1
|
Romano IR, D’Angeli F, Gili E, Fruciano M, Lombardo GAG, Mannino G, Vicario N, Russo C, Parenti R, Vancheri C, Giuffrida R, Pellitteri R, Lo Furno D. Melatonin Enhances Neural Differentiation of Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:4891. [PMID: 38732109 PMCID: PMC11084714 DOI: 10.3390/ijms25094891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | | | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy;
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| |
Collapse
|
2
|
Bautista-González S, Carrillo González NJ, Campos-Ordoñez T, Acosta Elías MA, Pedroza-Montero MR, Beas-Zárate C, Gudiño-Cabrera G. Raman spectroscopy to assess the differentiation of bone marrow mesenchymal stem cells into a glial phenotype. Regen Ther 2023; 24:528-535. [PMID: 37841662 PMCID: PMC10570561 DOI: 10.1016/j.reth.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent precursor cells with the ability to self-renew and differentiate into multiple cell linage, including the Schwann-like fate that promotes regeneration after lesion. Raman spectroscopy provides a precise characterization of the osteogenic, adipogenic, hepatogenic and myogenic differentiation of MSCs. However, the differentiation of bone marrow mesenchymal stem cells (BMSCs) towards a glial phenotype (Schwann-like cells) has not been characterized before using Raman spectroscopy. Method We evaluated three conditions: 1) cell culture from rat bone marrow undifferentiated (uBMSCs), and two conditions of differentiation; 2) cells exposed to olfactory ensheathing cells-conditioned medium (dBMSCs) and 3) cells obtained from olfactory bulb (OECs). uBMSCs phenotyping was confirmed by morphology, immunocytochemistry and flow cytometry using antibodies of cell surface: CD90 and CD73. Glial phenotype of dBMSCs and OECs were verified by morphology and immunocytochemistry using markers of Schwann-like cells and OECs such as GFAP, p75 NTR and O4. Then, the Principal Component Analysis (PCA) of Raman spectroscopy was performed to discriminate components from the high wavenumber region between undifferentiated and glial-differentiated cells. Raman bands at the fingerprint region also were used to analyze the differentiation between conditions. Results Differences between Raman spectra from uBMSC and glial phenotype groups were noted at multiple Raman shift values. A significant decrease in the concentration of all major cellular components, including nucleic acids, proteins, and lipids were found in the glial phenotype groups. PCA analysis confirmed that the highest spectral variations between groups came from the high wavenumber region observed in undifferentiated cells and contributed with the discrimination between glial phenotype groups. Conclusion These findings support the use of Raman spectroscopy for the characterization of uBMSCs and its differentiation in the glial phenotype.
Collapse
Affiliation(s)
- Sulei Bautista-González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Mónica Alessandra Acosta Elías
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Martín Rafael Pedroza-Montero
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Carlos Beas-Zárate
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
3
|
Romano IR, D’Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy;
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| |
Collapse
|
4
|
Zappalà A, Romano IR, D’Angeli F, Musumeci G, Lo Furno D, Giuffrida R, Mannino G. Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. Int J Mol Sci 2023; 24:4156. [PMID: 36835567 PMCID: PMC9967557 DOI: 10.3390/ijms24044156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
5
|
Lactate Rewrites the Metabolic Reprogramming of Uveal Melanoma Cells and Induces Quiescence Phenotype. Int J Mol Sci 2022; 24:ijms24010024. [PMID: 36613471 PMCID: PMC9820521 DOI: 10.3390/ijms24010024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.
