1
|
Falvo S, Santillo A, Di Fiore MM, Venditti M, Grillo G, Latino D, Baccari I, Petito G, Chieffi Baccari G. New Insights into D-Aspartate Signaling in Testicular Activity. Cells 2024; 13:1400. [PMID: 39195288 DOI: 10.3390/cells13161400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
D-aspartate (D-Asp) is an amino acid found in high concentrations in the testis and pituitary gland. Increasing evidence suggests that D-Asp promotes spermatogenesis by activating testosterone production in the Leydig cells via LH release from the pituitary gland. In vitro studies indicate that D-Asp may also influence steroidogenesis and spermatogenesis through autocrine and paracrine signals. D-Asp enhances StAR and steroidogenic enzyme expressions, facilitating testicular cell proliferation via the GluR/ERK1/2 pathway. Moreover, it supports spermatogenesis by enhancing the mitochondrial function in spermatocytes, aiding in the metabolic shift during meiosis. Enhanced mitochondrial function, along with improved MAM stability and reduced ER stress, has been observed in Leydig and Sertoli cells treated with D-Asp, indicating potential benefits in steroidogenesis and spermatogenesis efficiency. Conversely, D-Asp exerts a notable anti-apoptotic effect in the testis via the AMPAR/AKT pathway, potentially mediated by antioxidant enzyme modulation to mitigate testicular oxidative stress. This review lays the groundwork for future investigations into the molecules promoting spermatogenesis by stimulating endogenous testosterone biosynthesis, with D-amino acids emerging as promising candidates.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giulia Grillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Debora Latino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Isabella Baccari
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| |
Collapse
|
2
|
Falvo S, Grillo G, Latino D, Chieffi Baccari G, Di Fiore MM, Venditti M, Petito G, Santillo A. Potential role of mitochondria and endoplasmic reticulum in the response elicited by D-aspartate in TM4 Sertoli cells. Front Cell Dev Biol 2024; 12:1438231. [PMID: 39105170 PMCID: PMC11298366 DOI: 10.3389/fcell.2024.1438231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
D-Aspartic Acid (D-Asp) affects spermatogenesis by enhancing the biosynthesis of the sex steroid hormones acting either through the hypothalamus-pituitary-testis axis or directly on Leydig cells. Recently, in vitro studies have also demonstrated the direct effects of D-Asp on the proliferation and/or activity of germ cells. However, although D-Asp is present in Sertoli cells (SC), the specific role of the amino acid in these cells remains unknown. This study investigated the effects of D-Asp on the proliferation and activity of TM4 SC, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). We found that D-Asp enhanced the proliferation and activity of TM4 cells as evidenced by the activation of ERK/Akt/PCNA pathway and the increase in the protein levels of the androgen receptor. Furthermore, D-Asp reduced both the oxidative stress and apoptotic process. An increase in mitochondrial functionality and dynamics, as well as a reduction in ER stress, were also found in D-Asp-treated TM4 cells. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions and lipid transfer from ER to the mitochondria, and vice versa. The data demonstrated that D-Asp induced stabilization of MAM in TM4 cells. In conclusion, this study is the first to demonstrate a direct effect of D-Asp on SC activity and to clarify the cellular/molecular mechanism underlying these effects, suggesting that D-Asp could stimulate spermatogenesis by improving the efficiency of SC.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Grillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Debora Latino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
3
|
Latino D, Venditti M, Falvo S, Grillo G, Santillo A, Messaoudi I, Ben Rhouma M, Minucci S, Chieffi Baccari G, Di Fiore MM. Steroidogenesis Upregulation through Mitochondria-Associated Endoplasmic Reticulum Membranes and Mitochondrial Dynamics in Rat Testes: The Role of D-Aspartate. Cells 2024; 13:523. [PMID: 38534366 PMCID: PMC10969159 DOI: 10.3390/cells13060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.
Collapse
Affiliation(s)
- Debora Latino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions, University of Campania ‘Luigi Vanvitelli’, 80138 Napoli, Italy; (M.V.); (S.M.)
| | - Sara Falvo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| | - Giulia Grillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| | - Alessandra Santillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.M.); (M.B.R.)
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.M.); (M.B.R.)
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions, University of Campania ‘Luigi Vanvitelli’, 80138 Napoli, Italy; (M.V.); (S.M.)
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (D.L.); (S.F.); (G.G.); (A.S.); (G.C.B.)
| |
Collapse
|
4
|
Peng H, Huang Y, Wei G, Pang Y, Yuan H, Zou X, Xie Y, Chen W. Testicular Toxicity in Rats Exposed to AlCl 3: a Proteomics Study. Biol Trace Elem Res 2024; 202:1084-1102. [PMID: 37382810 DOI: 10.1007/s12011-023-03745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Aluminum contamination is a growing environmental and public health concern, and aluminum testicular toxicity has been reported in male rats; however, the underlying mechanisms of this toxicity are unclear. The objective of this study was to investigate the effects of exposure to aluminum chloride (AlCl3) on alterations in the levels of sex hormones (testosterone [T], luteinizing hormone [LH], and follicle-stimulating hormone [FSH]) and testicular damage. Additionally, the mechanisms of toxicity in the testes of AlCl3-exposed rats were analyzed by proteomics. Three different concentrations of AlCl3 were administered to rats. The results demonstrated a decrease in T, LH, and FSH levels with increasing concentrations of AlCl3 exposure. HE staining results revealed that the spermatogenic cells in the AlCl3-exposed rats were widened, disorganized, or absent, with increased severe tissue destruction at higher concentrations of AlCl3 exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that differentially expressed proteins (DEPs) after AlCl3 exposure were primarily associated with various metabolic processes, sperm fibrous sheath, calcium-dependent protein binding, oxidative phosphorylation, and ribosomes. Subsequently, DEPs from each group were subjected to protein-protein interaction (PPI) analysis followed by the screening of interactional key DEPs. Western blot experiments validated the proteomics data, revealing the downregulation of sperm-related DEPs (AKAP4, ODF1, and OAZ3) and upregulation of regulatory ribosome-associated protein (UBA52) and mitochondrial ribosomal protein (MRPL32). These findings provide a basis for studying the mechanism of testicular toxicity due to AlCl3 exposure.
