pone.0088961] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/17/2014] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol (E2)-dependent estrogen receptor (ER) α intracellular concentration is a well recognized critical step in the pleiotropic effects elicited by E2 in several target tissues. Beside E2, a class of synthetic and plant-derived chemicals collectively named endocrine disruptors (EDs) or xenoestrogens bind to and modify both nuclear and extra-nuclear ERα activities. However, at the present no information is available on the ability of EDs to hamper ERα intracellular concentration. Here, the effects of bisphenol A (BPA) and naringenin (Nar), prototypes of synthetic and plant-derived ERα ligands, have been evaluated on ERα levels in MCF-7 cells. Both EDs mimic E2 in triggering ERα Ser118 phosphorylation and gene transcription. However, only E2 or BPA induce an increase of cell proliferation; whereas 24 hrs after Nar stimulation a dose-dependent decrease in cell number is reported. E2 or BPA treatment reduces ERα protein and mRNA levels after 24 hrs. Contrarily, Nar stimulation does not alter ERα content but reduces ERα mRNA levels like other ligands. Co-stimulation experiments indicate that 48 hrs of Nar treatment prevents the E2-induced ERα degradation and hijacks the physiological ability of E2:ERα complex to regulate gene transcription. Mechanistically, Nar induces ERα protein accumulation by preventing proteasomal receptor degradation via persistent activation of p38/MAPK pathway. As a whole these data demonstrate that ERα intracellular concentration is an important target through which EDs hamper the hormonal milieu of E2 target cells driving cells to different outcomes or mimicking E2 even in the absence of the hormone.
Collapse
Affiliation(s)
| | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
45
|
Synthesis, characterization and biological activity of antimony(III) or bismuth(III) chloride complexes with dithiocarbamate ligands derived from thiuram degradation. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.08.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Abstract
Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use.
Collapse
|
47
|
Tigrine C, Bulzomi P, Leone S, Bouriche H, Kameli A, Marino M. Cleome arabica leaf extract has anticancer properties in human cancer cells. PHARMACEUTICAL BIOLOGY 2013; 51:1508-1514. [PMID: 23862683 DOI: 10.3109/13880209.2013.796563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Cleome arabica L. (Capparidaceae) is a desert plant widely distributed in the North part of Africa whose leaves are used in traditional medicine as a sedative for abdominal and rheumatic pains. OBJECTIVES The anticancer activity of methanol Cleome arabica leaf extracts (CALE) is investigated in different human cancer cell lines. MATERIALS AND METHODS Five different human cancer cell lines, representative of the most common cancers in Western countries (i.e., breast adenocarcinoma, colon carcinoma, neuroblastoma, hepatoma, cervix carcinoma) were treated with different concentrations of CALE (i.e., 1, 5, 10, 25, 50, 100 and 200 µg/ml). Cell viability and cell cycle were measured by using a hemocytometer chamber and a cytofluorimeter, respectively. Epidermal growth factor (EGF) was used as a positive control. Western blots were performed to evaluate the CALE effects on pathways involved in cell growth regulation and on apoptotic cascade activation. RESULTS AND CONCLUSION Our results confirm that CALE has a high content of polyphenolic compounds (i.e., 32.21 ± 3.44%), mainly as flavonoids (24.56 ± 4.67%). In all tested cell lines CALE treatment reduces cell number in a dose-dependent manner (ED50 = 175 ± 30 µg/ml). CALE (100 and 200 µg/ml) increases by three-fold the activation of the apoptotic cascade involving caspase-3 activation and the cleavage of its substrate poly(ADP-ribose) polymerase (PARP). Intriguingly, CALE treatment (200 µg/ml) also blocks EGF-induced cell growth by preventing the growth factor-triggered AKT and ERK phosphorylation. As a whole, these data strongly suggest that CALE possesses anticancer effects in all tested cancer cell lines.
Collapse
Affiliation(s)
- Chafia Tigrine
- Department of Biology, Ecole Normale Superieure , Algiers , Algeria
| | | | | | | | | | | |
Collapse
|
48
|
Costa LG, Tait L, de Laat R, Dao K, Giordano G, Pellacani C, Cole TB, Furlong CE. Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: a mechanism of neuroprotection? Neurochem Res 2013; 38:1809-18. [PMID: 23743621 DOI: 10.1007/s11064-013-1085-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/18/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022]
Abstract
Quercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell's own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Foster PA. Oestrogen and colorectal cancer: mechanisms and controversies. Int J Colorectal Dis 2013; 28:737-49. [PMID: 23319136 DOI: 10.1007/s00384-012-1628-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
AIM The role of oestrogen metabolism and action in colorectal cancer (CRC) is controversial. An extensive review of the current literature, encompassing epidemiological evidence, systemic and peripheral oestrogen concentrations, 17β-hydroxysteroid dehydrogenase (17β-HSD) and aromatase in CRC, steroid sulphatase (STS)/oestrone sulphotransferase (EST) and in vitro and in vivo genomic effects was therefore undertaken. METHODS A literature search (key words: colorectal cancer, oestrogen, oestrogen receptor, 17β-HSD, STS, organic anion transporter) was performed using Embase, Medline, and Pubmed and papers were evaluated on scientific relevance on an individual basis. RESULTS Epidemiological data highlights that premenopausal women, or postmenopausal women taking hormone replacement therapy, are significantly less likely than males to develop CRC. This implies that oestrogen signalling is most likely involved in CRC physiology and aetiology. Little is known about oestrogen metabolism in the colon. However, the expression of 17β-HSD, STS, and EST, enzymes involved in oestrogen metabolism, have shown prognostic significance. Evidence also suggests that protective effects are modulated through oestrogen receptor beta, although which metabolite of oestrogen, oestradiol (E2) or oestrone (E1), is more active remains undefined. To complicate matters, the changes in the peripheral ratios of these enzymes, oestrogens and receptors most likely influences CRC progression. CONCLUSION Epidemiological evidence, now supported by in vitro and in vivo studies, strongly associates oestrogen action and metabolism with CRC. Initially protective against CRC, once developed, results suggests that oestrogens increase proliferation. Consequently, hormone-ablation therapy, already successful against breast and prostate cancer, may be effective against CRC.
Collapse
Affiliation(s)
- Paul A Foster
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
50
|
Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013; 4:831-44. [PMID: 23598551 PMCID: PMC3781338 DOI: 10.1039/c3fo60063g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
Collapse
Affiliation(s)
- Yishai Avior
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - David Bomze
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ory Ramon
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - Yaakov Nahmias
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|