1
|
van Nijnatten J, Faiz A, Timens W, Guryev V, Slebos DJ, Klooster K, Hartman JE, Kole T, Choy DF, Chakrabarti A, Grimbaldeston M, Rosenberger CM, Kerstjens H, Brandsma CA, van den Berge M. A bronchial gene signature specific for severe COPD that is retained in the nose. ERJ Open Res 2023; 9:00354-2023. [PMID: 38020574 PMCID: PMC10680034 DOI: 10.1183/23120541.00354-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction A subset of COPD patients develops advanced disease with severe airflow obstruction, hyperinflation and extensive emphysema. We propose that the pathogenesis in these patients differs from mild-moderate COPD and is reflected by bronchial gene expression. The aim of the present study was to identify a unique bronchial epithelial gene signature for severe COPD patients. Methods We obtained RNA sequencing data from bronchial brushes from 123 ex-smokers with severe COPD, 23 with mild-moderate COPD and 23 non-COPD controls. We identified genes specific to severe COPD by comparing severe COPD to non-COPD controls, followed by removing genes that were also differentially expressed between mild-moderate COPD and non-COPD controls. Next, we performed a pathway analysis on these genes and evaluated whether this signature is retained in matched nasal brushings. Results We identified 219 genes uniquely differentially expressed in severe COPD. Interaction network analysis identified VEGFA and FN1 as the key genes with the most interactions. Genes were involved in extracellular matrix regulation, collagen binding and the immune response. Of interest were 10 genes (VEGFA, DCN, SPARC, COL6A2, MGP, CYR61, ANXA6, LGALS1, C1QA and C1QB) directly connected to fibronectin 1 (FN1). Most of these genes were lower expressed in severe COPD and showed the same effect in nasal brushings. Conclusions We found a unique severe COPD bronchial gene signature with key roles for VEGFA and FN1, which was retained in the upper airways. This supports the hypothesis that severe COPD, at least partly, comprises a different pathology and supports the potential for biomarker development based on nasal brushes in COPD.
Collapse
Affiliation(s)
- Jos van Nijnatten
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology, Sydney, NSW, Australia
| | - Alen Faiz
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology, Sydney, NSW, Australia
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Victor Guryev
- University of Groningen University Medical Center Groningen, European Research Institute for the Biology of Ageing, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | - Karin Klooster
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | - Jorine E. Hartman
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | - Tessa Kole
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | | | | | | | | | - Huib Kerstjens
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- These authors contributed equally
| | - Maarten van den Berge
- University of Groningen University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands
- These authors contributed equally
| |
Collapse
|
2
|
Chen J, Sali A, Vitetta L. The gallbladder and vermiform appendix influence the assemblage of intestinal microorganisms. Future Microbiol 2020; 15:541-555. [DOI: 10.2217/fmb-2019-0325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Surgical procedures for the symptomatic removal of the gallbladder and the vermiform appendix have been posited to adversely shift the assemblage of the intestinal microbiome increasing the risk of disease. The associated mechanisms have been linked with dysbiosis of the gut microbiota. Cholecystectomy causes changes of bile acid compositions and bile secretion patterns as bile acids interact with the intestinal microbiota in a bidirectional capacity. An appendectomy precludes the further recolonization of the proximal colon with a commensal biofilm that could maintain a stable intestinal microbiome. Epidemiological studies indicate that there is an increased risk of disease rather than causality following a cholecystectomy and appendectomy. This narrative review summarizes studies that report on the role that bile salts and the appendix, contribute to the assemblage of the intestinal microbiome in health and disease.
Collapse
Affiliation(s)
- Jiezhong Chen
- Research Department, Medlab Clinical Ltd, Sydney, 2015, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Melbourne, 3022, Australia
| | - Luis Vitetta
- Research Department, Medlab Clinical Ltd, Sydney, 2015, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
3
|
Lee JH, Hailey KL, Vitorino SA, Jennings PA, Bigby TD, Breen EC. Cigarette Smoke Triggers IL-33-associated Inflammation in a Model of Late-Stage Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:567-574. [PMID: 30973786 PMCID: PMC6827064 DOI: 10.1165/rcmb.2018-0402oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide threat. Cigarette smoke (CS) exposure causes cardiopulmonary disease and COPD and increases the risk for pulmonary tumors. In addition to poor lung function, patients with COPD are susceptible to bouts of dangerous inflammation triggered by pollutants or infection. These severe inflammatory episodes can lead to additional exacerbations, hospitalization, further deterioration of lung function, and reduced survival. Suitable models of the inflammatory conditions associated with CS, which potentiate the downward spiral in patients with COPD, are lacking, and the underlying mechanisms that trigger exacerbations are not well understood. Although initial CS exposure activates a protective role for vascular endothelial growth factor (VEGF) functions in barrier integrity, chronic exposure depletes the pulmonary VEGF guard function in severe COPD. Thus, we hypothesized that mice with compromised VEGF production and challenged with CS would trigger human-like severe inflammatory progression of COPD. In this model, we discovered that CS exposure promotes an amplified IL-33 cytokine response and severe disease progression. Our VEGF-knockout model combined with CS recapitulates severe COPD with an influx of IL-33-expressing macrophages and neutrophils. Normally, IL-33 is quickly inactivated by a post-translational disulfide bond formation. Our results reveal that BAL fluid from the CS-exposed, VEGF-deficient cohort promotes a significantly prolonged lifetime of active proinflammatory IL-33. Taken together, our data demonstrate that with the loss of a VEGF-mediated protective barrier, the CS response switches from a localized danger to an uncontrolled long-term and long-range, amplified, IL-33-mediated inflammatory response that ultimately destroys lung function.
