1
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
2
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
3
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
4
|
Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int J Mol Sci 2021; 22:ijms222413675. [PMID: 34948469 PMCID: PMC8708779 DOI: 10.3390/ijms222413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune response and chronic inflammation, which characterize RA, may induce endothelial activation, damage and dysfunction. An equilibrium between endothelial damage and repair, together with the preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium. Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis, neovascularization and endothelial repair. A modification of the number and function of EPCs has been described in numerous chronic inflammatory and auto-immune conditions; however, reports that focus on the number and functions of EPCs in RA are characterized by conflicting results, and discrepancies exist among different studies. In the present review, the authors describe EPCs' role and response to RA-related endothelial modification, with the aim of illustrating current evidence regarding the level of EPCs and their function in this disease, to summarize EPCs' role as a biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of EPCs secondary to RA therapy.
Collapse
|
5
|
Zhu X, Tian C, Zhou Y, Shi J, Yuan G, Zhang L, Jiang Y, Xue W, Du Y, Hu Y. Transient Receptor Potential channels: A Global Bibliometric analysis From 2012 to 2021. Channels (Austin) 2021; 15:624-634. [PMID: 34779356 PMCID: PMC8667877 DOI: 10.1080/19336950.2021.1983100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xueping Zhu
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine for Pulmonary Diseases,China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhou
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Zhang
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Jiang
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Clinical Graduate Department, Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Balducci V, Faris P, Balbi C, Costa A, Negri S, Rosti V, Bollini S, Moccia F. The human amniotic fluid stem cell secretome triggers intracellular Ca 2+ oscillations, NF-κB nuclear translocation and tube formation in human endothelial colony-forming cells. J Cell Mol Med 2021; 25:8074-8086. [PMID: 34288391 PMCID: PMC8358861 DOI: 10.1111/jcmm.16739] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Second trimester foetal human amniotic fluid‐derived stem cells (hAFS) have been shown to possess remarkable cardioprotective paracrine potential in different preclinical models of myocardial injury and drug‐induced cardiotoxicity. The hAFS secretome, namely the total soluble factors released by cells in their conditioned medium (hAFS‐CM), can also strongly sustain in vivo angiogenesis in a murine model of acute myocardial infarction (MI) and stimulates human endothelial colony‐forming cells (ECFCs), the only truly recognized endothelial progenitor, to form capillary‐like structures in vitro. Preliminary work demonstrated that the hypoxic hAFS secretome (hAFS‐CMHypo) triggers intracellular Ca2+ oscillations in human ECFCs, but the underlying mechanisms and the downstream Ca2+‐dependent effectors remain elusive. Herein, we found that the secretome obtained by hAFS undergoing hypoxic preconditioning induced intracellular Ca2+ oscillations by promoting extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 4 (TRPV4). TRPV4‐mediated Ca2+ entry, in turn, promoted the concerted interplay between inositol‐1,4,5‐trisphosphate‐ and nicotinic acid adenine dinucleotide phosphate‐induced endogenous Ca2+ release and store‐operated Ca2+ entry (SOCE). hAFS‐CMHypo‐induced intracellular Ca2+ oscillations resulted in the nuclear translocation of the Ca2+‐sensitive transcription factor p65 NF‐κB. Finally, inhibition of either intracellular Ca2+ oscillations or NF‐κB activity prevented hAFS‐CMHypo‐induced ECFC tube formation. These data shed novel light on the molecular mechanisms whereby hAFS‐CMHypo induces angiogenesis, thus providing useful insights for future therapeutic strategies against ischaemic‐related myocardial injury.
Collapse
Affiliation(s)
- Valentina Balducci
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Carolina Balbi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Ambra Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
8
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Şanlı C, Atılgan R, Kuloğlu T, Pala Ş, Aydın Türk B, Keser HB, İlhan N. Transient receptor potential melastatin 2 ion channel activity in ovarian hyperstimulation syndrome physiopathology. Turk J Med Sci 2021; 51:787-795. [PMID: 33237659 PMCID: PMC8203159 DOI: 10.3906/sag-2005-297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background/aim Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with increased vascular endothelial growth factor (VEGF) and vascular permeability in the ovarian tissue. Transient receptor potential melastatin 2 (TRPM2) is known to be associated with angiogenesis and vascular permeability. In this experimental study, we aimed to investigate the activity of TRPM2 in the development of OHSS. Materials and methods Fourteen immature female rats were divided into two groups. Group 1 was the control group, and Group 2 was the OHSS group that was exposed to 10 IU of subcutaneous application of FSH for four days and 30 IU of human chorionic gonadotropin (hCG) on the 5th day. At the end of the experiment, the ovaries were removed. The right ovarian tissues were stored in 10% formol for histopathological and immunohistochemical examination. The left ovarian tissues were stored at –80 °C for biochemical examinations. VEGF, tumor necrosis factor-alpha (TNF‐α) and malondialdehyde (MDA) levels were measured in the ovarian tissue. Congestion, edema, apoptosis and TRPM2 immunoreactivity were evaluated. Results There was a significant increase in ovarian weight in the OHSS group compared to the control group. There was a significant increase in congestion, edema, apoptosis and TRPM2 immunoreactivity in the OHSS group. A significant increase in tissue levels of VEGF, TNF‐α and MDA was also found in the OHSS group compared to the control group. Conclusion As a result of our experiment, it was found that increased TRPM2 immunoreactivity on hyperstimulated rat ovary may be the reason or result of edema and congestion. Further studies are needed to discuss our results.