Collapse
|
6
|
Denaro S, D’Aprile S, Alberghina C, Pavone AM, Torrisi F, Giallongo S, Longhitano L, Mannino G, Lo Furno D, Zappalà A, Giuffrida R, Tibullo D, Li Volti G, Vicario N, Parenti R. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol 2022; 13:1098212. [PMID: 36601122 PMCID: PMC9806219 DOI: 10.3389/fimmu.2022.1098212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D’Aprile
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Debora Lo Furno
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| |
Collapse
|
7
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
8
|
Karimi-Haghighi S, Chavoshinezhad S, Safari A, Razeghian-Jahromi I, Jamhiri I, Khodabandeh Z, Khajeh S, Zare S, Borhani-Haghighi A, Dianatpour M, Pandamooz S, Salehi MS. Preconditioning with secretome of neural crest-derived stem cells enhanced neurotrophic expression in mesenchymal stem cells. Neurosci Lett 2022; 773:136511. [PMID: 35143889 DOI: 10.1016/j.neulet.2022.136511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/01/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.
Collapse
Affiliation(s)
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Russo C, Mannino G, Patanè M, Parrinello NL, Pellitteri R, Stanzani S, Giuffrida R, Lo Furno D, Russo A. Ghrelin peptide improves glial conditioned medium effects on neuronal differentiation of human adipose mesenchymal stem cells. Histochem Cell Biol 2021; 156:35-46. [PMID: 33728539 PMCID: PMC8277640 DOI: 10.1007/s00418-021-01980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.
Collapse
Affiliation(s)
- Cristina Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Martina Patanè
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Stefania Stanzani
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Rosario Giuffrida
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Debora Lo Furno
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| |
Collapse
|
10
|
Sung TC, Heish CW, Lee HHC, Hsu JY, Wang CK, Wang JH, Zhu YR, Jen SH, Hsu ST, Hirad AH, Alarfaj AA, Higuchi A. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 63:9-17. [DOI: 10.1016/j.jmst.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, Cereda C. Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21093243. [PMID: 32375302 PMCID: PMC7247337 DOI: 10.3390/ijms21093243] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Eveljn Scarian
- Department of Brain and Behavioural Sciences, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy;
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Stella Gagliardi
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-0382-380-248
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| |
Collapse
|
12
|
Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Soltani A, Hashemzadeh-Chaleshtori M, Jami MS. Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci 2019; 130:107-116. [PMID: 31599165 DOI: 10.1080/00207454.2019.1664518] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and objectives: With regard to their ease of harvest and common developmental origin, dental pulp stem cells (DPSCs) may act as a favorable source of stem cells in generation of nerves. Moreover; cellular migration and differentiation as well as survival, self-renewal, and proliferation of neuroprogenitor species require the presence of the central nervous system (CNS) mitogens including EGF and bFGF. Accordingly, the possibility of the induction of neuronal differentiation of DPSCs by EGF and bFGF was evaluated in the present study.Materials and methods: DPSCs were treated with 20 ng/ml EGF, 20 ng/ml bFGF, and 10 µg/ml heparin. In order to further induce the neuroprogenitor differentiation, DPSC-derived spheres were also incubated in serum-free media for three days. The resulting spheres were then cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS. The morphology of the cells and the expression of the differentiation markers were correspondingly analyzed by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescence (IF).Results: The EGF/bFGF-treated DPSCs showed significant increase in the expression of the neuroprogenitor markers of Nestin and SRY (sex determining region Y)-box 2 (SOX2), 72 h after treatment. The up-regulation of Nestin and SOX2 induced by growth factors was confirmed using western blotting and IF. The cultures also yielded some neuron-like cells with a significant rise in Nestin, microtubule-associated protein 2 (MAP2), and Neurogenin 1 (Ngn1) transcript levels; compared with cells maintained in the control media (p < 0.05).Conclusion: DPSCs seemed to potentially differentiate into neuron-like cells under the herein-mentioned treatment conditions.