Collapse
Affiliation(s)
- Huixin Peng
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yanxin Huang
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guangji Wei
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yanfang Pang
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huixiong Yuan
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiong Zou
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning, 530000, Guangxi, China
| | - Yu'an Xie
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning, 530000, Guangxi, China.
| | - Wencheng Chen
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
5
|
Wang C, Huang L, Jin S, Hou R, Chen M, Liu Y, Tang W, Li T, Yin Y, He L. d-Aspartate in Low-Protein Diets Improves the Pork Quality by Regulating Energy and Lipid Metabolism via the Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12417-12430. [PMID: 37578298 DOI: 10.1021/acs.jafc.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
d-Aspartate is critical in maintaining hormone secretion and reproductive development in mammals. This study investigated the mechanism of different d-aspartate levels (0, 0.005, 0.05, and 0.5% d-aspartate) in low-protein diets on growth performance and meat quality by mediating the gut microbiota alteration in pigs. We found that adding 0.005% d-aspartate to a low-protein diet could dramatically improve the growth performance during the weaned and growing periods. Dietary d-aspartate with different levels markedly increased the back fat, and 0.5% d-aspartate significantly increased the redness in 24 h and reduced the shear force of the longissimus dorsi (LD) muscle. Moreover, d-aspartate treatments decreased the mRNA expression of MyHC II a and MyHC IIx in the LD muscle. The protein expression of MyH1, MyH7, TFAM, FOXO1, CAR, UCP2, and p-AMPK was upregulated by 0.005% d-aspartate. Additionally, the abundance of Alistipes, Akkermansia, and the [Eubacterium]_coprostanoligenes_group in the intestinal chyme of pigs was significantly decreased by d-aspartate treatments at the genus level, which was also accompanied by a significant decrease in acetate content. These differential microorganisms were significantly correlated with meat quality characteristics. These results indicated that d-aspartate in low-protein diets could improve the growth performance and meat quality in pigs by regulating energy and lipid metabolism via the alteration of gut microbiota.
Collapse
Affiliation(s)
- Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruoxin Hou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingzhe Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yonghui Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
6
|
Venditti M, Santillo A, Latino D, Ben Rhouma M, Romano MZ, Haddadi A, Di Fiore MM, Minucci S, Messaoudi I, Chieffi Baccari G. Evidence of the protective role of D-Aspartate in counteracting/preventing cadmium-induced oxidative stress in the rat testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115067. [PMID: 37244200 DOI: 10.1016/j.ecoenv.2023.115067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3β-HSD, and 17β-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Asma Haddadi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy.
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
7
|
Santillo A, Falvo S, Venditti M, Di Maio A, Chieffi Baccari G, Errico F, Usiello A, Minucci S, Di Fiore MM. D-Aspartate Depletion Perturbs Steroidogenesis and Spermatogenesis in Mice. Biomolecules 2023; 13:biom13040621. [PMID: 37189369 DOI: 10.3390/biom13040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
High levels of free D-aspartate (D-Asp) are present in vertebrate testis during post-natal development, coinciding with the onset of testosterone production, which suggests that this atypical amino acid might participate in the regulation of hormone biosynthesis. To elucidate the unknown role of D-Asp on testicular function, we investigated steroidogenesis and spermatogenesis in a one-month-old knockin mouse model with the constitutive depletion of D-Asp levels due to the targeted overexpression of D-aspartate oxidase (DDO), which catalyzes the deaminative oxidation of D-Asp to generate the corresponding α-keto acid, oxaloacetate, hydrogen peroxide, and ammonium ions. In the Ddo knockin mice, we found a dramatic reduction in testicular D-Asp levels, accompanied by a significant decrease in the serum testosterone levels and testicular 17β-HSD, the enzyme involved in testosterone biosynthesis. Additionally, in the testes of these Ddo knockin mice, the expression of PCNA and SYCP3 proteins decreased, suggesting alterations in spermatogenesis-related processes, as well as an increase in the cytosolic cytochrome c protein levels and TUNEL-positive cell number, which indicate an increase in apoptosis. To further investigate the histological and morphometric testicular alterations in Ddo knockin mice, we analyzed the expression and localization of prolyl endopeptidase (PREP) and disheveled-associated activator of morphogenesis 1 (DAAM1), two proteins involved in cytoskeletal organization. Our results showed that the testicular levels of DAAM1 and PREP in Ddo knockin mice were different from those in wild-type animals, suggesting that the deficiency of D-Asp is associated with overall cytoskeletal disorganization. Our findings confirmed that physiological D-Asp influences testosterone biosynthesis and plays a crucial role in germ cell proliferation and differentiation, which are required for successful reproduction.
