1
|
Yang S, Li D. Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review). Oncol Lett 2024; 28:431. [PMID: 39049985 PMCID: PMC11268089 DOI: 10.3892/ol.2024.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer has surpassed lung cancer as the most prevalent malignancy affecting women worldwide. Triple-negative breast cancer (TNBC) is the type of breast cancer with the worst prognosis. As a heterogeneous disease, TNBC has a pathogenesis that involves multiple oncogenic pathways, including involvement of gene mutations and alterations in signaling pathways. MicroRNAs (miRNAs) are small endogenous, single-stranded non-coding RNAs that bind to the 3' untranslated region of target cell mRNAs to negatively regulate the gene expression of these specific mRNAs. Therefore, miRNAs are involved in cell growth, development, division and differentiation stages. miRNAs are also involved in gene targeting in tumorigenesis, tumor growth and the regulation of metastasis, including in breast cancer. Meanwhile, miRNAs also regulate components of signaling pathways. In this review, the role of miRNAs in the TNBC signaling pathway discovered in recent years is described in detail. The new concept of bi-targeted therapy for breast cancer using miRNA and artificial intelligence is also discussed.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Donghai Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
2
|
Toledo-Stuardo K, Ribeiro CH, Campos I, Tello S, Latorre Y, Altamirano C, Dubois-Camacho K, Molina MC. Impact of MICA 3'UTR allelic variability on miRNA binding prediction, a bioinformatic approach. Front Genet 2023; 14:1273296. [PMID: 38146340 PMCID: PMC10749337 DOI: 10.3389/fgene.2023.1273296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate as powerful genetic regulators. MiRNAs can interfere with cellular processes by interacting with a broad spectrum of target genes under physiological and pathological states, including cancer development and progression. Major histocompatibility complex major histocompatibility complex class I-related chain A (MICA) belongs to a family of proteins that bind the natural-killer group 2, member D (NKG2D) receptor on Natural Killer cells and other cytotoxic lymphocytes. MICA plays a crucial role in the host's innate immune response to several disease settings, including cancer. MICA harbors various single nucleotide polymorphisms (SNPs) located in its 3'-untranslated region (3'UTR), a characteristic that increases the complexity of MICA regulation, favoring its post-transcriptional modulation by miRNAs under physiological and pathological conditions. Here, we conducted an in-depth analysis of MICA 3'UTR sequences according to each MICA allele described to date using NCBI database. We also systematically evaluated interactions between miRNAs and their putative targets on MICA 3'UTR containing SNPs using in silico analysis. Our in silico results showed that MICA SNPs rs9266829, rs 1880, and rs9266825, located in the target sequence of miRNAs hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93, hsa-miR-1207.5p, and hsa-miR-711 could modify the binding free energy between -8.62 and -18.14 kcal/mol, which may affect the regulation of MICA expression. We believe that our results may provide a starting point for further exploration of miRNA regulatory effects depending on MICA allelic variability; they may also be a guide to conduct miRNA in silico analysis for other highly polymorphic genes.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Carolina H. Ribeiro
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Ivo Campos
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Yesenia Latorre
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karen Dubois-Camacho
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Gastroenterology and Hepatology Department, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Carmen Molina
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Wang Q, Tang H, Luo X, Chen J, Zhang X, Li X, Li Y, Chen Y, Xu Y, Han S. Immune-Associated Gene Signatures Serve as a Promising Biomarker of Immunotherapeutic Prognosis for Renal Clear Cell Carcinoma. Front Immunol 2022; 13:890150. [PMID: 35686121 PMCID: PMC9171405 DOI: 10.3389/fimmu.2022.890150] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
As the most common type of renal cell carcinoma (RCC), the renal clear cell carcinoma (ccRCC) is highly malignant and insensitive to chemotherapy or radiotherapy. Although systemic immunotherapies have been successfully applied to ccRCC in recent years, screening for patients who can benefit most from these therapies is still essential and challenging due to immunological heterogeneity of ccRCC patients. To this end, we implemented a series of deep investigation on the expression and clinic data of ccRCC from The Cancer Genome Atlas (TCGA) International Consortium for Cancer Genomics (ICGC). We identified a total of 946 immune-related genes that were differentially expressed. Among them, five independent genes, including SHC1, WNT5A, NRP1, TGFA, and IL4R, were significantly associated with survival and used to construct the immune-related prognostic differential gene signature (IRPDGs). Then the ccRCC patients were categorized into high-risk and low-risk subgroups based on the median risk score of the IRPDGs. IRPDGs subgroups displays distinct genomic and immunological characteristics. Known immunotherapy-related genes show different mutation burden, wherein the mutation rate of VHL was higher than 40% in