Collapse
Affiliation(s)
- Cengiz Şanlı
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Remzi Atılgan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Şehmus Pala
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Bilge Aydın Türk
- Department of Pathology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Hasan Burak Keser
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Nevin İlhan
- Department of Biochemistry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
10
|
Abstract
Maintaining a precise calcium (Ca2+) balance is vital for cellular survival. The most prominent pathway to shuttle Ca2+ into cells is the Ca2+ release activated Ca2+ (CRAC) channel. Orai proteins are indispensable players in this central mechanism of Ca2+ entry. This short review traces the latest articles published in the field of CRAC channel signalling with a focus on the structure of the pore-forming Orai proteins, the propagation of the binding signal from STIM1 through the channel to the central pore and their role in human health and disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Sascha Berlansky
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Irene Frischauf
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| |
Collapse
|
11
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
12
|
Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci 2020; 21:ijms21196996. [PMID: 32977499 PMCID: PMC7583016 DOI: 10.3390/ijms21196996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis is a complex and intricate process that aims to replenish blood components in a constant fashion. It is orchestrated mostly by hematopoietic progenitor cells (hematopoietic stem cells (HSCs)) that are capable of self-renewal and differentiation. These cells can originate other cell subtypes that are responsible for maintaining vital functions, mediate innate and adaptive immune responses, provide tissues with oxygen, and control coagulation. Hematopoiesis in adults takes place in the bone marrow, which is endowed with an extensive vasculature conferring an intense flow of cells. A myriad of cell subtypes can be found in the bone marrow at different levels of activation, being also under constant action of an extensive amount of diverse chemical mediators and enzymatic systems. Bone marrow platelets, mature erythrocytes and leukocytes are delivered into the bloodstream readily available to meet body demands. Leukocytes circulate and reach different tissues, returning or not returning to the bloodstream. Senescent leukocytes, specially granulocytes, return to the bone marrow to be phagocytized by macrophages, restarting granulopoiesis. The constant high production and delivery of cells into the bloodstream, alongside the fact that blood cells can also circulate between tissues, makes the hematopoietic system a prime target for toxic agents to act upon, making the understanding of the bone marrow microenvironment vital for both toxicological sciences and risk assessment. Environmental and occupational pollutants, therapeutic molecules, drugs of abuse, and even nutritional status can directly affect progenitor cells at their differentiation and maturation stages, altering behavior and function of blood compounds and resulting in impaired immune responses, anemias, leukemias, and blood coagulation disturbances. This review aims to describe the most recently investigated molecular and cellular toxicity mechanisms of current major environmental pollutants on hematopoiesis in the bone marrow.
Collapse
|
13
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
14
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
15
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
16
|
Negri S, Faris P, Pellavio G, Botta L, Orgiu M, Forcaia G, Sancini G, Laforenza U, Moccia F. Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cell Mol Life Sci 2020; 77:2235-2253. [PMID: 31473770 PMCID: PMC11104941 DOI: 10.1007/s00018-019-03284-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
- Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
| |
Collapse
|
17
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
18
|
Watari K, Shibata T, Fujita H, Shinoda A, Murakami Y, Abe H, Kawahara A, Ito H, Akiba J, Yoshida S, Kuwano M, Ono M. NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells. Commun Biol 2020; 3:107. [PMID: 32144393 PMCID: PMC7060337 DOI: 10.1038/s42003-020-0829-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Many diseases, including cancer, have been associated with impaired regulation of angiogenesis, of which vascular endothelial growth factor (VEGF)-A is a key regulator. Here, we test the contribution of N-myc downstream regulated gene 1 (NDRG1) to VEGF-A-induced angiogenesis in vascular endothelial cells (ECs). Ndrg1−/− mice exhibit impaired VEGF-A-induced angiogenesis in corneas. Tumor angiogenesis induced by cancer cells that express high levels of VEGF-A was also reduced in a mouse dorsal air sac assay. Furthermore, NDRG1 deficiency in ECs prevented angiogenic sprouting from the aorta and the activation of phospholipase Cγ1 (PLCγ1) and ERK1/2 by VEGF-A without affecting the expression and function of VEGFR2. Finally, we show that NDRG1 formed a complex with PLCγ1 through its phosphorylation sites, and the inhibition of PLCγ1 dramatically suppressed VEGF-A-induced angiogenesis in the mouse cornea, suggesting an essential role of NDRG1 in VEGF-A-induced angiogenesis through PLCγ1 signaling. Kosuke Watari et al. show that N-myc downstream-regulated gene 1 (NDRG1) stimulates new blood vessel formation that is induced by VEGF-A, using Ndrg1 knockout mice. They find that PLCγ1/ERK signaling mediates this regulation, providing mechanistic insights into how vascular endothelial cells form new vessels.