Collapse
|
8
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Rodriguez-Wallberg KA, Hamidian G. Differentiation of neonate mouse spermatogonia on two-dimensional and three-dimensional culture systems supplemented with d-Serine and Dizocilpine (MK-801). Theriogenology 2022; 191:168-178. [PMID: 35998400 DOI: 10.1016/j.theriogenology.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
N-methyl-d-aspartate (NMDA) modulates the spermatogenesis process through stimulating the steroid hormone biosynthesis. The aim of this study was to evaluate the effects of NMDA receptors agonists (d-Serine) and antagonists (MK801) on spermatogonia differentiation on decellularization testicular matrix (DTM) hydrogel scaffold. Four treatment groups were planned: 2D + D-Serine, 3D + D-Serine, 2D + MK801, and 3D + MK801. Results showed that cell viability was significantly decreased after 48 h in the 3D + D-Serine group and after 24 and 48 h in the 3D + MK801 group compared to the controls. The spermatogonia proliferation after two, four, and eight weeks was significantly increased in the 3D + D-Serine culture, while it was significantly reduced in the 2D + MK801 and 3D + MK801 groups after four and eight weeks. Real-time PCR results demonstrated that pre-meiotic gene (Plzf) expression was significantly increased only in the 3D + D-Serine culture compared to the control groups after four weeks of culture. The meiotic gene (Sycp3) expression was significantly increased in the 2D + D-Serine and 3D + D-Serine compared to the 2D controls after four and eight weeks. The post-meiotic gene (Tnp1) level in the 3D + D-Serine was significantly higher than the other groups. Flow-cytometry results indicated that the protein expression of Plzf (after four and eight weeks), Sycp3 (after eight weeks), and Tnp1 (after eight weeks) in the d-Serine-treated groups was significantly increased compared with the 2D control groups. There were not any significant changes in the gene expression of spermatogenic-related markers in MK801 culture media. However, a significant decrease in the protein levels of Plzf after eight weeks and Sycp3 after four and eight weeks was observed. In conclusion, the addition of NMDARs agonists (d-Serine) could be used to regulate the differentiation of spermatogonia in the 3D culture system.
Collapse
Affiliation(s)
- Amirhessam Eskafi Noghani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran.
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Novumhuset Plan 4, SE-141 86, Stockholm, Sweden.
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
9
|
Promising Application of D-Amino Acids toward Clinical Therapy. Int J Mol Sci 2022; 23:ijms231810794. [PMID: 36142706 PMCID: PMC9503604 DOI: 10.3390/ijms231810794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
The versatile roles of D-amino acids (D-AAs) in foods, diseases, and organisms, etc., have been widely reported. They have been regarded, not only as biomarkers of diseases but also as regulators of the physiological function of organisms. Over the past few decades, increasing data has revealed that D-AAs have great potential in treating disease. D-AAs also showed overwhelming success in disengaging biofilm, which might provide promise to inhibit microbial infection. Moreover, it can effectively restrain the growth of cancer cells. Herein, we reviewed recent reports on the potential of D-AAs as therapeutic agents for treating neurological disease or tissue/organ injury, ameliorating reproduction function, preventing biofilm infection, and inhibiting cancer cell growth. Additionally, we also reviewed the potential application of D-AAs in drug modification, such as improving biostability and efficiency, which has a better effect on therapy or diagnosis.
Collapse
|
10
|
Oral D-Aspartate Treatment Improves Sperm Fertility in Both Young and Adult B6N Mice. Animals (Basel) 2022; 12:ani12111350. [PMID: 35681815 PMCID: PMC9179375 DOI: 10.3390/ani12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Investigations concerning the impact of D-Aspartate on fertility suggest that it has a positive influence on the in vitro fertilization rate in young C57BL/6N mice. Here, we demonstrated that adult C57BL/6N mice that received an oral treatment of D-Aspartate also have a higher fertilizing capability and the quality of their spermatozoa increased after only two weeks of treatment. Hence, this study gives us new insights on the role of D-Aspartate in the regulation of the reproductive activity in both young and adult mice. Abstract D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking.
Collapse
|
11
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Hamidian G. Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems. Mol Biol Rep 2022; 49:2197-2207. [PMID: 35000063 DOI: 10.1007/s11033-021-07041-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems. METHODS AND RESULTS The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001). CONCLUSIONS This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.
Collapse
Affiliation(s)
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
d-aspartate and N-methyl-d-aspartate promote proliferative activity in mouse spermatocyte GC-2 cells. Reprod Biol 2022; 22:100601. [PMID: 35032869 DOI: 10.1016/j.repbio.2021.100601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022]
Abstract
D-Aspartate (D-Asp) and its methylated form N-methyl-d-aspartate (NMDA) promote spermatogenesis by stimulating the biosynthesis of sex steroid hormones. d-Asp also induces spermatogonia proliferation directly by activating the ERK/Aurora B pathway. In the present study, a mouse spermatocyte-derived cell line (GC-2) which represents a stage between preleptotene spermatocyte and round spermatids was exposed to 200 μM d-Asp or 50 μM NMDA for 30 min, 2 h, and 4 h to explore the influence of these amino acids on cell proliferation and mitochondrial activities occurring during this process. By Western blotting analyses, the expressions of AMPAR (GluA1-GluA2/3 subunits), cell proliferation as well as mitochondria functionality markers were determined at different incubation times. The results revealed that d-Asp or NMDA stimulate proliferation and meiosis in the GC-2 cells via the AMPAR/ERK/Akt pathway, which led to increased levels of the PCNA, p-H3, and SYCP3 proteins. The effects of d-Asp and NMDA on the mitochondrial functionality of the GC-2 cells strongly suggested an active role of these amino acids in germ cell maturation. In both d-Asp- and NMDA-treated GC-2 cells mitochondrial biogenesis as well as mitochondrial fusion are increased while mitochondria fission is inhibited. Finally, the findings showed that NMDA significantly increased the expressions of the CII, CIII, CIV, and CV complexes of oxidative phosphorylation system (OXPHOS), whereas d-Asp induced a significant increase in the expressions only of the CIV and CV complexes. The present study provides novel insights into the mechanisms underlying the role of d-Asp and NMDA in promoting spermatogenesis.