the two IRPDGs subgroups, and SETD2 and BAP1 mutations differed most between two groups with higher frequency in the high-risk subgroup. Moreover, IRPDGs subgroups had different abundance in tumor-infiltrating immune cells (TIICs) with distinct immunotherapy efficacy. Plasma cells, regulatory cells (Tregs), follicular helper T cells (Tfh), and M0 macrophages were enriched in the high-risk group with a higher tumor immune dysfunction and rejection (TIDE) score. In contrast, the low-risk group had abundant M1 macrophages, mast cell resting and dendritic cell resting infiltrates with lower TIDE score and benefited more from immune checkpoint inhibitors (ICI) treatment. Compared with other biomarkers, such as TIDE and tumor inflammatory signatures (TIS), IRPDGs demonstrated to be a better biomarker for assessing the prognosis of ccRCC and the efficacy of ICI treatment with the promise in screening precise patients for specific immunotherapies.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanmin Tang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuehui Luo
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesen Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuetong Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Identifying Differentially Expressed tRNA-Derived Small Fragments as a Biomarker for the Progression and Metastasis of Colorectal Cancer. DISEASE MARKERS 2022; 2022:2646173. [PMID: 35035608 PMCID: PMC8758288 DOI: 10.1155/2022/2646173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Objectives. The epithelial-to-mesenchymal transition (EMT) is one key step for the invasion and metastasis of colorectal cancer (CRC). Up until now, the underlying mechanism of EMT in CRC is still unpromising. Thus, it is essential to have a better understanding of its carcinogenesis. The transfer RNA-derived small fragments (tsRNAs) are a new group of small noncoding RNAs (sncRNAs), including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), which have been observed to play an important role in many cancers. However, the relationship between tRFs and EMT in CRC is still unknown. Herein, we aimed to investigate the involvement of tRFs in EMT and its contribution to CRC development. Methods. We identified the differentially expressed tsRNAs in colorectal cancer cell line HT29 treated with TGF-β compared with control cells by using high-throughput sequencing and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). QRT-PCR was conducted to validate the differentially expressed fragments in 68 CRC tumor samples (22 women and 46 men) and adjacent nontumor samples. The association of the expression of tRFs with CRC metastasis and clinical stage was analyzed. Meanwhile, the correlation between tRF expression and overall survival (OS) was also analyzed. TargetScan and miRanda and multiple bioinformatic approaches were used to predict the possible target genes of tsRNAs and analyze possible functions of the tRFs. Results. A series of differentially expressed tsRNAs were identified in TGF-β-treated HT29 cells compared with control cells. tRF-phe-GAA-031 and tRF-VAL-TCA-002 were found to be significantly upregulated in CRC tissues compared to adjacent nontumor tissues. They were significantly correlated with distant metastasis and clinical stage. We compared the differences between tumor samples and nontumor tissues from the ROC curves. The area under the ROC curve (AUC) was up to 0.7554 (95% confidence interval: 0.6739 to 0.8369,
) for tRF-Phe-GAA-031 and up to 0.7313 (95% confidence interval: 0.6474 to 0.8151,
) for tRF-VAL-TCA-002. For OS analysis, higher tRF-phe-GAA-031 and tRF-VAL-TCA-002 expressions were associated with shorter survival for CRC patients. Conclusion. A series of differentially expressed tsRNAs are identified in the EMT process of CRC. And tRF-phe-GAA-031 and tRF-VAL-TCA-002 are higher expressed in CRC tissues, and they might play an important role in the metastasis of CRC. Meanwhile, they may be potential biomarkers and intervention targets in the clinical treatment of CRC.
Collapse
|
5
|
Huang X, Dong H, Liu Y, Yu F, Yang S, Chen Z, Li J. Silencing of let-7b-5p inhibits ovarian cancer cell proliferation and stemness characteristics by Asp-Glu-Ala-Asp-box helicase 19A. Bioengineered 2021; 12:7666-7677. [PMID: 34612147 PMCID: PMC8806929 DOI: 10.1080/21655979.2021.1982276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and recurrence of ovarian cancer are associated with ovarian cancer stem cells. For cancer treatment, gene delivery of microbubbles (MB)-mediated microRNA (miRNA) is considered as a promising approach. In this study, our aim is to investigate the effects of MB-mediated let-7b-5p inhibitor on the proliferation and stemness characteristics of ovarian cancer (OVCA) cells. Let-7b-5p inhibitor mediated by MB was prepared (termed MB-let-7b-5p inhibitor), and the effects of MB-let-7b-5p inhibitor and let-7b-5p inhibitor on OVCA cell viability, proliferation and stemness characteristics were investigated. We found that MB-let-7b-5p inhibitor presented a higher transfection efficiency than let-7b-5p inhibitor alone. The inhibitory effect of MB-let-7b-5p inhibitor on OVCA cells was more significant than let-7b-5p inhibitor. Let-7b-5p targeted DEAD (Asp-Glu-Ala-Asp)-box helicase 19A (DDX19A), which was downregulated in OVCA cells. The downregulation of DDX19A reversed the inhibitory effects of MB-let-7b-5p inhibitor on OVCA cells. To sum up, we found that MB-let-7b-5p suppressed OVCA cell malignant behaviors by targeting DDX19A.