Collapse
Affiliation(s)
- Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3243, Japan
| | - Ai Shinoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Hiroshi Ito
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
20
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1013-1030. [PMID: 31646543 DOI: 10.1007/978-3-030-12457-1_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.
Collapse
|
22
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
23
|
Calogero A, Sagnelli C, Carlomagno N, Tammaro V, Candida M, Vernillo A, Peluso G, Minieri G, Santangelo M, Dodaro CA. Familial Polyposis Coli: The Management of Desmoid Tumor Bleeding. Open Med (Wars) 2019; 14:572-576. [PMID: 31410368 PMCID: PMC6689203 DOI: 10.1515/med-2019-0064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background There is currently no standard treatment for desmoid tumors (DTs) associated with familial polyposis coli (FAP). Familial adenomatous polyposis in DT patients is sometimes a life-threatening condition. Methods We enrolled all consecutive patients with FAP treated at Unit of General Surgery and Transplant, University of Naples Federico II and evaluated the incidence of DTs on FAP between 1996 and 2016. Results We observed 45 consecutive patients with FAP; of these 5 were DT-FAP-associated. All 5 cases with FAP were young women, age 25 to 65 years, previously treated by colectomy. Of these, 4 patients presented a parietal localization and had been treated with a wide surgical exeresis; one patient had an intra-abdominal, mesenteric tumor that was unresectable at laparotomy. We performed CT-guided drainage, ureteral stenting, medical therapy (sulindac+tamoxifene), and chemotherapy (dacarba-zine+doxorubicine).All patients were alive and underwent follow-ups for 5 years post-surgery; only 1 patient with parietal localization showed a local relapse after 2 years. Conclusions We propose a modulated approach to the single patient with FAP, with surgery as treatment of choice for parietal localization disease and integrating different kinds of therapies (surgery alone or associated with RT, CT) for the intra-abdominal tumor.
Collapse
Affiliation(s)
- Armando Calogero
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Carlomagno
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Vincenzo Tammaro
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Maria Candida
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Antonio Vernillo
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Gaia Peluso
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Gianluca Minieri
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Michele Santangelo
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Concetta Anna Dodaro
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| |
Collapse
|
24
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Li J, Ma X, Liu C, Li H, Zhuang J, Gao C, Zhou C, Liu L, Wang K, Sun C. Exploring the Mechanism of Danshen against Myelofibrosis by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8363295. [PMID: 30622613 PMCID: PMC6304517 DOI: 10.1155/2018/8363295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Danshen (Salvia miltiorrhiza Bunge), a natural powerful drug for various conditions treatment, has traditionally been used in Asian countries for centuries as anticancer agent, anti-inflammatory agent, and antioxidant. More recently, it is explored in combination with other herbs for skeletal diseases therapy; bone-targeting compounds with pharmacological activities have been isolated from various sources of traditional Chinese medicine (TCM), including Danshen. In this case, some evidence supports that Danshen may treat myelofibrosis (MF) by exerting its antitumor effect. To study the specific mechanism of Danshen in the treatment of MF, we used bioinformatics databases to determine its active ingredients. Then, identification of target proteins related to MF was made using a network pharmacology analysis platform. In our results, 20 key active compounds and 457 key targets of Danshen were identified. In-depth network analysis of the top diseases, functions, and pathways suggested that a common underlying mechanism linked Danshen involvement with MF. Finally, 5 potential targets were confirmed by the analysis; these 5 targets, as well as 20 previously identified compounds, were subjected to molecular docking experiments. The results indicated that cryptotanshinone of Danshen may affect MF by acting on the key genes in the JAK-STAT signalling pathway and the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| |
Collapse
|
26
|