Collapse
|
13
|
Qu J, Han Y, Zhao Z, Wu Y, Lu Y, Chen G, Jiang J, Qiu L, Gu A, Wang X. Perfluorooctane sulfonate interferes with non-genomic estrogen receptor signaling pathway, inhibits ERK1/2 activation and induces apoptosis in mouse spermatocyte-derived cells. Toxicology 2021; 460:152871. [PMID: 34303733 DOI: 10.1016/j.tox.2021.152871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 μM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERβ were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 μM) significantly attenuated the above PFOS-induced effects while specific ERβ agonist DPN (1 μM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Yu Han
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Ziyan Zhao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ying Lu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Gang Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Junkang Jiang
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
14
|
Falvo S, Rosati L, Di Fiore MM, Di Giacomo Russo F, Chieffi Baccari G, Santillo A. Proliferative and Apoptotic Pathways in the Testis of Quail Coturnix coturnix during the Seasonal Reproductive Cycle. Animals (Basel) 2021; 11:ani11061729. [PMID: 34207904 PMCID: PMC8226535 DOI: 10.3390/ani11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The quail Coturnix coturnix exhibits an annual cycle of testis size, sexual steroid production, and spermatogenesis. The testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, suggesting that estrogens act in synergy with the androgens for the initiation of spermatogenesis. Therefore, the present study aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasons, with a focus on the molecular pathways activated in both active and regressive quail testes. The results indicated that estrogens participated in the activation of mitotic and meiotic events during the reproductive period by activating the ERK1/2 and Akt-1 pathways. In the non-reproductive period, when the E2/ERα levels are low, ERK1/2 and Akt-1 pathways remain inactive and apoptotic events occur. Our results suggest that the activation or inhibition of these molecular pathways plays a crucial role in the physiological switch “on/off” of the testicular activity in male quail during the seasonal reproductive cycle. Abstract The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80138 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
- Correspondence:
| |
Collapse
|
15
|
Falvo S, Santillo A, Di Fiore MM, Rosati L, Chieffi Baccari G. JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:529-536. [PMID: 33970561 DOI: 10.1002/jez.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
16
|
Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116556. [PMID: 33588191 DOI: 10.1016/j.envpol.2021.116556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The public around the world is increasingly concerned about male reproductive health. The impact of nickel nanoparticles (Ni NPs) on male reproductive toxicity including sperm production, motility and fertilizing capacity has been confirmed by our previous researches. In the current study of Ni NPs-inducing toxicity, the expression profiles of piRNAs and their predicted target genes associated with male infertility, were obtained. The results showed that piR-mmu-32362259 was the highest differential expression multiples in both the testis tissues of male mice and GC-1 cells similarly. Notably, piR-mmu-32362259 target gene was significantly enriched in the PI3K-AKT signaling pathway. All these results suggest that piR-mmu-32362259 may affect the occurrence and development of injury in the mouse spermatogenesis process by regulating the PI3K-AKT signaling pathway. In order to verify the result, piR-mmu-32362259 low-expression lentivirus was used to transfect GC-1 cells to establish a stable transfected cell model. The effects of piR-mmu-32362259 on the viability, cycle and apoptosis as well as related protein expression levels of GC-1 cells induced by Ni NPs were detected using CCK8, flow cytometry and western blot assay, respectively. The results showed that low expression of piR-mmu-32362259 could not only alleviate the decrease of GC-1 cell viability, affect the cell cycle and reduce the apoptosis rate, but also significantly affect the expression levels of key proteins and their downstream molecules of PI3K/AKT/mTOR signaling pathway. Collectively, our current results provide a theoretical basis for further exploring the molecular regulatory mechanism of male reproductive toxicity induced by Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Lin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
17
|
Venditti M, Romano MZ, Aniello F, Minucci S. Preliminary Investigation on the Ameliorative Role Exerted by D-Aspartic Acid in Counteracting Ethane Dimethane Sulfonate (EDS) Toxicity in the Rat Testis. Animals (Basel) 2021; 11:ani11010133. [PMID: 33435542 PMCID: PMC7827869 DOI: 10.3390/ani11010133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary For proper fertility, the production of good-quality spermatozoa is essential. Nowadays, many environmental pollutants affect the spermatogenetic process, at different levels. For this reason, new approaches are needed to prevent/counteract these toxic effects. Here, we showed that the excitatory amino acid D-aspartic acid (D-Asp) prevents the deadly action of ethane dimethane sulfonate (EDS) on the testosterone-secreting Leydig cells in rat testis. We found that EDS, probably via the reduced testosterone level, alters the normal histology of the seminiferous epithelium, leading to germ cells death and to the decreased protein level of two Leydig cell “markers”: steroidogenic acute regulatory and prolyl endopeptidase. In addition, the same analysis performed on rats that were pre-treated with D-Asp revealed a protective role of this compound, since all the above parameters were quite normal. Moreover, we found that the protective mechanism of action involved in this scenario may be due to the ability of D-Asp to reduce the oxidative stress induced by EDS. Based on these findings, we could affirm that D-Asp may be an encouraging candidate to be used to alleviate the harmful action due to environmental pollutants exposure, in order to