Collapse
Affiliation(s)
- Xiujuan Huang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Hongxia Dong
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yang Liu
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Fen Yu
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Shunshi Yang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Jueying Li
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| |
Collapse
|
6
|
Zhang X, Li X, Fu X, Yu M, Qin G, Chen G, Huang C. Circular RNA TAF4B Promotes Bladder Cancer Progression by Sponging miR-1298-5p and Regulating TGFA Expression. Front Oncol 2021; 11:643362. [PMID: 34322376 PMCID: PMC8312550 DOI: 10.3389/fonc.2021.643362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bladder cancer (Bca) is the most common malignant tumor of the urinary system. Circular RNAs (circRNAs) have been recognized as key regulators in tumorigenesis. However, the molecular mechanisms underlying circRNAs involved in the progression of BCa remain largely unknown. METHODS We detected the expression level of circular RNA TAF4B (circTAF4B) by qRT-PCR assay. Cell proliferation was evaluated by CCK-8 and colony formation assays. Wound healing and Transwell assays were performed to measure cell migration and invasion capability. Moreover, we performed qRT-PCR and western blotting assays to determine the expression levels of epithelial-mesenchymal transition (EMT) markers. A nuclear/cytoplasmic fractionation assay was used to measure the subcellular location of circTAF4B. RNA pull-down and dual-luciferase reporter assays were used to detect the target microRNA of circTAF4B. A mouse xenograft model was produced to analyze the effect of circTAF4B on the tumorigenesis of BCa. RESULTS In this study, we identified a novel circular RNA, circTAF4B, that is significantly upregulated in BCa and correlated with poor prognosis. Downregulated circTAF4B abolished the growth, metastasis and EMT process in BCa cells. Mechanistically, we found that circTAF4B facilitated the expression of transforming growth factor A (TGFA) by sponging miR-1298-5p. Finally, circTAF4B enhanced the proliferation and EMT process of BCa cells in vivo. CONCLUSION In summary, our study demonstrated that circTAF4B played a carcinogenic role in the growth, metastasis, and EMT process of BCa by regulating the miR-1298-5p/TGFA axis. Thus, circTAF4B may become a diagnostic and therapeutic target for BCa.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xian Fu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Mengli Yu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guicheng Qin
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guihong Chen
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Li HP, Huang CY, Lui KW, Chao YK, Yeh CN, Lee LY, Huang Y, Lin TL, Kuo YC, Huang MY, Lai YR, Yeh YM, Fan HC, Lin AC, Hsieh JCH, Chang KP, Lin CY, Wang HM, Chang YS, Hsu CL. Combination of Epithelial Growth Factor Receptor Blockers and CDK4/6 Inhibitor for Nasopharyngeal Carcinoma Treatment. Cancers (Basel) 2021; 13:cancers13122954. [PMID: 34204797 PMCID: PMC8231497 DOI: 10.3390/cancers13122954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Our findings indicated that the EGF-EGFR pathway was highly activated in very young patients with recurrent or metastatic NPC. High EGFR expression in patients with metastatic NPC resulted in poor clinical outcomes. To examine whether the EGFR pathway serves as a therapeutic target for NPC, NPC patient-derived xenograft (PDX) and NPC cell lines were treated with EGFR inhibitors (EGFRi) and a cell cycle blocker. Either EGFRi or cell cycle blocker treatment alone could reduce NPC cell growth and PDX tumor growth. Furthermore, combination treatment exerted an additive suppression effect on PDX tumor growth. This study provides promising evidence that EGFRi used in combination with a cell cycle blocker may be used to treat patients with NPC. Abstract Background: Nasopharyngeal carcinoma (NPC) involves host genetics, environmental and viral factors. In clinical observations, patients of young and old ages were found to have higher recurrence and metastatic rates. Methods: Cytokine array was employed to screen druggable target(s). The candidate target(s) were confirmed through patient-derived xenografts (PDXs) and a new EBV-positive cell line, NPC-B13. Results: Overexpression of epithelial growth factor (EGF) and EGF receptor (EGFR) was detected in young patients than in older patients. The growth of NPC PDX tumors and cell lines was inhibited by EGFR inhibitors (EGFRi) cetuximab and afatinib when used separately or in combination with the cell cycle blocker palbociclib. Western blot analysis of these drug-treated PDXs demonstrated that the blockade of the EGF signaling pathway was associated with a decrease in the p-EGFR level and reduction in PDX tumor size. RNA sequencing results of PDX tumors elucidated that cell cycle-related pathways were suppressed in response to drug treatments. High EGFR expression (IHC score ≥ grade 3) was correlated with poor survival in metastatic patients (p = 0.008). Conclusions: Our results provide encouraging preliminary data related to the combination treatment of EGFRi and palbociclib in patients with NPC.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; (H.-P.L.); (M.-Y.H.); (Y.-R.L.); (Y.-S.C.)
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Kar-Wai Lui
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Yin-Kai Chao
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Chun-Nan Yeh
- Liver Research Center, Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (L.-Y.L.); (Y.H.)
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (L.-Y.L.); (Y.H.)
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; (H.-P.L.); (M.-Y.H.); (Y.-R.L.); (Y.-S.C.)
