1
|
Ezurike PU, Odunola E, Oke TA, Bakre AG, Olumide O, Odetoye O, Alege AM, Abiodun OO. Ganoderma lucidum ethanol extract promotes weight loss and improves depressive-like behaviors in male and female Swiss mice. Physiol Behav 2023; 265:114155. [PMID: 36907499 DOI: 10.1016/j.physbeh.2023.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Metabolic and mood-related disturbances can increase the risks of developing adverse mental health problems. The medicinal mushroom, Ganoderma lucidum, is utilized in indigenous medicine to improve quality of life, promote health, and boost vitality. This study investigated the effects of Ganoderma lucidum ethanol extract (EEGL) on feeding behavioral parameters, depressive-like symptoms, and motor activity in Swiss mice. We hypothesized that EEGL would have beneficial effect on metabolic and behavioral outcomes in a dose-related manner. The mushroom was identified and authenticated via techniques of molecular biology. Forty Swiss mice (n = 10/group) of either sex were given distilled water (10 mL/kg) and graded doses of EEGL (100, 200, and 400 mg/kg) orally for 30 days, during which feed and water intake, body weight, neurobehavioral, and safety data were documented. The animals experienced a significant decrease in body weight gain and feed intake while water intake increased in a dose-dependent manner. Furthermore, EEGL significantly diminished immobility time in forced swim test (FST) and tail suspension test (TST). At the 100 and 200 mg/kg, EEGL did not cause significant alteration in motor activity in the open field test (OFT). Meanwhile, an increase in motor activity in male mice without remarkable difference in female mice was observed at the highest dose (400 mg/kg). Eighty percent of mice treated with 400 mg/kg survived till day 30. These findings suggest that EEGL at 100 and 200 mg/kg reduces the amount of weight gained and elicits antidepressant-like effects. Thus, EEGL might be useful for the management of obesity and depressive-like symptoms.
Collapse
Affiliation(s)
- Precious U Ezurike
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.
| | - Evelyn Odunola
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Tolulope A Oke
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adewale G Bakre
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwayimika Olumide
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - OgoOluwa Odetoye
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adenike M Alege
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oyindamola O Abiodun
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
2
|
Meng M, Yao J, Zhang Y, Sun H, Liu M. Potential Anti-Rheumatoid Arthritis Activities and Mechanisms of Ganoderma lucidum Polysaccharides. Molecules 2023; 28:molecules28062483. [PMID: 36985456 PMCID: PMC10052150 DOI: 10.3390/molecules28062483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and autoimmune disease characterized by inflammation, autoimmune dysfunction, and cartilage and bone destruction. In this review, we summarized the available reports on the protective effects of Ganoderma lucidum polysaccharides (GLP) on RA in terms of anti-inflammatory, immunomodulatory, anti-angiogenic and osteoprotective effects. Firstly, GLP inhibits RA synovial fibroblast (RASF) proliferation and migration, modulates pro- and anti-inflammatory cytokines and reduces synovial inflammation. Secondly, GLP regulates the proliferation and differentiation of antigen-presenting cells such as dendritic cells, inhibits phagocytosis by mononuclear macrophages and nature killer (NK) cells and regulates the ratio of M1, M2 and related inflammatory cytokines. In addition, GLP produced activities in balancing humoral and cellular immunity, such as regulating immunoglobulin production, modulating T and B lymphocyte proliferative responses and cytokine release, exhibiting immunomodulatory effects. Thirdly, GLP inhibits angiogenesis through the direct inhibition of vascular endothelial cell proliferation and induction of cell death and the indirect inhibition of vascular endothelial growth factor (VEGF) production in the cells. Finally, GLP can inhibit the production of matrix metalloproteinases and promote osteoblast formation, exerting protective effects on bone and articular cartilage. It is suggested that GLP may be a promising agent for the treatment of RA.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116041, China
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116041, China
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| |
Collapse
|
3
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
4
|
Ganoderma lucidum Ameliorates Neurobehavioral Changes and Oxidative Stress Induced by Ethanol Binge Drinking. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2497845. [PMID: 32802260 PMCID: PMC7415090 DOI: 10.1155/2020/2497845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Ganoderma lucidum, mushroom used for centuries by Asian peoples as food supplement, has been shown interesting biological activities, including over the Central Nervous System. Besides, these mushroom bioactive compounds present antioxidant and anti-inflammatory activities. On the side, binge drinking paradigm consists of ethanol exposure that reflects the usual consumption of adolescents, which elicits deleterious effects, determined by high ethanol consumption, in a short period. In this study, we investigated whether the Aqueous Extract of G. lucidum (AEGl) reduces the behavioral disorders induced by alcohol. Male (n = 30) and female Wistar rats (n = 40), seventy-two days old, were used for behavioral/biochemical and oral toxicity test, respectively. Animals were exposed to 5 binges (beginning at 35 days old) of ethanol (3 g/kg/day) or distilled water. Twenty-four hours after the last binge administration, animals received AEGl (100 mg/kg/day) or distilled water for three consecutive days. After treatment protocol, open field, elevated plus maze, forced swim, and step-down inhibitory avoidance tests were performed. Oxidative stress parameters were measured to evaluate the REDOX balance. Our results demonstrated that AEGl elicited the recovery of spontaneous horizontal exploration capacity, anxiogenic- and depressive-profile, as well as short-term memory damage induced by binge-ethanol exposure. The behavioral effects of the extract were associated to the reequilibrium of the animals' REDOX balance. Thus, AEGl, a medicinal mushroom, ameliorates behavioral alteration on a model of motor, cognitive and psychiatric-like disorders induced by binge drinking paradigm and emerges as a useful tool as a food supplement in the management of disorders of alcoholic origin.