Collapse
Affiliation(s)
- Fatemeh Rafiee
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Lv L, Sheng C, Zhou Y. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation. J Oral Rehabil 2019; 47 Suppl 1:29-54. [PMID: 31520537 DOI: 10.1111/joor.12885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Oral maxillofacial defects may always lead to complicated hard and soft tissue loss, including bone, nerve, blood vessels, teeth and skin, which are difficult to restore and severely influence the life quality of patients. Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are emerging as potential solutions for complex tissue regeneration through cell-free therapies. In this review, we highlight the functional roles of EVs in the regenerative medicine for oral maxillofacial rehabilitation, specifically bone, skin, blood vessels, peripheral nerve and tooth-related tissue regeneration. Publications were reviewed by two researchers independently basing on three databases (PubMed, MEDLINE and Web of Science), until 31 December 2018. Basing on current researches, we classified the origin of EVs for regenerative medicine into four categories: related cells in the regenerative niche, mesenchymal stem cells, immune cells and body fluids. The secretome of different cells are distinct, while the same cells secrete different EVs under varied conditions; therefore, the content profiles of EVs and regulatory mechanisms on target cells are compared and emphasised. By unravelling the regulatory mechanisms of EVs in tissue regeneration, modified cells and tailored EVs with specific target may be produced for precision medicine with high efficacy.
Collapse
Affiliation(s)
- Longwei Lv
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chunhui Sheng
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
14
|
Combination of Chemical and Neurotrophin Stimulation Modulates Neurotransmitter Receptor Expression and Activity in Transdifferentiating Human Adipose Stromal Cells. Stem Cell Rev Rep 2019; 15:851-863. [PMID: 31529274 DOI: 10.1007/s12015-019-09915-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose stromal cells are promising tools for clinical applications in regeneration therapies, due to their ease of isolation from tissue and its high yield; however, their ability to transdifferentiate into neural phenotypes is still a matter of controversy. Here, we show that combined chemical and neurotrophin stimulation resulted in neuron-like morphology and regulated expression and activity of several genes involved in neurogenesis and neurotransmission as well as ion currents mediated by NMDA and GABA receptors. Among them, expression patterns of genes coding for kinin-B1 and B2, α7 nicotinic, M1, M3 and M4 muscarinic acetylcholine, glutamatergic (AMPA2 and mGlu2), purinergic P2Y1 and P2Y4 and GABAergic (GABA-A, β3-subunit) receptors and neuronal nitric oxide synthase were up-regulated compared to levels of undifferentiated cells. Simultaneously, expression levels of P2X1, P2X4, P2X7 and P2Y6 purinergic and M5 muscarinic acetylcholine receptors were down-regulated. Agonist-induced activity levels of the studied receptor classes also augmented during neuronal transdifferentiation. Transdifferentiated cells expressed high levels of neuronal β3-tubulin, NF-H, NeuN and MAP-2 proteins as well as increased ASCL1, MYT1 and POU3F2 gene expression known to drive neuronal fate determination. The presented work contributes to a better understanding of transdifferentiation induced by neurotrophins for a prospective broad spectrum of medical applications.
Collapse
|
15
|
Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in Alzheimer's disease rats. Brain Res 2018; 1710:61-73. [PMID: 30586546 DOI: 10.1016/j.brainres.2018.12.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and the most common type of dementia. Although it is still incurable, stem cell replacement therapy provides new hope for AD. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have multiple differentiation potentials, which can differentiate into cholinergic-like neurons and promote the release of acetylcholine. Brain-derived neurotrophic factor (BDNF) can also promote neurogenesis and synaptic formation, reduce oxidative stress and cell death. Therefore, we investigated the therapeutic effects of BDNF modified hUC-MSCs-derived cholinergic-like neurons in AD rats in this study. To make AD models, 1 μl beta amyloid (Aβ)1-42 was injected into the right hippocampus of the rats. After two weeks, the hUC-MSCs-derived cholinergic-like neurons null cells or overexpressing BDNF cells delivered by lentiviralvectors were slowly injected into the right hippocampus of the AD rats. After 8 weeks of transplantation, Morris water maze test, Western blotting, Immunohistochemistry, Immunofluorescence assay and TdT mediated dUTP Nick End Labeling (TUNEL) detection were performed. Transplantation of BDNF modified hUC-MSCs-derived cholinergic-like neurons significantly improved spatial learning and memory abilities in the AD rats, increased the release of acetylcholine and ChAT expression in the hippocampus, enhanced the activation of astrocytes and microglia, reduced the expression of Aβ and recombinant human beta-site APP-cleaving enzyme1 (BACE1), inhibited neuronal apoptosis, and promoted neurogenesis. Our results demonstrate that BDNF modified hUC-MSCs-derived cholinergic-like neurons might be a promising therapeutic strategy for AD.