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; (H.-P.L.); (M.-Y.H.); (Y.-R.L.); (Y.-S.C.)
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Hsien-Chi Fan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - An-Chi Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Chien-Yu Lin
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
| | - Yu-Sun Chang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; (H.-P.L.); (M.-Y.H.); (Y.-R.L.); (Y.-S.C.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (C.-Y.H.); (T.-L.L.); (Y.-C.K.); (H.-C.F.); (A.-C.L.); (J.C.-H.H.); (H.-M.W.)
- School of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200; Fax: +886-3-327-8211
| |
Collapse
|
8
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
9
|
Bertolazzi G, Cipollina C, Benos PV, Tumminello M, Coronnello C. miR-1207-5p Can Contribute to Dysregulation of Inflammatory Response in COVID-19 via Targeting SARS-CoV-2 RNA. Front Cell Infect Microbiol 2020; 10:586592. [PMID: 33194826 PMCID: PMC7658538 DOI: 10.3389/fcimb.2020.586592] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The present study focuses on the role of human miRNAs in SARS-CoV-2 infection. An extensive analysis of human miRNA binding sites on the viral genome led to the identification of miR-1207-5p as potential regulator of the viral Spike protein. It is known that exogenous RNA can compete for miRNA targets of endogenous mRNAs leading to their overexpression. Our results suggest that SARS-CoV-2 virus can act as an exogenous competing RNA, facilitating the over-expression of its endogenous targets. Transcriptomic analysis of human alveolar and bronchial epithelial cells confirmed that the CSF1 gene, a known target of miR-1207-5p, is over-expressed following SARS-CoV-2 infection. CSF1 enhances macrophage recruitment and activation and its overexpression may contribute to the acute inflammatory response observed in severe COVID-19. In summary, our results indicate that dysregulation of miR-1207-5p-target genes during SARS-CoV-2 infection may contribute to uncontrolled inflammation in most severe COVID-19 cases.
Collapse
Affiliation(s)
- Giorgio Bertolazzi
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| | - Chiara Cipollina
- Fondazione Ri.MED, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michele Tumminello
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | |
Collapse
|
10
|
Ultrasound Microbubble-Mediated microRNA-505 Regulates Cervical Cancer Cell Growth via AKT2. ACTA ACUST UNITED AC 2020; 2020:3731953. [PMID: 33123457 PMCID: PMC7584975 DOI: 10.1155/2020/3731953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
The application of ultrasound and microbubbles (USMB-) mediated microRNA (miR) is a promising approach of gene delivery for cancer treatment. We aimed to discuss the effects of USMB-miR-505 on cervical cancer (CC) development. miR-505 mediated by USMB was prepared. The effect of miR-505 on its transfection efficiency and the effect of miR-505 on HeLa cell proliferation, cell cycle, apoptosis, migration, and invasion were studied. The target gene of miR-505 was predicted, and its expression in CC was detected. The effect of the target gene on HeLa cells was further verified. USMB-miR-505 showed a higher transfection efficiency than miR-505 alone. The inhibitory effect of miR-505 mediated by USMB on HeLa cells was better than miR-505. miR-505 targeted AKT2, which was upregulated in CC. Overexpression of AKT2 reversed the inhibitory effect of USMB-miR-505 on HeLa cell malignant behaviors. Overall, we highlighted that USMB-miR-505 inhibited HeLa cell malignant behaviors by targeting AKT2.
Collapse
|
11
|
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).
Collapse
|
12
|
Cheng Z, Wang B, Zhang C. MicroRNA-505-3p inhibits development of glioma by targeting HMGB1 and regulating AKT expression. Oncol Lett 2020; 20:1663-1670. [PMID: 32724408 PMCID: PMC7377041 DOI: 10.3892/ol.2020.11714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/14/2019] [Indexed: 01/23/2023] Open
Abstract
Previous studies have reported that microRNA (miR)-505 exhibits important effect in human cancers. However, the regulatory mechanism of miR-505-3p/high-mobility group box 1 (HMGB1) axis is still unclear in glioma. Therefore, the regulatory mechanism of miR-505-3p/HMGB1 axis in glioma was illuminated. Expression of miR-505-3p and HMGB1 was observed by RT-qPCR. Protein expression was measured by western blot analysis. Dual luciferase assay was performed to confirm the relationship between miR-505-3p and HMGB1. The function of miR-505-3p was investigated by MTT and Transwell assays. Expression of miR-505-3p was reduced in glioma, which was related to poor clinical outcomes and prognosis in glioma patients. Moreover, overexpression of miR-505-3p suppressed proliferation, migration and invasion of glioma cells. In addition, HMGB1 was confirmed as a direct target of miR-505-3p, and miR-505-3p inhibited the development of glioma by targeting HMGB1. Furthermore, miR-505-3p blocked EMT suppressing p-AKT expression in glioma cells. In conclusion, miR-505-3p inhibited the development of glioma by targeting HMGB1 and regulating AKT expression.
