1
|
Zahnreich S, Poplawski A, Hartel C, Eckhard LS, Galetzka D, Hankeln T, Löbrich M, Marron M, Mirsch J, Ritter S, Scholz-Kreisel P, Spix C, Schmidberger H. Spontaneous and Radiation-Induced Chromosome Aberrations in Primary Fibroblasts of Patients With Pediatric First and Second Neoplasms. Front Oncol 2020; 10:1338. [PMID: 32850427 PMCID: PMC7427586 DOI: 10.3389/fonc.2020.01338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to investigate whether former childhood cancer patients who developed a subsequent secondary primary neoplasm (SPN) are characterized by elevated spontaneous chromosomal instability or cellular and chromosomal radiation sensitivity as surrogate markers of compromised DNA repair compared to childhood cancer patients with a first primary neoplasm (FPN) only or tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1 or on prematurely condensed chromosomes of cells irradiated and analyzed in G2. Fluorescence in situ hybridization was applied to investigate spontaneous transmissible aberrations in selected donors. No significant difference in clonogenic survival or the average yield of spontaneous or radiation-induced aberrations was found between the study populations. However, two donors with an SPN showed striking spontaneous chromosomal instability occurring as high rates of numerical and structural aberrations or non-clonal and clonal translocations. No correlation was found between radiation sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN. Together, the results of this unique case-control study show genomic stability and normal radiation sensitivity in normal somatic cells of donors with an early and high intrinsic or therapy-associated tumor risk. These findings provide valuable information for future studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as for the establishment of predictive biomarkers based on altered DNA repair processes.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carola Hartel
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Lukas Stefan Eckhard
- Department of Orthopedic Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Marron
- Department of Epidemiological Methods and Etiologic Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Sylvia Ritter
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Suzuki S, Yamamoto M, Togashi K, Sanomachi T, Sugai A, Seino S, Yoshioka T, Kitanaka C, Okada M. In vitro and in vivo anti-tumor effects of brexpiprazole, a newly-developed serotonin-dopamine activity modulator with an improved safety profile. Oncotarget 2019; 10:3547-3558. [PMID: 31191825 PMCID: PMC6544401 DOI: 10.18632/oncotarget.26949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/04/2019] [Indexed: 01/21/2023] Open
Abstract
From the perspective of psycho-oncology, antipsychotics are widely used for patients with cancer. Although some antipsychotic drugs have anti-tumor effects, these antipsychotic drugs are not applicable for cancer patients because of their severe side effects. Brexpiprazole, a novel serotonin-dopamine modulator with an improved side effect profile, was developed as a drug that is structurally and pharmacologically related to aripiprazole, which was reported to have anti-cancer effects. However, it remains unknown whether brexpiprazole has anti-cancer effects. In this study, we examined whether brexpiprazole has anti-tumor effects in cancer cells and cancer stem cells (CSCs) of glioblastoma, pancreatic cancer, and lung cancer. Brexpiprazole suppressed cell growth and induced cell death in the cancer cells and the CSCs, and decreased the CSC properties of the CSCs. Brexpiprazole did not exert any cytotoxic effects on non-cancer cells at the anti-cancer effect-inducing concentration. In the cancer cells and the CSCs, brexpiprazole reduced the expression of survivin, an anti-apoptotic protein, whose reduction sensitizes tumor cells to chemotherapeutic reagents. In the preclinical model in which pancreatic CSCs were subcutaneously implanted into nude mice, brexpiprazole suppressed tumor growth, in addition to reducing the expression of Sox2, a marker for CSCs, and survivin. This suggests that brexpiprazole is a promising antipsychotic drug with anti-tumor effects and an improved safety profile.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Ophthalmology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, Joch B, Debacq-Chainiaux F, Holthofer H, Ray S, Huber TB, Dengjel J, De Coppi P, Widera D, Patel K. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 2019; 10:116. [PMID: 30953537 PMCID: PMC6451311 DOI: 10.1186/s13287-019-1213-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.