Collapse
|
16
|
Lo Furno D, Mannino G, Pellitteri R, Zappalà A, Parenti R, Gili E, Vancheri C, Giuffrida R. Conditioned Media From Glial Cells Promote a Neural-Like Connexin Expression in Human Adipose-Derived Mesenchymal Stem Cells. Front Physiol 2018; 9:1742. [PMID: 30555356 PMCID: PMC6282092 DOI: 10.3389/fphys.2018.01742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The expression of neuronal and glial connexins (Cxs) has been evaluated in adipose-derived mesenchymal stem cells (ASCs) whose neural differentiation was promoted by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). By immunocytochemistry and flow cytometer analysis it was found that Cx43 was already considerably expressed in naïve ASCs and further increased after 24 h and 7 days from CM exposition. Cx32 and Cx36 were significantly improved in conditioned cultures compared to control ASCs, whereas a decreased expression was noticed in the absence of CM treatments. Cx47 was virtually absent in any conditions. Altogether, high basal levels and induced increases of Cx43 expression suggest a potential attitude of ASCs toward an astrocyte differentiation, whereas the lack of Cx47 would indicate a poor propensity of ASCs to become oligodendrocytes. CM-evoked Cx32 and Cx36 increases showed that a neuronal- or a SC-like differentiation can be promoted by using this strategy. Results further confirm that environmental cues can favor an ASC neural differentiation, either as neuronal or glial elements. Of note, the use of glial products present in CM rather than the addition of chemical agents to achieve such differentiation would resemble "more physiological" conditions of differentiation. As a conclusion, the overexpression of typical neural Cxs would indicate the potential capability of neural-like ASCs to interact with neighboring neural cells and microenvironment.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Luo L, Hu DH, Yin JQ, Xu RX. Molecular Mechanisms of Transdifferentiation of Adipose-Derived Stem Cells into Neural Cells: Current Status and Perspectives. Stem Cells Int 2018; 2018:5630802. [PMID: 30302094 PMCID: PMC6158979 DOI: 10.1155/2018/5630802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Neurological diseases can severely compromise both physical and psychological health. Recently, adult mesenchymal stem cell- (MSC-) based cell transplantation has become a potential therapeutic strategy. However, most studies related to the transdifferentiation of MSCs into neural cells have had disappointing outcomes. Better understanding of the mechanisms underlying MSC transdifferentiation is necessary to make adult stem cells more applicable to treating neurological diseases. Several studies have focused on adipose-derived stromal/stem cell (ADSC) transdifferentiation. The purpose of this review is to outline the molecular characterization of ADSCs, to describe the methods for inducing ADSC transdifferentiation, and to examine factors influencing transdifferentiation, including transcription factors, epigenetics, and signaling pathways. Exploring and understanding the mechanisms are a precondition for developing and applying novel cell therapies.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - James Q. Yin
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ru-Xiang Xu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
18
|
Lo Furno D, Mannino G, Giuffrida R, Gili E, Vancheri C, Tarico MS, Perrotta RE, Pellitteri R. Neural differentiation of human adipose-derived mesenchymal stem cells induced by glial cell conditioned media. J Cell Physiol 2018; 233:7091-7100. [PMID: 29737535 DOI: 10.1002/jcp.26632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/30/2018] [Indexed: 12/15/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) may transdifferentiate into cells belonging to mesodermal, endodermal, and ectodermal lineages. The aim of this study was to verify whether a neural differentiation of ASCs could be induced by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). ASCs were isolated from the stromal vascular fraction of adipose tissue and expanded for 2-3 passages. They were then cultured