Collapse
Affiliation(s)
- Zhenlin Cheng
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu 734000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu 734000, P.R. China
| | - Cheng Zhang
- Department of Neurosurgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
13
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
14
|
Shi J, Tan S, Song L, Song L, Wang Y. LncRNA XIST knockdown suppresses the malignancy of human nasopharyngeal carcinoma through XIST/miRNA-148a-3p/ADAM17 pathway in vitro and in vivo. Biomed Pharmacother 2019; 121:109620. [PMID: 31810117 DOI: 10.1016/j.biopha.2019.109620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in human cancers, including nasopharyngeal carcinoma (NPC). However, the role of XIST in NPC remains to be largely uncovered, as well as its underlying mechanism. METHODS Expression of XIST, miR-148a-3p and ADAM17 was detected using qPCR and western blot assay. Cell proliferation and apoptosis assay were measured with MTT and flow cytometry, separately. Migration and invasion abilities were examined by transwell assays. Epithelial-mesenchymal transition (EMT) was assessed by western blot analyzing levels of E-cadherin, N-cadherin and vimentin. The potential binding between miR-148a-3p and XIST/ADAM17 was validated by luciferase reporter assay, Ago2-RNA immunoprecipitation and RNA pull-down assay. Xenograft experiments were conducted to measure tumor growth. RESULTS XIST was upregulated and miR-148a-3p was downregulated in NPC tissues and cell lines. Both XIST knockdown and miR-148a-3p overexpression promoted apoptosis, suppressed cell proliferation, migration, invasion, and EMT of NPC cells in vitro. In addition, miR-148a-3p was validated as a target of XIST, and silencing of miR-148a-3p could reverse XIST knockdown-mediated functions in SUNE-1 and CNE2 cells. Furthermore, miR-148a-3p was identified to target ADAM17, and ectopic expression of ADAM17 could abate miR-148a-3p-induced effects as well. Notably, ADAM17 was downregulated by XIST knockdown through upregulating miR-148a-3p. In vivo, XIST knockdown resulted in a slower tumor growth. CONCLUSION Knockdown of XIST suppresses the malignant progression of NPC cells through targeting miR-148a-3p/ADAM17 axis both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinfeng Shi
- Department of Otolaryngology Head and Neck surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Shulian Tan
- Department of Institute of Immunology, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Liangmei Song
- Department of Operation Room, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China.
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| |
Collapse
|
15
|
Hu B, Mao Z, Du Q, Jiang X, Wang Z, Xiao Z, Zhu D, Wang X, Zhu Y, Wang H. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull 2019; 149:21-31. [PMID: 30946881 DOI: 10.1016/j.brainresbull.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Prolactinoma is a common subtype of pituitary tumors. Dopamine receptor agonists are the preferred treatment for prolactinoma; however, with this therapy, drug resistance often occurs. In our previous work, we found that partial resistant prolactinomas showed increased fibrosis and that the transforming growth factor (TGF)-β1/Smad3 signaling pathway mediated fibrosis and was involved in drug resistance. Additionally, the success of surgery is known to be heavily influenced by the consistency of the pituitary adenoma. Therefore, in this study, we aimed to clarify the mechanisms of fibrosis in prolactinoma. Using high-throughput sequencing for analysis of microRNAs, we found that miR-93-5p was significantly upregulated in prolactinoma samples with a high degree of fibrosis compared with that in samples without fibrosis. Furthermore, we found that miR-93-5p was negatively correlated with the relative expression of Smad7 and positively correlated with the relative expression of TGF-β1 in clinical prolactinoma samples. In addition, luciferase reporter assays showed that miR-93-5p could downregulate the Smad7 gene, an important inhibitor of the TGF-β1/Smad3 signaling pathway, and activate TGF-β1/Smad3 signaling-mediated fibrosis in a feed-forward loop. Moreover, miR-93-5p could enhance the drug resistance of prolactinoma cells by regulation of TGF-β1/Smad3-dependent fibrosis. Taken together, our findings demonstrated that miR-93-5p may be a potential therapeutic target for inhibiting fibrosis and reducing drug resistance in prolactinoma cells.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiu Du
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Nakanishi J, Sugiyama K, Matsuo H, Takahashi Y, Omura S, Nakashima T. An Application of Photoactivatable Substrate for the Evaluation of Epithelial-mesenchymal Transition Inhibitors. ANAL SCI 2018; 35:65-69. [PMID: 30393243 DOI: 10.2116/analsci.18sdp07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal transition (EMT), phenotypic changes in cell adhesion and migration, is involved in cancer invasion and metastasis, hence becoming a target for anti-cancer drugs. In this study, we report a method for the evaluation of EMT inhibitors by using a photoactivatable gold substrate, which changes from non-cell-adhesive to cell-adhesive in response to light. The method is based on the geometrical confinement of cell clusters and the subsequent migration induction by controlled photoirradiation of the substrate. As a proof-of-concept experiment, a known EMT inhibitor was successfully evaluated in terms of the changes in cluster area or leader cell appearance, in response to biochemically and mechanically induced EMT. Furthermore, an application of the present method for microbial secondary metabolites identified nanaomycin H as an EMT inhibitor, potentially killing EMTed cells in disseminated conditions. These results demonstrate the potential of the present method for screening new EMT inhibitors.