maintain appropriate fertility. Abstract Herein is reported the first evidence of the protective role of D-aspartic acid (D-Asp) in preventing the toxic effect exerted by the alkylating agent ethane dimethane sulfonate (EDS) in the rat testis. We confirmed that EDS treatment specifically destroyed Leydig cells (LC), resulting in the drastic decrease of the serum testosterone level and producing morphological changes in the germinal tubules, i.e., altered organization of the epithelium, loss of cell contacts and the consequent presence of empty spaces between them, and a reduce number of spermatozoa. Moreover, an increase of TUNEL-positive germ cells, other than alteration in the protein level and localization of two LC “markers”, StAR and PREP, were observed. Interestingly, results obtained from rats pre-treated with D-Asp for 15 days before EDS-injection showed that all the considered parameters were quite normal. To explore the probable mechanism(s) involved in the protection exerted by D-Asp, we considered the increased oxidative stress induced by EDS and the D-Asp antioxidant effects. Thiobarbiturc acid-reactive species (TBARS) levels increased following EDS-injection, while no change was observed in the D-Asp + EDS treated rats. Our results showed that D-Asp may be used as a strategy to mitigate the toxic effects exerted by environmental pollutants, as endocrine disrupters, in order to preserve the reproductive function.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli ‘Federico II, Via Cinthia’, 21, 80126 Napoli, Italy;
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
- Correspondence:
| |
Collapse
|
18
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
19
|
Chieffi Baccari G, Falvo S, Santillo A, Di Giacomo Russo F, Di Fiore MM. D-Amino acids in mammalian endocrine tissues. Amino Acids 2020; 52:1263-1273. [PMID: 32930873 DOI: 10.1007/s00726-020-02892-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
D-Aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus-pituitary-testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-Aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal β cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic β-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Sara Falvo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Santillo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Federica Di Giacomo Russo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
20
|
Modirshanechi G, Eslampour MA, Abdolmaleki Z. Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 2020; 52:e13764. [PMID: 32920884 DOI: 10.1111/and.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, agonist and antagonist N-methyl-D-aspartate (NMDA) receptor activation effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture were studied. Afterwards, the effect of D-serine, retinoic acid (RA) and MK801 on spermatogenesis development was investigated. The animals were injected a single dose (40 mg/kg, intraperitoneal) of busulfan. After confirming the model, ten 5-day-old NMRI mice were used as spermatogonial stem cells (SSCs) transplantation donors. The SSCs were confirmed by detecting the promyelocytic leukaemia zinc finger (PLZF) protein. Then, tissue culture of the azoospermia model which had received SSCs was performed in various conditions (seven groups). The apoptosis markers levels of cells were significantly decreased in differentiation media containing RA and serine. In contrast, the expression of apoptotic markers including caspase 3, caspase 9 and Bax was increased in the presence of MK801. In conclusion, a new in vitro system capable of producing mature spermatozoa was developed that would be useful for investigating the medicinal effects of agents on the male reproductive system. Also, a comparison of spermatogenesis development in different media revealed that the presence of D-serine and RA (retinoic acid) in the culture medium has a positive effect on spermatogenesis.
Collapse
Affiliation(s)
- Ghazaleh Modirshanechi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
21
|
Roles of N-methyl-D-aspartate receptors and D-amino acids in cancer cell viability. Mol Biol Rep 2020; 47:6749-6758. [PMID: 32892308 DOI: 10.1007/s11033-020-05733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors, which are widely present in the central nervous system, have also been found to be up-regulated in a variety of cancer cells and tumors and they can play active roles in cancer cell growth regulation. NMDA receptor antagonists have been found to affect cancer cell viability and interfere with tumor growth. Moreover, cancer cells also have been shown to have elevated levels of some D-amino acids. Two human skin cell lines: Hs 895.T skin cancer and Hs 895.Sk skin normal cells were investigated. They were derived from the same patient to provide tumor and normal counterparts for comparative studies. The expression of specific NMDA receptors was confirmed for the first time in both skin cell lines. Dizocilpine (MK-801) and memantine, NMDA receptor channel blockers, were found to inhibit the growth of human skin cells by reducing or stopping NMDA receptor activity. Addition of D-Ser, D-Ala, or D-Asp, however, significantly reversed the antiproliferative effect on the human skin cells triggered by MK-801 or memantine. Even more interesting was the finding that the specific intracellular composition of a few relatively uncommon amino acids was selectively elevated in skin cancer cells when exposed to MK-801. It appears that a few specific and upregulated D-amino acids can reverse the drug-induced antiproliferative effect in skin cancer cells via the reactivation of NMDA receptors. This study provides a possible innovative anticancer therapy by acting on the D-amino acid pathway in cancer cells either blocking or activating their regulatory enzymes.
Collapse
|
22
|
D-Aspartate Upregulates DAAM1 Protein Levels in the Rat Testis and Induces Its Localization in Spermatogonia Nucleus. Biomolecules 2020; 10:biom10050677. [PMID: 32353957 PMCID: PMC7277804 DOI: 10.3390/biom10050677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Disheveled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data also suggested a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells.