Zuccolo E, Kheder DA, Lim D, Perna A, Nezza FD, Botta L, Scarpellino G, Negri S, Martinotti S, Soda T, Forcaia G, Riboni L, Ranzato E, Sancini G, Ambrosone L, D'Angelo E, Guerra G, Moccia F. Glutamate triggers intracellular Ca 2+ oscillations and nitric oxide release by inducing NAADP- and InsP 3 -dependent Ca 2+ release in mouse brain endothelial cells. J Cell Physiol 2018; 234:3538-3554. [PMID: 30451297 DOI: 10.1002/jcp.26953] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Dlzar A Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Duhok, Kurdistan-Region of Iraq
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont "Amedeo Avogadro,", Novara, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Teresa Soda
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, Milan, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", Centre of Nanomedicine, University of Molise, Campobasso, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
28
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
29
|
Zuccolo E, Di Buduo C, Lodola F, Orecchioni S, Scarpellino G, Kheder DA, Poletto V, Guerra G, Bertolini F, Balduini A, Rosti V, Moccia F. Stromal Cell-Derived Factor-1α Promotes Endothelial Colony-Forming Cell Migration Through the Ca2+-Dependent Activation of the Extracellular Signal-Regulated Kinase 1/2 and Phosphoinositide 3-Kinase/AKT Pathways. Stem Cells Dev 2018; 27:23-34. [DOI: 10.1089/scd.2017.0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Christian Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Kurdistan-Region of Iraq
| | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Francesco Bertolini
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Engelgardt P, Wojtkiewicz J. Role of Stem Cells in Pathophysiology and Therapy of Spondyloarthropathies-New Therapeutic Possibilities? Int J Mol Sci 2017; 19:ijms19010080. [PMID: 29283375 PMCID: PMC5796030 DOI: 10.3390/ijms19010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Considerable progress has been made recently in understanding the complex pathogenesis and treatment of spondyloarthropathies (SpA). Currently, along with traditional disease modifying anti-rheumatic drugs (DMARDs), TNF-α, IL-12/23 and IL-17 are available for treatment of such diseases as ankylosing spondylitis (AS) and psoriatic arthritis (PsA). Although they adequately control inflammatory symptoms, they do not affect the abnormal bone formation processes associated with SpA. However, the traditional therapeutic approach does not cover the regenerative treatment of damaged tissues. In this regards, stem cells may offer a promising, safe and effective therapeutic option. The aim of this paper is to present the role of mesenchymal stromal cells (MSC) in pathogenesis of SpA and to highlight the opportunities for using stem cells in regenerative processes and in the treatment of inflammatory changes in articular structures.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Piotr Engelgardt
- Department of Forensic Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland.
| |
Collapse
|
31
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
32
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
33
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
34
|
Di Nezza F, Zuccolo E, Poletto V, Rosti V, De Luca A, Moccia F, Guerra G, Ambrosone L. Liposomes as a Putative Tool to Investigate NAADP Signaling in Vasculogenesis. J Cell Biochem 2017; 118:3722-3729. [PMID: 28374913 DOI: 10.1002/jcb.26019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the newest discovered intracellular second messengers, which is able to release Ca2+ stored within endolysosomal (EL) vesicles. NAADP-induced Ca2+ signals mediate a growing number of cellular functions, ranging from proliferation to muscle contraction and differentiation. Recently, NAADP has recently been shown to regulate angiogenesis by promoting endothelial cell growth. It is, however, still unknown whether NAADP stimulates proliferation also in endothelial progenitor cells, which are mobilized in circulation after an ischemic insult to induce tissue revascularization. Herein, we described a novel approach to prepare NAADP-containing liposomes, which are highly cell membrane permeable and are therefore amenable for stimulating cell activity. Accordingly, NAADP-containing liposomes evoked an increase in intracellular Ca2+ concentration, which was inhibited by NED-19, a selective inhibitor of NAADP-induced Ca2+ release. Furthermore, NAADP-containing liposomes promoted EPC proliferation, a process which was inhibited by NED-19 and BAPTA, a membrane permeable intracellular Ca2+ buffer. Therefore, NAADP-containing liposomes stand out as a promising tool to promote revascularization of hypoxic/ischemic tissues by favoring EPC proliferation. J. Cell. Biochem. 118: 3722-3729, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia 86090, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Valentina Poletto