in OEC-CM or SC-CM for 24 hr or 7 days. At each stage, the cells were tested by immunocytochemistry and flow cytometer analysis to evaluate the expression of typical neural markers such as Nestin, PGP 9.5, MAP2, Synapsin I, and GFAP. Results show that both conditioned media induced similar positive effects, as all tested markers were overexpressed, especially at day 7. Overall, an evident trend toward neuronal or glial differentiation was not clearly detectable in many cases. Nevertheless, a higher tendency toward a neuronal phenotype was recognized for OEC-CM (considering MAP2 increases). On the other hand, SC-CM would be responsible for a more marked glial induction (considering GFAP increases). These findings confirm that environmental features can induce ASCs toward a neural differentiation, either as neuronal or glial elements. Rather than supplementing the culture medium by adding chemical agents, a "more physiological" condition was obtained here by means of soluble factors (cytokines/growth factors) likely released by glial cells. This culture strategy may provide valuable information in the development of cell-based therapeutic approaches for pathologies affecting the central/peripheral nervous system.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria S Tarico
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rosario E Perrotta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, Catania, Italy
| |
Collapse
|
19
|
Graziano ACE, Avola R, Perciavalle V, Nicoletti F, Cicala G, Coco M, Cardile V. Physiologically based microenvironment for in vitro neural differentiation of adipose-derived stem cells. World J Stem Cells 2018; 10:23-33. [PMID: 29588808 PMCID: PMC5867480 DOI: 10.4252/wjsc.v10.i3.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023] Open
Abstract
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.
Collapse
Affiliation(s)
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Vincenzo Perciavalle
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Section of Pathology and Oncology, University of Catania, Catania 95123, Italy
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Catania 95125, Italy
| | - Marinella Coco
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| |
Collapse
|
20
|
Avola R, Graziano ACE, Pannuzzo G, Cardile V. Human Mesenchymal Stem Cells from Adipose Tissue Differentiated into Neuronal or Glial Phenotype Express Different Aquaporins. Mol Neurobiol 2017; 54:8308-8320. [PMID: 27921242 DOI: 10.1007/s12035-016-0312-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
Aquaporins (AQPs) are 13 integral membrane proteins that provide selective pores for the rapid movement of water and other uncharged solutes, across cell membranes. Recently, AQPs have been focused for their role in production, circulation, and homeostasis of the cerebrospinal fluid and their importance in several human diseases is becoming clear. This study investigated the time course (0, 14, and 28 days) of AQP1, 4, 7, 8, and 9 during the neural differentiation of human mesenchymal stem cells (MSCs) from adipose tissue (AT). For this purpose, two different media, enriched with serum or B-27 and N1 supplements, were applied to give a stimulus toward neural lineage. After 14 days, the cells were cultured with neuronal or glial differentiating medium for further 14 days. The results confirmed that AT-MSCs could be differentiated into neurons, astrocytes, and oligodendrocytes, expressing not only the typical neural markers but also specific AQPs depending on differentiated cell type. Our data demonstrated that at 28 days, AT-MSCs express only AQP1; astrocytes AQP1, 4, and 7; oligodendrocytes AQP1, 4, and 8; and finally neurons AQP1 and 7. This study provides fundamental insight into the biology of the mesenchymal stem cells and it suggests that AQPs can be potential neural markers.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 89, 95125, Catania, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 89, 95125, Catania, Italy
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 89, 95125, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 89, 95125, Catania, Italy.