Collapse
Affiliation(s)
- Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ben Mellows
- School of Biological Sciences, University of Reading, Reading, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
- Sheard BioTech Ltd, 20-22 Wenlock Road, London, N1 7GU UK
| | | | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College, London, UK
| | - Marie-Theres Zeuner
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - James E. Tomkins
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, Aachen, Germany
| | - Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Barbara Joch
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Steve Ray
- Micregen, Alderley Edge, Manchester, UK
| | - Tobias B. Huber
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and Centre for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Joern Dengjel
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Suzuki S, Okada M, Shibuya K, Seino M, Sato A, Takeda H, Seino S, Yoshioka T, Kitanaka C. JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget 2016; 6:458-70. [PMID: 25473894 PMCID: PMC4381607 DOI: 10.18632/oncotarget.2693] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance associated with cancer stem cells (CSCs), which is now being held responsible for the pervasive therapy resistance of pancreatic cancer, poses a major challenge to the successful management of this devastating malignancy. However, the molecular mechanism underlying the marked chemoresistance of pancreatic CSCs remains largely unknown. Here we show that JNK, which is upregulated in pancreatic CSCs and contributes to their maintenance, is critically involved in the resistance of pancreatic CSCs to 5-fluorouracil (5-FU) and gemcitabine (GEM). We found that JNK inhibition effectively sensitizes otherwise chemoresistant pancreatic CSCs to 5-FU and GEM. Significantly, JNK inhibition promoted 5-FU- and GEM-induced increase in intracellular reactive oxygen species (ROS), and scavenging intracellular ROS by use of N-acetylcysteine impaired JNK inhibition-mediated promotion of the cytotoxicity of 5-FU and GEM. Our findings thus suggest that JNK may contribute to the chemoresistance of pancreatic CSCs through prevention of chemotherapeutic agents-induced increase in intracellular ROS. Our findings also suggest that JNK inhibition combined with 5-FU- and/or GEM-based regimens may be a rational therapeutic approach to effectively eliminate pancreatic CSCs.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Department of Regional Cancer Network, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Keita Shibuya
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Oncology Research Center, Research Institute for Advanced Molecular Epidemiology, Yamagata University, Yamagata 990-9585, Japan. Global COE program for Medical Sciences, Japan Society for Promotion of Science, Tokyo 102-8471, Japan
| | - Manabu Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Hiroyuki Takeda
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Oncology Research Center, Research Institute for Advanced Molecular Epidemiology, Yamagata University, Yamagata 990-9585, Japan. Global COE program for Medical Sciences, Japan Society for Promotion of Science, Tokyo 102-8471, Japan. Research Institute for Promotion of Medical Sciences, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan. Oncology Research Center, Research Institute for Advanced Molecular Epidemiology, Yamagata University, Yamagata 990-9585, Japan. Global COE program for Medical Sciences, Japan Society for Promotion of Science, Tokyo 102-8471, Japan. Research Institute for Promotion of Medical Sciences, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
5
|
Dettmering T, Zahnreich S, Colindres-Rojas M, Durante M, Taucher-Scholz G, Fournier C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. JOURNAL OF RADIATION RESEARCH 2015; 56:67-76. [PMID: 25304329 PMCID: PMC4572590 DOI: 10.1093/jrr/rru083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 05/25/2023]
Abstract
The production of reactive oxygen species (ROS), especially superoxide anions (O2 (·-)), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3-5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure.
Collapse
Affiliation(s)
- Till Dettmering
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Sebastian Zahnreich
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Miriam Colindres-Rojas
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstraße 6-8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
6
|
The fate of a normal human cell traversed by a single charged particle. Sci Rep 2012; 2:643. [PMID: 22966418 PMCID: PMC3437517 DOI: 10.1038/srep00643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022] Open
Abstract
The long-term “fate” of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability.
Collapse
|