- Biotechnology Research Laboratory, Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Vittorio Rosti
- Biotechnology Research Laboratory, Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Università degli Studi della Campania "L. Vanvitelli", Naples 80138, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", Centre of Nanomedicine, University of Molise, Campobasso 86100, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", Centre of Nanomedicine, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
35
|
Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E, Poletto V, Marchini S, Beltrame L, Gallizzi G, Da Prada GA, Pedrazzoli P, Riccardi A, Porta C, Zambelli A, D'Incalci M. Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. Eur J Cancer 2017; 77:155-164. [DOI: 10.1016/j.ejca.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022]
|
36
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
37
|
Wu Y, He MY, Ye JK, Ma SY, Huang W, Wei YY, Kong H, Wang H, Zeng XN, Xie WP. Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca 2+ /Akt/eNOS pathway. J Cell Mol Med 2016; 21:609-620. [PMID: 27709781 PMCID: PMC5323860 DOI: 10.1111/jcmm.13006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Accumulating data, including those from our laboratory, have shown that the opening of ATP‐sensitive potassium channels (KATP) plays a protective role in pulmonary vascular diseases (PVD). As maintainers of the endothelial framework, endothelial colony‐forming cells (ECFCs) are considered excellent candidates for vascular regeneration in cases of PVD. Although KATP openers (KCOs) have been demonstrated to have beneficial effects on endothelial cells, the impact of KATP on ECFC function remains unclear. Herein, this study investigated whether there is a distribution of KATP in ECFCs and what role KATP play in ECFC modulation. By human ECFCs isolated from adult peripheral blood, KATP were confirmed for the first time to express in ECFCs, comprised subunits of Kir (Kir6.1, Kir6.2) and SUR2b. KCOs such as the classical agent nicorandil (Nico) and the novel agent iptakalim (Ipt) notably improved the function of ECFCs, promoting cell proliferation, migration and angiogenesis, which were abolished by a non‐selective KATP blocker glibenclamide (Gli). To determine the underlying mechanisms, we investigated the impacts of KCOs on CaMKII, Akt and endothelial nitric oxide synthase pathways. Enhanced levels were detected by western blotting, which were abrogated by Gli. This suggested an involvement of Ca2+ signalling in the regulation of ECFCs by KATP. Our findings demonstrated for the first time that there is a distribution of KATP in ECFCs and KATP play a vital role in ECFC function. The present work highlighted a novel profile of KATP as a potential target for ECFC modulation, which may hold the key to the treatment of PVD.
Collapse
Affiliation(s)
- Yan Wu
- Department of Respiratory Medicine, WuXi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Meng-Yu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Kui Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Ying Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Yue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Ning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
39
|
Perrotta F, Cerqua FS, Cammarata A, Izzo A, Bergaminelli C, Curcio C, Guarino C, Grella E, Forzano I, Cennamo A, Tafuri D, Rocca A, Bianco A, Mazzarella G. Integrated therapeutic approach to giant solitary fibrous tumor of the pleura: report of a case and review of the literature. Open Med (Wars) 2016; 11:220-225. [PMID: 28352798 PMCID: PMC5329829 DOI: 10.1515/med-2016-0042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2015] [Indexed: 11/23/2022] Open
Abstract
The fibrous tumors of the pleura are rare primary tumors, accounting for 5% of malignant pleural neoplasms, which generally originate from sub-mesothelial mesenchymal tissue of the visceral pleura. These tumours generally exhibit clinical benign behavior although 12% of solitary fibrous tumors can be malignant and have worse outcomes. These tumors are considered “giant” when the lesion > 15 cm. Surgical treatment is the best choice for both benign and malignant neoplasms. We retrospectively analyzed the main case series of giant fibrous tumors of the pleura. In addition we report our experience of a 76-year-old woman treated by pre-surgical embolization involving implantation of vascular plugs. Surgery was successfully carried out without complications; imaging and functional assessment 6 months post intervention demonstrated both the absence of recurrence and improvement of lung function parameters.