Collapse
|
5
|
Sohretoglu D, Zhang C, Luo J, Huang S. ReishiMax inhibits mTORC1/2 by activating AMPK and inhibiting IGFR/PI3K/Rheb in tumor cells. Signal Transduct Target Ther 2019; 4:21. [PMID: 31637001 PMCID: PMC6799808 DOI: 10.1038/s41392-019-0056-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) extracts, as dietary supplements, have been found to exert potent anticancer activity, which is attributed to the presence of polysaccharides and triterpenes. However, the molecular mechanism underlying the anticancer action of G. lucidum extracts remains to be investigated. Here, we show that ReishiMax GLp, containing G. lucidum polysaccharides and triterpenes (GLPT), inhibited cell proliferation and induced cell death in human lung cancer cells (A549 and A427) and simultaneously suppressed the signaling pathways of mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2), respectively. Mechanistically, GLPT downregulated the phosphorylation and protein levels of insulin-like growth factor 1 receptor (IGFR) and phosphoinositide 3-kinase (PI3K) as well as the protein level of RAS homolog enriched in brain (Rheb). In addition, GLPT also activated the AMP-activated protein kinase (AMPK) network. This was evidenced by observations that GLPT increased the phosphorylation of AMPKα (T172) and its substrates tuberous sclerosis complex 2 (TSC2, S1387) and regulatory-associated protein of mTOR (raptor, S792). Ectopic expression of dominant-negative AMPKα partially mitigated the inhibitory effect of GLPT on mTORC1, indicating that GLPT inhibits mTORC1 partly by activating AMPK. The results suggest that G. lucidum extracts exert anticancer action at least partly by suppressing mTORC1/2 signaling via activation of AMPK and inhibition of IGFR/PI3K/Rheb in tumor cells.
Collapse
Affiliation(s)
- Didem Sohretoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR 06100 Ankara, Turkey
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 214064 Wuxi, Jiangsu Province China
| | - Jun Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
| |
Collapse
|
6
|
Meng J, Yang B. Protective Effect of Ganoderma (Lingzhi) on Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:181-199. [DOI: 10.1007/978-981-32-9421-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Ganoderma lucidum phosphoglucomutase is required for hyphal growth, polysaccharide production, and cell wall integrity. Appl Microbiol Biotechnol 2018; 102:1911-1922. [PMID: 29349492 DOI: 10.1007/s00253-017-8730-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Phosphoglucomutase (pgm) is an important enzyme in carbohydrate metabolism that is located at the branching point between glycolysis and the Leloir pathway. pgm catalyzes the reversible conversion reaction between glucose-6-phosphate (Glc-6-P) and glucose-1-phosphate (Glc-1-P). The glpgm gene was cloned in Escherichia coli, and the recombinant pgm protein from Ganoderma lucidum was purified in this study. The activity of native pgm was also detected to demonstrate that this predicted gene was functional in G. lucidum. Interestingly, silencing the glpgm gene in the fungus reduced hyphal growth. Moreover, glpgm silencing was associated with declining extracellular polysaccharide (EPS) production (approximately 20-40% of that in the WT strain) and increasing intracellular polysaccharide (IPS) production (approximately 1.7-fold that in the WT strain). Additionally, in our research, cell wall components were also shown to differ according to the glpgmi strain. Compared with WT, chitin significantly increased by 1.5-fold; however, the content of β-1,3-glucan was observably reduced to 60-70% that of the WT. Further research showed that the cell wall component changes were associated with the transcription of related genes. These findings provide references for further study on the potential physiological function of pgm in G. lucidum.