Collapse
|
23
|
Di Fiore MM, Boni R, Santillo A, Falvo S, Gallo A, Esposito S, Baccari GC. D-Aspartic Acid in Vertebrate Reproduction: Animal Models and Experimental Designs ‡. Biomolecules 2019; 9:biom9090445. [PMID: 31484465 PMCID: PMC6770039 DOI: 10.3390/biom9090445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
This article reviews the animal models and experimental designs that have been used during the past twenty years to demonstrate the prominent role played by d-aspartate (d-Asp) in the reproduction of vertebrates, from amphibians to humans. We have tabulated the findings of in vivo and in vitro experiments that demonstrate the effects of d-Asp uptake on hormone production and gametogenesis in vertebrate animal models. The contribution of each animal model to the existing knowledge on the role of d-Asp in reproductive processes has been discussed. A critical analysis of experimental designs has also been carried out. Experiments performed on wild animal species suggest a role of d-Asp in the mechanisms that regulate the reproductive cycle. Several in vivo and in vitro studies carried out on mouse and rat models have facilitated an understanding of the molecular pathways activated by D-Asp in both steroidogenesis and spermatogenesis, with particular emphasis on testosterone biosynthesis. Some attempts using d-Asp for the improvement of reproductive activity in animals of commercial interest have yielded mixed results. The increased transcriptome activity of enzymes and receptors involved in the reproductive activity in d-Asp-treated broiler roosters revealed further details on the mechanism of action of d-Asp on the reproductive processes. The close relationship between d-Asp and reproductive activity has emerged, particularly in relation to its effects exerted on semen quality, proposing therapeutic applications of this amino acid in andrology and in medically-assisted procreation techniques.
Collapse
Affiliation(s)
- Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Raffaele Boni
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Gallo
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Sabrina Esposito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
24
|
Santillo A, Falvo S, Di Fiore MM, Di Giacomo Russo F, Chieffi P, Usiello A, Pinelli C, Baccari GC. AMPA receptor expression in mouse testis and spermatogonial GC-1 cells: A study on its regulation by excitatory amino acids. J Cell Biochem 2019; 120:11044-11055. [PMID: 30762900 DOI: 10.1002/jcb.28382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Excitatory amino acids (EAAs) are found present in the nervous and reproductive systems of animals. Numerous studies have demonstrated a regulatory role for Glutamate (Glu), d-aspartate ( d-Asp) and N-methyl- d-aspartate (NMDA) in the control of spermatogenesis. EAAs are able to stimulate the Glutamate receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Here in, we assess expression of the main AMPAR subunits, GluA1 and GluA2/3, in the mouse testis and in spermatogonial GC-1 cells. The results showed that both GluA1 and GluA2/3 were localized in mouse testis prevalently in spermatogonia. The subunit GluA2/3 was more highly expressed compared with GluA1 in both the testis and the GC-1 cells. Subsequently, GC-1 cells were incubated with medium containing l-Glu, d-Glu, d-Asp or NMDA to determine GluA1 and GluA2/3 expressions. At 30 minutes and 2 hours of incubation, EAA-treated GC-1 cells showed significantly higher expression levels of both GluA1 and GluA2/3. Furthermore, p-extracellular signal-regulated kinase (ERK), p-Akt, proliferating cell nuclear antigen (PCNA), and Aurora B expressions were assayed in l-Glu-, d-Glu-, and NMDA-treated GC-1 cells. At 30 minutes and 2 hours of incubation, treated GC-1 cells showed significantly higher expression levels of p-ERK and p-Akt. A consequent increase of PCNA and Aurora B expressions was induced by l-Glu and NMDA, but not by d-Glu. Our study demonstrates a direct effect of the EAAs on spermatogonial activity. In addition, the increased protein expression levels of GluA1 and GluA2/3 in EAA-treated GC-1 cells suggest that EAAs could activate ERK and Akt pathways through the AMPAR. Finally, the increased PCNA and Aurora B levels may imply an enhanced proliferative activity.
Collapse
Affiliation(s)
- Alessandra Santillo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Sara Falvo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Maria M Di Fiore
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Di Giacomo Russo
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
25
|
Saitoh Y, Katane M, Miyamoto T, Sekine M, Sakamoto T, Imai H, Homma H. Secreted d-aspartate oxidase functions in C. elegans reproduction and development. FEBS J 2018; 286:124-138. [PMID: 30387556 DOI: 10.1111/febs.14691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Abstract
d-Aspartate oxidase (DDO) is a degradative enzyme that acts stereospecifically on free acidic D-amino acids such as d-aspartate and d-glutamate. d-Aspartate plays an important role in regulating neurotransmission, developmental processes, hormone secretion, and reproductive functions in mammals. In contrast, the physiological role of d-glutamate in mammals remains unclear. In Caenorhabditis elegans, the enzyme responsible for in vivo metabolism of d-glutamate is DDO-3, one of the three DDO isoforms, which is also required for normal self-fertility, hatching, and lifespan. In general, eukaryotic DDOs localize to subcellular peroxisomes in a peroxisomal targeting signal type 1 (PTS1)-dependent manner. However, DDO-3 does not contain a PTS1, but instead has a putative N-terminal signal peptide (SP). In this study, we found that DDO-3 is a secreted DDO, the first such enzyme to be described in eukaryotes. In hermaphrodites, DDO-3 was secreted from the proximal gonadal sheath cells in a SP-dependent manner and transferred to the oocyte surface. In males, DDO-3 was secreted from the seminal vesicle into the seminal fluid in a SP-dependent manner during mating with hermaphrodites. In both sexes, DDO-3 was secreted from the cells where it was produced into the body fluid and taken up by scavenger coelomocytes. Full-length DDO-3 transgene rescued all phenotypes elicited by the deletion of ddo-3, whereas a DDO-3 transgene lacking the putative SP did not. Together, these results indicate that secretion of DDO-3 is essential for its physiological functions.