Collapse
Affiliation(s)
- Fabio Perrotta
- Department of Cardiotho-racic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Francesco Saverio Cerqua
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Antonino Cammarata
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Alessandro Izzo
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | | | - Carlo Curcio
- A.O. dei Colli - Hosp. Monaldi - Thoracic Surgery Unit, Naples, Italy
| | - Carmine Guarino
- A.O. dei Colli - Hosp. Monaldi - Bronchology Unit, Naples, Italy
| | - Edoardo Grella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Imma Forzano
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Antonio Cennamo
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Aldo Rocca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Andrea Bianco
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| |
Collapse
|
40
|
Testa D, Motta S, Marcuccio G, Paccone M, Rocca A, Ilardi G, Tafuri D, Mesolella M, Motta G. Our experience in the treatment of Malignant Fibrous Hystiocytoma of the larynx: clinical diagnosis, therapeutic approach and review of literature. Open Med (Wars) 2016; 11:208-214. [PMID: 28352796 PMCID: PMC5329827 DOI: 10.1515/med-2016-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022] Open
Abstract
Hereditary spherocytosis (HS) and Chronic myelocytic leukemia (CML) are both life threatening hemotologic diseases. They are rarely seen to occur simultaneously in one individual patient. Here we demonstrate a case of HS associated with CML in this study. The patient is a young female, diagnosed with HS in 2005, and was given partial embolization of the splenic artery. She got significant remission after the procedure. In 2008, she was found abnormal in blood routine test, after bone marrow routine, chromosome and fusion gene tests, she was diagnosed with CML (chronic phase). She did not receive regular treatment until 3 months prior, and is currently being treated with Dasatimib. She achieved hematological remission, but had no significant improvement in chromosome and fusion gene figures. Due to her severe condition of hemolysis, a splenectomy or an allogeneic hematopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
- Domenico Testa
- Department of Anesthe-siologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Sergio Motta
- University of Naples Federico II, Department of Otorhi-nolaryngology, Naples, Italy
| | - Giuseppina Marcuccio
- Department of Anesthesio-logic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Rocca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Ilardi
- University of Naples Federico II, Pathology Unit, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Massimo Mesolella
- Department of Neuroscience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples, Italy
| | - Gaetano Motta
- Department of Anesthesio-logic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| |
Collapse
|
41
|
Mesolella M, Ricciardiello F, Tafuri D, Varriale R, Testa D. Delayed recurrent nerve paralysis following post-traumatic aortic pseudoaneurysm. Open Med (Wars) 2016; 11:215-219. [PMID: 28352797 PMCID: PMC5329828 DOI: 10.1515/med-2016-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
Abstract
Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents or may be work or sports related. A wide pattern of clinical presentation can be potentially encountered. We report the uncommon case of a patient who was referred to our observation presenting with hoarseness and disphagia. Twenty days before he had sustained a car accident with trauma to the chest, neck and the mandible. Laryngoscopy showed a left recurrent laryngeal nerve palsy. Further otolaryngo-logical examination showed no other abnormality. At CT and MR imaging a post-traumatic aortic pseudoaneurysm was revealed. The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later. At 30-days follow-up laryngoscopy the left vocal cord palsy was completely resolved. Hoarseness associated with a dilated left atrium in a patient with mitral valve stenosis was initially described by Ortner more than a century ago. Since then several non malignant, cardiovascular, intrathoracic disease that results in embarrassment from recurrent laryngeal nerve palsy usually by stretching, pulling or compression; thus, the correlations of these pathologies was termed as cardiovocal syndrome or Ortner's syndrome. The reported case illustrates that life-threatening cardiovascular comorbidities can cause hoarseness and that an impaired recurrent laryngeal nerve might be correctable.
Collapse
Affiliation(s)
- Massimo Mesolella
- Department of Neuros-cience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples - Italy. Via G. Filangieri 36, 80121 Napoli, Italy
| | - Filippo Ricciardiello
- Department of Neuroscience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Roberto Varriale
- Department of Anesthesiologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Domenico Testa
- Department of Anesthesiologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| |
Collapse
|
42
|