Collapse
|
8
|
Ma Y, He H, Wu J, Wang C, Chao K, Huang Q. Assessment of Polysaccharides from Mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy. Sci Rep 2018; 8:10. [PMID: 29311571 PMCID: PMC5758644 DOI: 10.1038/s41598-017-18422-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Ganoderma lingzhi (G. lingzhi), G. sinense, G. applanatum, etc. belongs to the Ganoderma genus of polypore mushrooms which contain rich polysaccharides valuable for nutrition and positive medicinal effects. In order to evaluate polysaccharide content in Ganoderma mycelia obtained in the fermentation process quickly and accurately, in this work we employed infrared spectroscopy to examine different Ganoderma stains of samples from diversified sources. Through mid-infrared (mid-IR) spectroscopy, we could identify the most relevant spectral bands required for polysaccharide evaluation, and through near-infrared (NIR) spectroscopy, we could establish the quantification model for making satisfactory prediction of polysaccharide ingredient content. As such, we have achieved an effective and convenient approach to quantitative assessment of the total polysaccharides in Ganoderma mycelia but also demonstrated that infrared spectroscopy can be a powerful tool for quality control of Ganoderma polysaccharides obtained from industrial production.
Collapse
Affiliation(s)
- Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.,College of Life Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Huaqi He
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.,College of Life Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jingzhu Wu
- School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Chunyang Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Kuanglin Chao
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. .,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.
| |
Collapse
|
9
|
Zhang TJ, Shi L, Chen DD, Liu R, Shi DK, Wu CG, Sun ZH, Ren A, Zhao MW. 14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum. Appl Microbiol Biotechnol 2018; 102:1769-1782. [DOI: 10.1007/s00253-017-8711-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
10
|
Quercetin Inhibits Pulmonary Arterial Endothelial Cell Transdifferentiation Possibly by Akt and Erk1/2 Pathways. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6147294. [PMID: 28428963 PMCID: PMC5385898 DOI: 10.1155/2017/6147294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the effects and mechanisms of quercetin on pulmonary arterial endothelial cell (PAEC) transdifferentiation into smooth muscle-like cells. TGF-β1-induced PAEC transdifferentiation models were applied to evaluate the pharmacological actions of quercetin. PAEC proliferation was detected with CCK8 method and BurdU immunocytochemistry. Meanwhile, the identification and transdifferentiation of PAECs were determined by FVIII immunofluorescence staining and α-SMA protein expression. The related mechanism was elucidated based on the levels of Akt and Erk1/2 signal pathways. As a result, quercetin effectively inhibited the TGF-β1-induced proliferation and transdifferentiation of the PAECs and activation of Akt/Erk1/2 cascade in the cells. In conclusion, quercetin is demonstrated to be effective for pulmonary arterial hypertension (PAH) probably by inhibiting endothelial transdifferentiation possibly via modulating Akt and Erk1/2 expressions.
Collapse
|
11
|
Sun LX, Lin ZB, Lu J, Li WD, Niu YD, Sun Y, Hu CY, Zhang GQ, Duan XS. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol Res 2017; 65:658-665. [DOI: 10.1007/s12026-017-8893-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Quan KT, Park HS, Oh J, Park HB, Ferreira D, Myung CS, Na M. Arborinane Triterpenoids from Rubia philippinensis Inhibit Proliferation and Migration of Vascular Smooth Muscle Cells Induced by the Platelet-Derived Growth Factor. JOURNAL OF NATURAL PRODUCTS 2016; 79:2559-2569. [PMID: 27704813 DOI: 10.1021/acs.jnatprod.6b00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are associated with cardiovascular diseases and related complications. Such deleterious proliferation and migration events are triggered by cytokines and growth factors, and among them, platelet-derived growth factor (PDGF) is recognized as the most potent inducer. Despite the genus Rubia being researched to identify valuable commercial and medicinal virtues, Rubia philippinensis has rarely been investigated. Nine arborinane-type triterpenoids (1-9) were identified from this underutilized plant species. In particular, 4 was identified as the first arborinane derivative carrying a ketocarbonyl motif at C-19. The presence of the cyclopentanone moiety and the associated configurational assignment were determined by utilizing NOE and coupling constant analysis. These compounds were assessed for their inhibitory potential on PDGF-induced proliferation and the migration of VSMCs. Treatment with 5 μM compound 5 (62.6 ± 10.7%) and compound 9 (41.1 ± 4.7%) impeded PDGF-stimulated proliferation without exerting cytotoxicity. Compound 7 exhibited antimigration activity in a dose-dependent manner (38.5 ± 3.0% at 10 μM, 57.6 ± 3.2% at 30 μM). These results suggest that the arborinane-type triterpenoids may be a pertinent starting point for the development of cardiovascular drugs capable of preventing the intimal accumulation of VSMCs.