Collapse
Affiliation(s)
- Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Taro Sakamoto
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| |
Collapse
|
26
|
Raspa M, Mahabir E, Paoletti R, Protti M, Mercolini L, Schiller P, Scavizzi F. Effects of oral d-aspartate on sperm quality in B6N mice. Theriogenology 2018; 121:53-61. [DOI: 10.1016/j.theriogenology.2018.07.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022]
|
27
|
Liu Y, Hu Y, Wang L, Xu C. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium. Reprod Biol Endocrinol 2018; 16:105. [PMID: 30360758 PMCID: PMC6202848 DOI: 10.1186/s12958-018-0427-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spermatogenesis is a complex process involving the self-renewal and differentiation of spermatogonia into mature spermatids in the seminiferous tubules. During spermatogenesis, germ cells migrate from the basement membrane to cross the blood-testis barrier (BTB) and finally reach the luminal side of the seminiferous epithelium. However, the mechanism for regulating the migration of germ cells remains unclear. In this study, we focused on the expression and function of transcriptional factor EB (TFEB), a master regulator of lysosomal biogenesis, autophagy and endocytosis, in spermatogenesis. METHODS The expression pattern of the TFEB in mouse testes were investigated by Western blotting and immunohistochemistry analyses. Either undifferentiated spermatogonia or differentiating spermatogonia were isolated from testes using magnetic-activated cell sorting based on specific cell surface markers. Differentiation of spermatogonia was induced with 100 nM retinoic acid (RA). shRNA was used to knock down TFEB in cells. TFEB expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Cell migration was determined by both transwell migration assay and wound healing assay applied to a cell line of immortalized spermatogonia, GC-1 cells. RESULTS During testicular development, TFEB expression was rapidly increased in the testes at the period of 7 days post-partum (dpp) to 14 dpp, whereas in adult testis, it was predominantly localized in the nucleus of spermatogonia at stages VI to VIII of the seminiferous epithelial cycle. Accordingly, TFEB was observed to be mainly expressed in differentiating spermatogonia and was activated for nuclear translocation by RA treatment. Moreover, knockdown of TFEB expression by RNAi did not affect spermatogonial differentiation, but significantly reduced cell migration in GC-1 cells. CONCLUSION These findings imply that regionally distinct expression and activation of TFEB was strongly associated with RA signaling, and therefore may promote cell migration across the BTB and transport along the seminiferous epithelium.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China.
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China
| | - Li Wang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China
| | - Chen Xu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Abstract
A critical step for maintenance of genetic stability is chromosome segregation, which requires a high coordination of cellular processes. Loss of mitotic regulation is a possible cause of aneuploidy in human epithelial malignancy and it is thought to create an abnormal nuclear morphology in cancer cells. Serine/threonine protein kinase Aurora B gene plays a regulatory role from G2 to cytokinesis, encompassing key cell cycle events such as centrosome duplication, chromosome bi-orientation, and segregation. The overexpression of Aurora B has been observed in several tumour types, and has been linked with a poor prognosis for cancer patients. Therapeutic inhibition of Aurora kinase showed great promise as a probable anticancer regime because of its important role during cell division.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
29
|
Li Y, Han H, Yin J, Li T, Yin Y. Role of D-aspartate on biosynthesis, racemization, and potential functions: A mini-review. ACTA ACUST UNITED AC 2018; 4:311-315. [PMID: 30175260 PMCID: PMC6116324 DOI: 10.1016/j.aninu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
D-aspartate, a natural and endogenous amino acid, widely exists in animal tissues and can be synthesized through aspartate racemase and transformed by D-aspartate oxidase (DDO). D-aspartate mainly serves as a neurotransmitter and has been demonstrated to exhibit various physiological functions, including nutritional potential, regulation on reproduction and hormone biology, and neuron protection. This article mainly reviews the synthesis, racemization, and physiological functions of D-aspartate with emphasis on the potential in diseases.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| |
Collapse
|
30
|
Ansari M, Zhandi M, Kohram H, Zaghari M, Sadeghi M, Gholami M, Deldar H, Di Fiore MM, Benson AP. D-Aspartate amends reproductive performance of aged roosters by changing gene expression and testicular histology. Reprod Fertil Dev 2018; 30:1038-1048. [DOI: 10.1071/rd17072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022] Open
Abstract
Male broiler breeders (n = 32) of 55 weeks of age were administered four different doses of capsulated d-aspartate (DA; 0, 100, 200 or 300 mg kg−1 day−1, p.o. (DA0, DA100, DA200 and DA300 respectively)) for 12 successive weeks to assess reproductive performance, blood testosterone, testicular histology and transcript levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), androgen receptor (AR), LH receptor (LHR), 3β-hydroxysteroid dehydrogenase (3BHSD), proliferating cell nuclear antigen (PCNA), glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) and glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B). Blood samples and ejaculates were collected, and bodyweight was recorded weekly for 10 weeks. AI was performed weekly for the last 2 weeks to determine the number of sperm penetration holes in the perivitelline layer, fertility and hatchability. Testes histology and transcript levels were evaluated in the 12th week. Bodyweight, numbers of Leydig cells and blood vessels, testis index and levels of sperm abnormalities were not affected (P > 0.05) by the treatment. However, sperm total and forward motility, plasma membrane integrity and functionality of sperm, ejaculate volume, testosterone concentration and fertility were higher (P < 0.05) in both the DA200 and DA300 groups compared with the other groups. In the DA100 and DA200 groups, sperm concentration, number of spermatogonia, thickness of the seminiferous epithelium and the diameter of tubules were significantly higher (P < 0.05) than the other DA-treated groups. The number of penetration holes, hatchability and malondialdehyde concentration were higher in the DA200, all DA-treated and DA300 groups respectively compared with the control and other treatment groups. Except for P450scc, AR, LHR and PCNA transcript levels in the DA300 groups, the relative expression of the genes evaluated improved significantly in the other DA-treated groups. Based on these experimental findings, it is concluded that DA improves reproductive performance of aged roosters.