Rocca A, Aprea G, Surfaro G, Amato M, Giuliani A, Paccone M, Salzano A, Russo A, Tafuri D, Amato B. Prevention and treatment of peritoneal adhesions in patients affected by vascular diseases following surgery: a review of the literature. Open Med (Wars) 2016; 11:106-114. [PMID: 28352777 PMCID: PMC5329808 DOI: 10.1515/med-2016-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Intra-abdominal adhesions are the most frequently occurring postoperative complication following abdomino-pelvic surgery. Abdominal and pelvic surgery can lead to peritoneal adhesion formation causing infertility, chronic pelvic pain, and intestinal obstruction. Laparoscopy today is considered the gold standard of care in the treatment of several abdominal pathologies as well as in a wide range of vascular diseases. Laparoscopy has several advantages in comparison to open surgery. These include rapid recovery times, shorter hospitalisation, reduced postoperative pain, as well as cosmetic benefits. The technological improvements in this particular surgical field along with the development of modern techniques and the acquisition of specific laparoscopic skills have allowed for its wider utilization in operations with fully intracorporeal anastomoses. Postoperative adhesions are caused by aberrant peritoneal healing and are the leading cause of postoperative bowel obstruction. The use of anti-adherence barriers is currently being advocated for their prevention. The outcome of the investigation showed adhesion formation inhibition without direct detrimental effects on anastomotic healing. Poor anasto-motic healing can provoke adhesions even in the presence of anti-adhesion barriers. This review gives a short overview on the current evidence on the pathophysiology and prevention of peritoneal adhesions.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy . Via Sergio Pansini, 80131 Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | | | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Antonio Giuliani
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation, ”A. Cardarelli” Hospital, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Andrea Salzano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Anna Russo
- Santa Maria delle Grazie Hospital, Pathology Unit, Pozzuoli, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| |
Collapse
|
43
|
Lim D, Bertoli A, Sorgato M, Moccia F. Generation and usage of aequorin lentiviral vectors for Ca2+ measurement in sub-cellular compartments of hard-to-transfect cells. Cell Calcium 2016; 59:228-39. [DOI: 10.1016/j.ceca.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
|
44
|
Poletto V, Dragoni S, Lim D, Biggiogera M, Aronica A, Cinelli M, De Luca A, Rosti V, Porta C, Guerra G, Moccia F. Endoplasmic Reticulum Ca2+Handling and Apoptotic Resistance in Tumor-Derived Endothelial Colony Forming Cells. J Cell Biochem 2016; 117:2260-71. [DOI: 10.1002/jcb.25524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory; Fondazione IRCCS Policlinico San Matteo; Pavia 27100 Italy
| | - Silvia Dragoni
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”; University of Pavia; Pavia 27100 Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale “Amedeo Avogadro”; Novara 28100 Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “L. Spallanzani”; University of Pavia; Pavia 27100 Italy
| | - Adele Aronica
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory; Fondazione IRCCS Policlinico San Matteo; Pavia 27100 Italy
| | - Mariapia Cinelli
- Department of Public Health; University of Naples “Federico II”; Naples 80131 Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Second University of Naples; Largo Madonna delle Grazie 1; Naples 80138 Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory; Fondazione IRCCS Policlinico San Matteo; Pavia 27100 Italy
| | - Camillo Porta
- Medical Oncology; Fondazione IRCCS Policlinico San Matteo; Pavia 27100 Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”; University of Molise; Campobasso 86100 Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”; University of Pavia; Pavia 27100 Italy
| |
Collapse
|
45
|
Zuccolo E, Bottino C, Diofano F, Poletto V, Codazzi AC, Mannarino S, Campanelli R, Fois G, Marseglia GL, Guerra G, Montagna D, Laforenza U, Rosti V, Massa M, Moccia F. Constitutive Store-Operated Ca2+ Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells. Stem Cells Dev 2016; 25:301-19. [DOI: 10.1089/scd.2015.0240] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Federica Diofano
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Valentina Poletto
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Savina Mannarino
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rita Campanelli
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriella Fois
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Vittorio Rosti
- Research Laboratory of Biotechnology, Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Giuliani A, Amato B, Marsilia GM, Tafuri D, Ceriello A, Santaniello W, Sodano L, Rocca A. Our experience of liver Epithelioid Hemangioendothelioma: from a misdiagnosis to liver transplantation with long term follow-up. Open Med (Wars) 2015; 10:508-512. [PMID: 28352745 PMCID: PMC5368874 DOI: 10.1515/med-2015-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Malignant Hepatic Epithelioid hemangioendothelioma (HEHE) is an uncommon vascular tumor of intermediate malignant potential. HEHE is a rare tumor and it is difficult to diagnose for surgeons, hepatologists, radiologists and pathologists. So, misdiagnosis with a delay of the treatment is not uncommon. We describe a case of a young woman with a diagnosis of HEHE made 6 years after the first evidence of liver mass with a very long term follow-up after surgical treatment. She had two diagnoses of Hepatocellurar carcinoma (HCC) and a diagnosis of Cholangiocarcinoma after three different fine needle biopsies. After clinical observation, a new laparoscopic core biopsy was performed. In a first time approach, considering clinical and radiological patterns, a diagnosis of Budd-Chiari Syndrome was finally made. For that the patient underwent an orthotopicliver transplantation (OLTx). The surgical sample histological analysis allowed a definitive diagnosis of HEHE. At last, at follow up 7 years after three OLTx the patient is still alive and in good health with no evidence of recurrence.