Collapse
Affiliation(s)
- Khong Trong Quan
- Department of Pharmaceutical Analysis and Standardization, National Institute of Medicinal Materials , Hanoi, Vietnam
| | | | - Joonseok Oh
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi , University, Mississippi 38677, United States
| | - Chang-Seon Myung
- Institute of Drug Research & Development, Chungnam National University , Daejeon 34134, Republic of Korea
| | | |
Collapse
|
13
|
Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26. Bioprocess Biosyst Eng 2015; 39:37-44. [PMID: 26531749 DOI: 10.1007/s00449-015-1480-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022]
Abstract
Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.
Collapse
|
14
|
Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, Tang C, Gu Y. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med 2015; 36:1001-11. [PMID: 26311435 PMCID: PMC4564091 DOI: 10.3892/ijmm.2015.2320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of artery restenosis following percutaneous coronary intervention. Digoxin has long been used in the treatment of heart failure and has been shown to inhibit the proliferation of cancer cells through multiple pathways. However, the potential role of digoxin in the regulation of VSMC proliferation and migration and its effectiveness in the treatment of cardiovascular diseases, such as restenosis, remains unexplored. In the present study, we demonstrate that digoxin-induced growth inhibition is associated with the downregulation of CDK activation and the restoration of p27Kip1 levels in platelet-derived growth factor (PDGF)-stimulated VSMCs. In addition, we found that digoxin restored the PDGF‑BB-induced inhibition of integrin linked kinase (ILK) expression and prevented the PDGF‑BB-induced activation of glycogen synthase kinase (GSK)-3β. Furthermore, digoxin inhibited adhesion molecule and extracellular matrix relative protein expression. Finally, we found that digoxin significantly inhibited neointima formation, accompanied by a decrease in cell proliferation following vascular injury in rats. These effects of digoxin were shown to be mediated, at least in part, through an increase in ILK/Akt signaling and a decrease in GSK-3β signaling in PDGF‑BB-stimulated VSMCs. In conclusion, our data demonstrate that digoxin exerts an inhibitory effect on the PDGF‑BB-induced proliferation, migration and phenotypic modulation of VSMCs, and prevents neointima formation in rats. These observations indicate the potential therapeutic application of digoxin in the treatment of cardiovascular diseases, such as restenosis.
Collapse
Affiliation(s)
- Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Qingjie Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Shengda Hu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Yuchun Gu
- Institute of Molecular Medicine (IMM), Peking University, Beijing 100190, P.R. China
| |
Collapse
|
15
|
Li M, Chen T, Gao T, Miao Z, Jiang A, Shi L, Ren A, Zhao M. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose. Fungal Genet Biol 2015; 82:251-63. [PMID: 26235043 DOI: 10.1016/j.fgb.2015.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP) is a key enzyme involved in carbohydrate metabolism, but there are few studies on the functions of this enzyme in fungi. The ugp gene of Ganoderma lucidum was cloned, and enzyme kinetic parameters of the UGP recombinant protein were determined in vitro, revealing that this protein was functional and catalyzed the reversible conversion between Glc-1-P and UDP-Glc. ugp silencing by RNA interference resulted in changes in the levels of the intermediate metabolites Glc-1-P and UDP-Glc. The compounds and structure of the cell wall in the silenced strains were also altered compared with those in the wild-type strains. Moreover, the number of hyphal branches was also changed in the silenced strains. To verify the role of UGP in hyphal branching, a ugp-overexpressing strain was constructed. The results showed that the number of hyphal branches was influenced by UGP. The mechanism underlying hyphal branching was further investigated by adding exogenous Glc-1-P. Our results showed that hyphal branching was regulated by a change in the cytosolic Ca(2+) concentration, which was affected by the level of the intermediate metabolite Glc-1-P, in G. lucidum. Our findings indicate the existence of an interaction between carbon metabolism and Ca(2+) signaling in this fungus.
Collapse
Affiliation(s)
- Mengjiao Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tianxi Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhigang Miao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ailiang Jiang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Xu JW, Ji SL, Li HJ, Zhou JS, Duan YQ, Dang LZ, Mo MH. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioprocess Biosyst Eng 2014; 38:399-405. [DOI: 10.1007/s00449-014-1279-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/31/2014] [Indexed: 11/28/2022]
|
17
|
Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1 β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:305149. [PMID: 24723958 PMCID: PMC3960732 DOI: 10.1155/2014/305149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 11/18/2022]
Abstract
The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi) polysaccharides (EORPs), which is effective against immunological disorders, on interleukin- (IL-) 1β expression by human aortic smooth muscle cells (HASMCs) and the underlying mechanism. The lipopolysaccharide- (LPS-) induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF-) κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/−) mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.
Collapse
|