Collapse
Affiliation(s)
- Jun Nakanishi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Kenji Sugiyama
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| | - Yoko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University
| | - Satoshi Omura
- Kitasato Institute for Life Sciences, Kitasato University
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University.,Graduate School of Infection Control Sciences, Kitasato University
| |
Collapse
|
17
|
MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell Signal 2018; 46:145-153. [DOI: 10.1016/j.cellsig.2018.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
18
|
Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C, Zhang Z. miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget 2018; 8:10274-10286. [PMID: 28055964 PMCID: PMC5354658 DOI: 10.18632/oncotarget.14394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Metastasis is the most powerful predictor of poor outcome of Ewing sarcoma (ES). Thus, identification of new molecules involved in tumor metastasis is of crucial importance to reduce morbidity and mortality of this devastating disease. In this study, we found that miR-124, a highly conserved miRNA, was suppressed in ES tissues and might be associated with tumor metastasis through suppressing its mesenchymal features. Overexpression of miR-124 suppressed the invasion of ES cells in vitro and tumor metastasis in vivo, which might be achieved through suppressing its mesenchymal features, as overexpression of miR-124 could repress the mesenchymal genes expression, and inhibit cell differentiation to mesenchymal lineages in ES cells. However, when SLUG was experimentally restored in these cells, mesenchymal features including suppressed expression of mesenchymal genes and decreased invasive ability were observed. We also found that cyclin D2 (CCND2) was a novel target gene of miR-124, and was directly involved in miR-124-mediated suppressive effects on cell growth. Lastly, we found that treatment with 5-Aza-CdR restored the expression of miR-124, accompanied with suppressed cell proliferation, invasion and mesenchymal features of ES cells, which demonstrated that hypermethylation might be involved in the regulation of miR-124 expression. Collectively, our data suggest that hypermethylation-mediated suppression of miR-124 might be involved in the tumor initiation and metastasis through suppressing the mesenchymal features of ES cells.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Gynecology and Obstetrics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Gaohai Shao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Minghua Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Fengchen Zhu
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Bo Zhao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Chao He
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Zhongzu Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| |
Collapse
|
19
|
ILK-induced epithelial-mesenchymal transition promotes the invasive phenotype in adenomyosis. Biochem Biophys Res Commun 2018; 497:950-956. [PMID: 29409901 DOI: 10.1016/j.bbrc.2018.01.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adenomyosis is a benign gynecological disease, characterized by the malignant biological behaviors of invasion and metastasis. ILK plays an important role in intercellular adhesion and triggers the process of EMT. In this study, we investigated the role of ILK-induced EMT in the pathogenesis of adenomyosis. METHODS ILK and EMT markers including E-cadherin, N-cadherin and Vimentin have been detected with Immunohistochemistry(IHC), RT-PCR and Western Blot, in normal endometrium, matched eutopic and ectopic endometrium respectively. Primary endometrial cells were isolated in order to observed the morphology features, as well as the change of invasiveness. RESULTS Hyper-activation of ILK were detected in the adenomyosis lesions, along with the typical aberrant expression of EMT markers. Furthermore, comparing with ESCs, the EuSCs showed a more invasive and dynamic phenotype. CONCLUSIONS ILK-induced EMT is a novel mechanism in the pathogenesis of adenomyosis and may be a potential therapeutic agent for adenomyosis.
Collapse
|
20
|
MicroRNA-Mediated Regulation of HMGB1 in Human Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2754941. [PMID: 29651425 PMCID: PMC5832039 DOI: 10.1155/2018/2754941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
High-mobility group box 1 (HMGB1) is a potential therapeutic target and novel biomarker in a variety of malignant tumors, including hepatocellular carcinoma (HCC). More recently, a number of microRNAs (miRNAs) are identified as a class of regulators for broad control of HMGB1-mediated biological actions in eukaryotic cells. In this review article we will describe representative miRNAs involved in regulating the HMGB1 signaling pathways in HCC cell lines and/or animal models. We also propose the possible mechanisms underlying the miRNA/HMGB1 axis and discuss the future clinical significance of miRNAs targeting HMGB1 molecule for HCC therapy.