Collapse
|
31
|
Di Fiore MM, Santillo A, Falvo S, Chieffi Baccari G, Venditti M, Di Giacomo Russo F, Lispi M, D'Aniello A. Sex hormone levels in the brain of d-aspartate-treated rats. C R Biol 2017; 341:9-15. [PMID: 29203165 DOI: 10.1016/j.crvi.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
d-Aspartate (d-Asp) is an endogenous amino acid present in the central nervous system and endocrine glands of various animal taxa. d-Asp is implicated in neurotransmission, physiology of learning, and memory processes. In gonads, it plays a crucial role in sex hormone synthesis. We have investigated the effects of chronic (30 days d-Asp drinking solution) and acute (i.p. injection of 2μmol/g bw d-Asp) treatments on sex steroid synthesis in rat brain. Furthermore, to verify the direct effect of d-Asp on neurosteroidogenic enzyme activities, brain homogenates were incubated with different substrates (cholesterol, progesterone, or testosterone) with or without the addition of d-Asp. Enzyme activities were measured by evaluating the in vitro conversion rate of (i) cholesterol to progesterone, testosterone, and 17β-estradiol, (ii) progesterone to testosterone and 17β-estradiol, (iii) testosterone to 17β-estradiol. We found that d-Asp oral administration produced an increase of approximately 40% in progesterone, 110% in testosterone, and 35% in 17β-estradiol. Similarly, the results of the acute experiment showed that at 30min after d-Asp treatment, the progesterone, testosterone, and 17β-estradiol levels increased by 29-35%, and at 8h they further increased by a 100% increment. In vitro experiments demonstrate that the addition of d-Asp to brain homogenate+substrate induces a significant increase in progesterone, testosterone and 17β-estradiol suggesting that the amino acid upregulates the local activity of steroidogenic enzymes.
Collapse
Affiliation(s)
- Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy
| | - Monica Lispi
- Medical Affair Department Fertility TA, Merck-Serono SAS, Rome, Italy
| | - Antimo D'Aniello
- Dipartimento di Scienze e Tecnologie ambientali, biologiche e farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi 43, 81100 Caserta, Italy; Department of Neurobiology and Comparative Physiology, Zoological Station "Anthon Dohrn", Naples, Italy.
| |
Collapse
|
32
|
Zhang L, Zhang H, Zhang H, Benson M, Han X, Li D. Roles of piRNAs in microcystin-leucine-arginine (MC-LR) induced reproductive toxicity in testis on male offspring. Food Chem Toxicol 2017; 105:177-185. [PMID: 28414124 DOI: 10.1016/j.fct.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
33
|
Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid. Theriogenology 2017; 92:69-74. [DOI: 10.1016/j.theriogenology.2017.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
|
34
|
The identification of ᴅ-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis. Sci Rep 2017; 7:45175. [PMID: 28338057 PMCID: PMC5364533 DOI: 10.1038/srep45175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/20/2017] [Indexed: 12/24/2022] Open
Abstract
Many metazoans start germ cell development during embryogenesis, while some metazoans possessing pluripotent stem cells undergo postembryonic germ cell development. The latter reproduce asexually but develop germ cells from pluripotent stem cells or dormant primordial germ cells when they reproduce sexually. Sexual induction of the planarian Dugesia ryukyuensis is an important model for postembryonic germ cell development. In this experimental system, hermaphroditic reproductive organs are differentiated in presumptive gonadal regions by the administration of a crude extract from sexual planarians to asexual ones. However, the substances involved in the first event during postembryonic germ cell development, i.e., ovarian development, remain unknown. Here, we aimed to identify a bioactive compound associated with postembryonic ovarian development. Bioassay-guided fractionation identified ʟ-tryptophan (Trp) on the basis of electrospray ionization–mass spectrometry, circular dichroism, and nuclear magnetic resonance spectroscopy. Originally masked by a large amount of ʟ-Trp, ᴅ-Trp was detected by reverse-phase high-performance liquid chromatography. The ovary-inducing activity of ᴅ-Trp was 500 times more potent than that of ʟ-Trp. This is the first report describing a role for an intrinsic ᴅ-amino acid in postembryonic germ cell development. Our findings provide a novel insight into the mechanisms of germ cell development regulated by low-molecular weight bioactive compounds.
Collapse
|
35
|
Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: The search for an in vitro screen for spermatogenic toxicity. ACTA ACUST UNITED AC 2016; 107:225-242. [DOI: 10.1002/bdrb.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Robert E. Chapin
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Timothy Winton
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - William Nowland
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Nichole Danis
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Histopathology Laboratory; WRD; Groton CT USA
| | - Steven Kumpf
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Kjell Johnson
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Arbor Analytics; Ann Arbor MI USA
| | - Aleasha Coburn
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
36
|
Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia. Int J Mol Sci 2016; 17:ijms17071127. [PMID: 27428949 PMCID: PMC4964501 DOI: 10.3390/ijms17071127] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022] Open
Abstract
A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.
Collapse
|
37
|
Tomita K, Tanaka H, Kageyama S, Nagasawa M, Wada A, Murai R, Kobayashi K, Hanada E, Agata Y, Kawauchi A. The Effect of d-Aspartate on Spermatogenesis in Mouse Testis1. Biol Reprod 2016; 94:30. [DOI: 10.1095/biolreprod.115.134692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 11/01/2022] Open
|