Collapse
Affiliation(s)
- Antonio Giuliani
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation,"A. Cardarelli" Hospital, Naples, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | | | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonio Ceriello
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation,"A. Cardarelli" Hospital, Naples, Italy
| | - Walter Santaniello
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation,"A. Cardarelli" Hospital, Naples, Italy
| | - Loredana Sodano
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation,"A. Cardarelli" Hospital, Naples, Italy
| | - Aldo Rocca
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation, "A. Cardarelli" Hospital, Naples, Italy , Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| |
Collapse
|
47
|
Masiello R, Iadevaia C, Grella E, Tranfa C, Cerqua F, Rossi G, Santoro G, Amato B, Rocca A, De Dona R, Lavoretano S, Perrotta F. A case of Multiple Unilateral Pulmonary arteriovenous Malformation Relapse: Efficacy of embolization treatment. Open Med (Wars) 2015; 10:513-518. [PMID: 28352746 PMCID: PMC5368875 DOI: 10.1515/med-2015-0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arteriovenous Malformations (PAVMs) are a rare vascular alteration characterized by abnormal communications between the pulmonary arteries and veins resulting in an extracardiac right-to-left (R-L) shunt. The majority of PAVMs are associated with an autosomal dominant vascular disorder also known as Osler-Weber-Rendu Syndrome. PAVMs appearance can be both single and multiple. Clinical manifestations include hypoxemia, dyspnea cyanosis, hemoptysis and cerebrovascular ischemic events or abscesses. We report a case of an 18 year old female with severe respiratory failure caused by a relapse of multiple unilateral pulmonary arterovenous fistula. Symptoms at admission include dyspnea, cyanosis and clubbing. The patient underwent pulmonary angio-TC scan, brain CT and echocardiography. The thoracic angio-CT scan showed the presence of PAVMs of RUL and RLL; a marked increase of right bronchial artery caliber and its branches with an aneurismatic dilatation was also observed. The patient underwent percutaneous transcatheter embolization using Amplatzer Vascular Plug IV; a relevant clinical and functional improvement was subsequently recorded. Embolization is effective in the treatment of relapsing PAVMS.
Collapse
Affiliation(s)
- Rossella Masiello
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Carlo Iadevaia
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Edoardo Grella
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Carmelindo Tranfa
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Francesco Cerqua
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Giovanni Rossi
- U.O.C. Radiology A.O.R.N dei Colli - Monaldi Hospital, Naples, Italy
| | - Giuseppe Santoro
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Aldo Rocca
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Roberta De Dona
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sabrina Lavoretano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Fabio Perrotta
- Department of Cardio-Thoracic and Respiratory Sciences - Second University of Naples - Monaldi Hospital, Naples, Italy
| |
Collapse
|
48
|
Salzano A, Rocca A, Arcopinto M, Amato B, Marra AM, Simonelli V, Mozzillo P, Giuliani A, Tafuri D, Cinelli M. Bowel Angiodysplasia and Myocardial Infarction secondary to an ischaemic imbalance: a case report. Open Med (Wars) 2015; 10:543-548. [PMID: 28352752 PMCID: PMC5368879 DOI: 10.1515/med-2015-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022] Open
Abstract
Angiodysplasia, defined as a vascular ectasia or arteriovenous malformation, is the most frequent cause of occult bleeding in patients older than 60 years and a significant association with several cardiac condition is described. Patients with anemia and negative findings on upper endoscopy and colonoscopy should be referred for further investigation of the small bowel. The investigation of choice, when available, is wireless capsule endoscopy. Several therapeutic options are available in this cases, as we reviewed in this report. We report a case of 78-year old man admitted to our Intensive Coronary Unit for dyspnea and chest pain. A diagnosis of non-ST-segment elevation acute coronary syndrome was made and a concomintant, significant anemia was found (hemoglobin 8.2 g/dl). No cororary disease was found by an angiography though the past medical history revealed systemic hypertension, chronic kidney disease (KDOQY stage III), and diabetes mellitus type II on insuline therapy. A Wireless Video capsule examination was positive for jejunum angiodysplasia and an argon plasma coagulation was chosen as terapeutic option. No subsequent supportive therapy and interventions were required in subsequent one year of follow-up.
Collapse
Affiliation(s)
- Andrea Salzano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Aldo Rocca
- Department of Clinical Medicine and Surgery, University of Naples "Federico II" Naples, Italy, Via Sergio Pansini, 80131 Naples, Italy
| | - Michele Arcopinto
- Department of Cardiac Surgery, IRCCS Policlinico San Donato Milanese, Milan, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Alberto Maria Marra
- Pulmonary Hypertension Center, Thoraxclinic at the University of Heidelberg, Heidelberg, Germany
| | | | - Pasquale Mozzillo
- Centre Hospitalier intercommunal de Poissy, Saint-Germain-en-Laye, France
| | - Antonio Giuliani
- Unit of Hepatobiliary Surgery and Liver Transplant Center, Department of Gastroenterology and Transplantation, "A. Cardarelli" Hospital, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Mariapia Cinelli
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| |
Collapse
|