Collapse
|
21
|
Dang W, Qin Z, Fan S, Wen Q, Lu Y, Wang J, Zhang X, Wei L, He W, Ye Q, Yan Q, Li G, Ma J. miR-1207-5p suppresses lung cancer growth and metastasis by targeting CSF1. Oncotarget 2018; 7:32421-32. [PMID: 27107415 PMCID: PMC5078023 DOI: 10.18632/oncotarget.8718] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/29/2016] [Indexed: 12/26/2022] Open
Abstract
We previously reported that miR-1207-5p can inhibit epithelial-mesenchymal transition (EMT) induced by growth factors such as EGF and TGF-β, but the exact mechanism is unclear. Here we identified that Colony stimulating factor 1 (CSF1) is a target gene of miR-1207-5p. CSF1 controls the production, differentiation and function of macrophage and promotes the release of proinflammatory chemokines. We showed that miR-1207-5p inhibited lung cancer cell A549 proliferation, migration and invasion in vitro, and suppressed the STAT3 and AKT signalings. miR-1207-5p overexpression can increase HUVEC angiogenesis, and can modulate the M2 phenotype of macrophage. miR-1207-5p also significantly inhibited A549 cells metastasis in a nude mouse xenograft model. miR-1207-5p and CSF1 expression levels and their relationship with lung cancer survival and metastasis status were assayed by means of a lung cancer tissue microarray. Macrophage is an essential part of the tumor microenvironment, thus the miR-1207-5p-CSF1 axis maybe a new regulator of lung cancer development through modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Dang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Zailong Qin
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanjun Lu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jia Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Xuemei Zhang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Lingyu Wei
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Wei He
- Cancer Research Institute, Central South University, Changsha, Hunan, China.,Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Qiurong Ye
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jian Ma
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
22
|
Down-regulation of miRNA-148a and miRNA-625-3p in colorectal cancer is associated with tumor budding. BMC Cancer 2017; 17:607. [PMID: 28863773 PMCID: PMC5580437 DOI: 10.1186/s12885-017-3575-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/22/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND MiRNAs are often deregulated in colorectal cancer and might function as tumor suppressors or as oncogenes. They participate in controlling key signaling pathways involved in proliferation, invasion and apoptosis and may serve as prognostic and predictive markers. In this study we aimed to evaluate the role of miRNA-148a and miRNA-625-3p in metastatic colorectal cancer. METHODS Fifty-four patients with a first-time diagnosed CRC receiving FOLFOX ± Bevacizumab were involved in the study. Tumor samples underwent routine pathology examination including evaluation for tumor budding and KRAS. MiRNA-148a and miRNA-625-3p expression analysis was done by RT-PCR. Associations between expression of both miRNAs and clinico-pathological factors, treatment outcomes and survival were analyzed. RESULTS Both miRNA-148a and miRNA-625-3p were down-regulated in the tumors compared to normal colonic mucosa. Significantly lower expression of both miRNAs was noticed in tumors with budding phenomenon compared to tumors without it (median values of miRNA-148a were 0.314 and 0.753 respectively, p = 0.011, and 0.404 and 0.620 respectively for miRNA-625-3p, p = 0.036). Significantly lower expression of miRNA-625-3p was detected in rectal tumors, compared to tumors in the colon (median 0.390 and 0.665 respectively, p = 0.037). Progression free survival was significantly lower in patients with high miRNA-148a expression (6 and 9 months respectively, p = 0.033), but there were no significant differences in PFS for miRNA-625-3p and in overall survival for both miRNAs. CONCLUSIONS There was a significant relationship between low miRNA-148a and miRNA-625-3p expression and tumor budding, which is thought to represent epithelial-mesenchymal transition. Both studied miRNAs may be associated with a more aggressive phenotype and could be the potential prognostic and predictive biomarkers in CRC. Further investigation is needed to confirm miRNAs involvement in EMT, and their prognostic and predictive value.
Collapse
|
23
|
MiR-130a-3p inhibits the viability, proliferation, invasion, and cell cycle, and promotes apoptosis of nasopharyngeal carcinoma cells by suppressing BACH2 expression. Biosci Rep 2017; 37:BSR20160576. [PMID: 28487475 PMCID: PMC5463266 DOI: 10.1042/bsr20160576] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial-mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.
Collapse
|
24
|
Zhao G, Dong L, Shi H, Li H, Lu X, Guo X, Wang J. MicroRNA-1207-5p inhibits hepatocellular carcinoma cell growth and invasion through the fatty acid synthase-mediated Akt/mTOR signalling pathway. Oncol Rep 2016; 36:1709-16. [PMID: 27461404 DOI: 10.3892/or.2016.4952] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/09/2016] [Indexed: 11/05/2022] Open
Abstract
Fatty acid synthase (FASN) has emerged as a unique oncologic target for the treatment of cancers, including hepatocellular carcinoma (HCC). However, effective inhibitors of FASN for cancer treatment are lacking. MicroRNAs (miRNAs) have emerged as novel and endogenic inhibitors of gene expression. In the present study, we aimed to investigate the role of miR‑1207‑5p in HCC and the regulation of FASN through miR‑1207‑5p. The expression of miR-1207-5p was markedly reduced in HCC tissues and cell lines as detected with real‑time quantitative polymerase chain reaction (qPCR). Overexpression of miR-1207-5p significantly suppressed the cell growth and invasion of HCC cells. By contrast, inhibition of miR‑1207‑5p exhibited an opposite effect. Bioinformatics analysis showed that FASN is a predicted target of miR‑1207‑5p which was validated by dual‑luciferase reporter assay, qPCR and western blot analysis. Overexpression of miR‑1207‑5p inhibited the Akt/mTOR signalling pathway, and promotion of this pathway was noted following inhibition of miR‑1207‑5p. Rescue experiments showed that the restoration of FASN expression partially reversed the inhibitory effect of miR‑1207‑5p on cell growth, invasion and Akt phosphorylation. In conclusion, our study suggests that miR‑1207‑5p/FASN plays an important role in HCC, and provides novel insight into developing new inhibitors for FASN for therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