| |
Collapse
|
21
|
Lo Furno D, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 2017; 233:3982-3999. [PMID: 28926091 DOI: 10.1002/jcp.26192] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into not only cells of mesodermal lineages, but also into endodermal and ectodermal derived elements, including neurons and glial cells. For this reason, MSCs have been extensively investigated to develop cell-based therapeutic strategies, especially in pathologies whose pharmacological treatments give poor results, if any. As in the case of irreversible neurological disorders characterized by progressive neuronal death, in which behavioral and cognitive functions of patients inexorably decline as the disease progresses. In this review, we focus on the possible functional role exerted by MSCs in the treatment of some disabling neurodegenerative disorders such as Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Disease. Investigations have been mainly performed in vitro and in animal models by using MSCs generally originated from umbilical cord, bone marrow, or adipose tissue. Positive results obtained have prompted several clinical trials, the number of which is progressively increasing worldwide. To date, many of them have been primarily addressed to verify the safety of the procedures but some improvements have already been reported, fortunately. Although the exact mechanisms of MSC-induced beneficial activities are not entirely defined, they include neurogenesis and angiogenesis stimulation, antiapoptotic, immunomodulatory, and anti-inflammatory actions. Most effects would be exerted through their paracrine expression of neurotrophic factors and cytokines, mainly delivered at damaged regions, given the innate propensity of MSCs to home to injured sites. Hopefully, in the near future more efficacious cell-replacement therapies will be developed to substantially restore disease-disrupted brain circuitry.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P. Phenotypic Modulation and Neuroprotective Effects of Olfactory Ensheathing Cells: a Promising Tool for Cell Therapy. Stem Cell Rev Rep 2017; 12:224-34. [PMID: 26553037 DOI: 10.1007/s12015-015-9635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Olfactory Ensheathing Cells (OECs), exhibiting phenotypic characteristics of both astrocytes and Schwann Cells, show peculiar plasticity. In vitro, OECs promote axonal growth, while in vivo they promote remyelination of damaged axons. We decided to further investigate OEC potential for regeneration and functional recovery of the damaged Central Nervous System (CNS). To study OEC antigen modulation, OECs prepared from postnatal mouse olfactory bulbs were grown in different culture conditions: standard or serum-free media with/without Growth Factors (GFs) and analyzed for different neural specific markers. OEC functional characterizations were also achieved. Resistance of OECs to the neurotoxin 6-hydroxydopamine (6-OHDA) was analyzed by evaluating apoptosis and death. OEC neuroprotective properties were investigated by in vitro co-cultures or by addition of OEC conditioned medium to the neuroblastoma SH-SY5Y cells exposed to 6-OHDA. We observed: 1) modification of OEC morphology, reduced cell survival and marker expression in serum-free medium; 2) GF addition to serum-free medium condition influenced positively survival and restored basal marker expression; 3) no OEC apoptosis after a prolonged exposition to 6-OHDA; 4) a clear OEC neuroprotective tendency, albeit non statistically significant, on 6-OHDA treated SH-SY5Y cells. These peculiar properties of OECs might render them potential clinical agents able to support injured CNS.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, via Paolo Gaifami 18, 95126, Catania, Italy.
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Damiano Zaccheo
- Department of Experimental Medicine, Section of Human Anatomy, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.,Department of Pathophysiology and Transplantation - "Dino Ferrari" Center, Università degli Studi di Milano, via Francesco Sforza 35, 20122, Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| |
Collapse
|
23
|
Lo Furno D, Tamburino S, Mannino G, Gili E, Lombardo G, Tarico MS, Vancheri C, Giuffrida R, Perrotta RE. Nanofat 2.0: experimental evidence for a fat grafting rich in mesenchymal stem cells. Physiol Res 2017; 66:663-671. [PMID: 28406706 DOI: 10.33549/physiolres.933451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different strategies have been developed in the last decade to obtain fat grafts as rich as possible of mesenchymal stem cells, so exploiting their regenerative potential. Recently, a new kind of fat grafting, called "nanofat", has been obtained after several steps of fat emulsification and filtration. The final liquid suspension, virtually devoid of mature adipocytes, would improve tissue repair because of the presence of adipose mesenchymal stem cells (ASCs). However, since it is probable that many ASCs may be lost in the numerous phases of this procedure, we describe here a novel version of fat grafting, which we call "nanofat 2.0", likely richer in ASCs, obtained avoiding the final phases of the nanofat protocol. The viability, the density and proliferation rate of ASCs in nanofat 2.0 sample were compared with samples of nanofat and simple lipoaspirate. Although the density of ASCs was initially higher in lipoaspirate sample, the higher proliferation rate of cells in nanofat 2.0 virtually filled the gap within 8 days. By contrast, the density of ASCs in nanofat sample was the poorest at any time. Results show that nanofat 2.0 emulsion is considerably rich in stem cells, featuring a marked proliferation capability.