Collapse
Affiliation(s)
| | - Kendra L. Hailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | | | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | - Timothy D. Bigby
- Department of Medicine and
- Pulmonary and Critical Care, Veterans Affairs San Diego, La Jolla, California
| | | |
Collapse
|
4
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|
5
|
McGillick EV, Orgeig S, Morrison JL. Structural and molecular regulation of lung maturation by intratracheal vascular endothelial growth factor administration in the normally grown and placentally restricted fetus. J Physiol 2015; 594:1399-420. [PMID: 26537782 DOI: 10.1113/jp271113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Inhibition of hypoxia signalling leads to respiratory distress syndrome (RDS), whereas administration of vascular endothelial growth factor (VEGF), the most widely characterized hypoxia responsive factor, protects from RDS. In the lung of the chronically hypoxaemic placentally restricted (PR) fetus, there is altered regulation of hypoxia signalling. This leads to reduced surfactant maturation in late gestation and provides evidence for the increased risk of RDS in growth restricted neonates at birth. We evaluated the effect of recombinant human VEGF administration with respect to bypassing the endogenous regulation of hypoxia signalling in the lung of the normally grown and PR sheep fetus. There was no effect of VEGF administration on fetal blood pressure or fetal breathing movements. We examined the effect on the expression of genes regulating VEGF signalling (FLT1 and KDR), angiogenesis (ANGPT1, AQP1, ADM), alveolarization (MMP2, MMP9, TIMP1, COL1A1, ELN), proliferation (IGF1, IGF2, IGF1R, MKI67, PCNA), inflammation (CCL2, CCL4, IL1B, TNFA, TGFB1, IL10) and surfactant maturation (SFTP-A, SFTP-B, SFTP-C, SFTP-D, PCYT1A, LPCAT, LAMP3, ABCA3). Despite the effects of PR on the expression of genes regulating airway remodelling, inflammatory signalling and surfactant maturation, there were very few effects of VEGF administration on gene expression in the lung of both the normally grown and PR fetus. There were, however, positive effects of VEGF administration on percentage tissue, air space and numerical density of SFTP-B positive alveolar epithelial cells in fetal lung tissue. These results provide evidence for the stimulatory effects of VEGF administration on structural maturation in the lung of both the normally grown and PR fetus.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | |
Collapse
|
6
|
Smith SB, Magid-Slav M, Brown JR. Host response to respiratory bacterial pathogens as identified by integrated analysis of human gene expression data. PLoS One 2013; 8:e75607. [PMID: 24086587 PMCID: PMC3785471 DOI: 10.1371/journal.pone.0075607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/20/2013] [Indexed: 01/24/2023] Open
Abstract
Respiratory bacterial pathogens are one of the leading causes of infectious death in the world and a major health concern complicated by the rise of multi-antibiotic resistant strains. Therapeutics that modulate host genes essential for pathogen infectivity could potentially avoid multi-drug resistance and provide a wider scope of treatment options. Here, we perform an integrative analysis of published human gene expression data generated under challenges from the gram-negative and Gram-positive bacteria pathogens, Pseudomonas aeruginosa and Streptococcus pneumoniae, respectively. We applied a previously described differential gene and pathway enrichment analysis pipeline to publicly available host mRNA GEO datasets resulting from exposure to bacterial infection. We found 72 canonical human pathways common between four GEO datasets, representing P. aeruginosa and S. pneumoniae. Although the majority of these pathways are known to be involved with immune response, we found several interesting new interactions such as the SUMO1 pathway that might have a role in bacterial infections. Furthermore, 36 host-bacterial pathways were also shared with our previous results for respiratory virus host gene expression. Based on our pathway analysis we propose several drug-repurposing opportunities supported by the literature.
Collapse
Affiliation(s)
- Steven B. Smith
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Michal Magid-Slav
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - James R. Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|