25
|
Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-β and NF-κB signaling pathways. J Nutr Biochem 2016; 35:37-47. [PMID: 27371785 DOI: 10.1016/j.jnutbio.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 01/19/2023]
Abstract
Aberrant activation of oncogenic signaling pathways plays a pivotal role in tumor initiation and progression. The purpose of the present study was to investigate the chemopreventive and therapeutic efficacy of blueberry in the hamster buccal pouch (HBP) carcinogenesis model based on its ability to target TGF-β, PI3K/Akt, MAPK and NF-κB signaling and its impact on invasion and angiogenesis. Squamous cell carcinomas were induced in the HBP by 7,12-dimethylbenz[a]anthracene (DMBA). The effect of blueberry on the oncogenic signaling pathways and downstream events was analyzed by quantitative real-time PCR and immunoblotting. Experiments with the ECV304 cell line were performed to explore the mechanism by which blueberry regulates angiogenesis. Blueberry supplementation inhibited the development and progression of HBP carcinomas by abrogating TGF-β and PI3K/Akt pathways. Although blueberry failed to influence MAPK, it suppressed NF-κB activation by preventing nuclear translocation of NF-κB p65. Blueberry also modulated the expression of the oncomiR miR-21 and the tumor suppressor let-7. Collectively, these changes induced a shift to an anti-invasive and anti-angiogenic phenotype as evidenced by downregulating matrix metalloproteinases and vascular endothelial growth factor. Blueberry also inhibited angiogenesis in ECV304 cells by suppressing migration and tube formation. The results of the present study suggest that targeting oncogenic signaling pathways that influence acquisition of cancer hallmarks is an effective strategy for chemointervention. Identification of modulatory effects on phosphorylation, intracellular localization of oncogenic transcription factors and microRNAs unraveled by the present study as key mechanisms of action of blueberry is critical from a therapeutic perspective.
Collapse
|
26
|
Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016; 20:1761-9. [PMID: 27027258 PMCID: PMC4988285 DOI: 10.1111/jcmm.12851] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular‐like structure which can mimic the embryonic vascular network pattern to nourish the tumour tissue. As a unique perfusion way, VM is correlated with tumour progression, invasion, metastasis and lower 5‐year survival rate. Notably, epithelial‐mesenchymal transition (EMT) regulators and EMT‐related transcription factors are highly up‐regulated in VM‐forming tumour cells, which demonstrated that EMT may play a crucial role in VM formation. Therefore, the up‐regulation of EMT‐associated adhesion molecules and other factors can also make a contribution in VM‐forming process. Depending on these discoveries, VM and EMT can be utilized as therapeutic target strategies for anticancer therapy. The purpose of this article is to explore the advance research in the relationship of EMT and VM and their corresponding mechanisms in tumorigenesis effect.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | - Lili Qiao
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Ning Liang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jian Xie
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Guodong Deng
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Hui Luo
- Department of Oncology, Weifang Medical College, Weifang, Shandong Pro, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| |
Collapse
|
27
|
Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y. MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer 2016; 15:11. [PMID: 26832151 PMCID: PMC4736705 DOI: 10.1186/s12943-016-0496-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most lethal gynecologic cancers. Patients frequently have regional or distant metastasis at diagnosis. MicroRNAs are small non-coding RNAs that participate in numerous biological processes. Recent studies have demonstrated that miR-505 is associated with several types of cancer; however, the expression and function of miR-505 have not been investigated in EC. Methods miR-505 expression in normal endometrial tissue, endometrial carcinomas were quantified by Quantitative reverse transcription PCR. The endometrial carcinoma cell lines HEC-1B and Ishikawa were each transfected with miR-505 or scrambled mimics, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-505 and its target gene TGF-α. Results RT-PCR results demonstrated that miR-505 was significantly downregulated in human EC tissues compared to normal endometrial tissues. Besides, miR-505 expression was negatively associated with FIGO stage (stage I-II vs. III-IV), and lymph node metastasis (negative vs. positive). In vitro, overexpression of miR-505 significantly suppressed EC cell proliferation, increased apoptosis and reduced migratory and invasive activity. A miR-505 binding site was identified in the 3′ untranslated region of TGF-α mRNA (TGFA) using miRNA target-detecting software; a dual luciferase reporter assay confirmed that miR-505 directly targets and regulates TGFA. RT-PCR and Western-blotting results indicated that overexpressing miR-505 reduced the expression of TGF-α and the TGF-α-regulated proteins MMP2, MMP9, CDK2, while induced Bax and cleaved-PARP expression in EC cells. In vivo, overexpression of miR-505 reduced the tumorigenicity and inhibited the growth of xenograft tumors in a mouse model of EC. Conclusions Taken together, this study demonstrates that miR-505 acts as tumor suppressor in EC by regulating TGF-α. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0496-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 100013, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|