Collapse
Affiliation(s)
- D Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Morioka C, Komaki M, Taki A, Honda I, Yokoyama N, Iwasaki K, Iseki S, Morio T, Morita I. Neuroprotective effects of human umbilical cord-derived mesenchymal stem cells on periventricular leukomalacia-like brain injury in neonatal rats. Inflamm Regen 2017; 37:1. [PMID: 29259700 PMCID: PMC5725779 DOI: 10.1186/s41232-016-0032-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/11/2016] [Indexed: 01/15/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is a type of multifactorial brain injury that causes cerebral palsy in premature infants. To date, effective therapies for PVL have not been available. In this study, we examined whether mesenchymal stem cells (MSCs) possess neuroprotective property in a lipopolysaccharide (LPS)-induced neonatal rat PVL-like brain injury. Methods Human umbilical cord-derived MSCs (UCMSCs) were used in this study. Four-day-old rats were intraperitoneally injected with LPS (15 mg/kg) to cause the PVL-like brain injury and were treated immediately after the LPS-injection with UCMSCs, conditioned medium prepared from MSCs (UCMSC-CM) or interferon-gamma (IFN-γ)-pretreated MSC (IFN-γ-UCMSC-CM). To assess systemic reaction to LPS-infusion, IFN-γ in sera was measured by ELISA. The brain injury was evaluated by immunostaining of myelin basic protein (MBP) and caspase-3. RT-PCR was used to quantitate pro-inflammatory cytokine levels in the brain injury, and the expression of tumor necrosis factor-stimulated gene-6 (TSG-6) or indoleamine 2,3-dioxygenase (IDO) to evaluate anti-inflammatory or immunomodulatory molecules in UCMSCs, respectively. A cytokine and growth factor array was employed to investigate the cytokine secretion profiles of UCMSCs. Results Elevated serum IFN-γ was observed in LPS-infused rats. The expression of IL-6, tumor necrosis factor-alpha (TNF-α), IL-1ß, and monocyte chemoattractant protein-1 (MCP-1) were increased in the brain by LPS-infusion in comparison to saline-infused control. LPS-infusion increased caspase-3-positive cells and decreased MBP-positive area in neonatal rat brains. A cytokine and growth factor array demonstrated that UCMSCs secreted various cytokines and growth factors. UCMSCs significantly suppressed IL-1ß expression in the brains and reversed LPS-caused decrease in MBP-positive area. UCMSC-CM did not reverse MBP-positive area in the injured brain, while IFN-γ-UCMSC-CM significantly increased MBP-positive area compared to control (no treatment). IFN-γ-pretreatment increased TSG-6 and IDO expression in UCMSCs. Conclusion We demonstrated that bolus intraperitoneal infusion of LPS caused PVL-like brain injury in neonatal rats and UCMSCs infusion ameliorated dysmyelination in LPS-induced neonatal rat brain injury. Conditioned medium prepared from IFN-γ-pretreated UCMSCs significantly reversed the brain damage in comparison with UCMSC-CM, suggesting that the preconditioning of UCMSCs would improve their neuroprotective effects. The mechanisms underline the therapeutic effects of MSCs on PVL need continued investigation to develop a more effective treatment.
Collapse
Affiliation(s)
- Chikako Morioka
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan.,Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Motohiro Komaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Atsuko Taki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Izumi Honda
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Naoki Yokoyama
- Life Science Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., 1-1-1 kaga-cho, Shinjuku-ku, Tokyo, 162-8001 Japan
| | - Kengo Iwasaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Ikuo Morita
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| |
Collapse
|
25
|
Lo Furno D, Mannino G, Cardile V, Parenti R, Giuffrida R. Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1615-1628. [PMID: 27520311 DOI: 10.1089/scd.2016.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are subdivided into two main categories: embryonic and adult stem cells. In principle, pluripotent embryonic stem cells might differentiate in any cell types of the organism, whereas the potential of adult stem cells would be more restricted. Although adult stem cells from bone marrow have been initially the most extensively studied, those derived from human adipose tissue have been lately more widely investigated, because of several advantages. First, they can be easily obtained in large amounts from subcutaneous adipose tissue, with minimal pain and morbidity for the patients during harvesting. In addition, they feature low immunogenicity and can differentiate not only in cells of mesodermal lineage (adipocytes, osteoblasts, chondrocytes and muscle cells), but also in cells of other germ layers, such as neural or epithelial cells. As their multilineage differentiation capabilities are increasingly highlighted, their possible use in cell-based regenerative medicine is now broadly explored. In fact, starting from in vitro observations, many studies have already entered the preclinical and clinical phases. In this review, because of our main scientific interest, adipogenic, osteogenic, chondrogenic, and neurogenic differentiation abilities of adipose-derived mesenchymal stem cells, as well as their possible therapeutic applications, are chiefly focused. In addition, their ability to differentiate toward muscle, epithelial, pancreatic, and hepatic cells is briefly reported.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| |
Collapse
|
26
|
Li T, Li Z, Nan F, Dong J, Deng Y, Yu Q, Zhang T. Construction of a novel inducing system with multi-layered alginate microcapsules to regulate differentiation of neural precursor cells from bone mesenchymal stem cells. Med Hypotheses 2015; 85:910-3. [PMID: 26386487 DOI: 10.1016/j.mehy.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023]
Abstract
Neural precursor cells (NPCs) are a promising cell source for the treatment of nervous system diseases; however, they are limited in their applications due to source-related ethical considerations or legislations. Therefore, a novel approach is necessary to obtain sufficient NPCs. Recently, the usage of bone marrow-derived mesenchymal stem cells (BMSCs) differentiated into neural cells has become a potential method to obtain NPCs. Moreover, growth factors (GFs) are emerging as inducers to evoke the differentiation of BMSCs into NPCs. For example, GFs may activate various signaling pathways related to neural differentiation, such as phosphatidylinositol 3 kinase/protein kinase B, cyclic adenosine monophosphate/protein kinase A, and Janus kinase/signal transducer activator of transcription. However, the utilization of growth factors still has some limitations such as high costs and low rates of neural differentiation. Neuroblastoma cells have been characterized as a potential pool for growth factors. Additionally, basic fibroblast growth factor (bFGF), a type of growth factor, has been demonstrated to be able to increase the differentiation and survival rate of NPCs. For better use of neuroblastoma cells and bFGF, we established a novel system involving multi-layered alginate-polylysine-alginate (APA) microcapsules to encapsulate neuroblastoma cells and bFGF, which may not only provide sufficient growth factors in a sustained manner but also avoid the carcinogenicity caused by neuroblastoma cells. Above all, we hypothesized that neuroblastoma cells and bFGF encapsulated in multilayered alginate microcapsules may efficiently induce the differentiation of BMSCs into NPCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Zhengwei Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Feng Nan
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China.
| | - Jianli Dong
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Yushuang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Qing Yu
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Teng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| |
Collapse
|
27
|
Sethi R, Sethi R, Redmond A, Lavik E. Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension. Stem Cell Rev Rep 2015; 10:772-85. [PMID: 24996386 DOI: 10.1007/s12015-014-9539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. MATERIALS AND METHODS We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. RESULTS We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. CONCLUSIONS Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies.
Collapse
Affiliation(s)
- Rosh Sethi
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA,
| | | | | | | |
Collapse
|
28
|
Hypoxic conditioned medium from rat cerebral cortical cells enhances the proliferation and differentiation of neural stem cells mainly through PI3-K/Akt pathways. PLoS One 2014; 9:e111938. [PMID: 25386685 PMCID: PMC4227679 DOI: 10.1371/journal.pone.0111938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes. Methods Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot. Results The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125. Conclusions 4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways.
Collapse
|