1
|
Gleason N, Kowluru A. Hyperglycemic Stress Induces Expression, Degradation, and Nuclear Association of Rho GDP Dissociation Inhibitor 2 (RhoGDIβ) in Pancreatic β-Cells. Cells 2024; 13:272. [PMID: 38334664 PMCID: PMC10854874 DOI: 10.3390/cells13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Small G proteins (e.g., Rac1) play critical regulatory roles in islet β-cell function in health (physiological insulin secretion) and in metabolic stress (cell dysfunction and demise). Multiple regulatory factors for these G proteins, such as GDP dissociation inhibitors (GDIs), have been implicated in the functional regulation of these G proteins. The current set of investigations is aimed at understanding impact of chronic hyperglycemic stress on the expression and subcellular distribution of three known isoforms of RhoGDIs (RhoGDIα, RhoGDIβ, and RhoGDIγ) in insulin-secreting β-cells. The data accrued in these studies revealed that the expression of RhoGDIβ, but not RhoGDIα or RhoGDIγ, is increased in INS-1 832/13 cells, rat islets, and human islets. Hyperglycemic stress also promoted the cleavage of RhoGDIβ, leading to its translocation to the nuclear compartment. We also report that RhoGDIα, but not RhoGDIγ, is associated with the nuclear compartment. However, unlike RhoGDIβ, hyperglycemic conditions exerted no effects on RhoGDIα's association with nuclear fraction. Based on these observations, and our earlier findings of the translocation of Rac1 to the nuclear compartment under the duress of metabolic stress, we conclude that the RhoGDIβ-Rac1 signaling module promotes signals from the cytosolic to the nucleus, culminating in accelerated β-cell dysfunction under metabolic stress.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Doi N, Togari H, Minagi K, Iwaoka Y, Tai A, Nakaoji K, Hamada K, Tatsuka M. 2-O-Octadecylascorbic acid represses RhoGDIβ expression and ameliorates DNA damage-induced abnormal spindle orientations. J Cell Biochem 2021; 122:739-751. [PMID: 33586155 DOI: 10.1002/jcb.29908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
The appropriate regulation of spindle orientation maintains proper tissue homeostasis and avoids aberrant tissue repair or regeneration. Spindle misorientation due to imbalance or improper functioning leads to a loss of tissue integrity and aberrant growth, such as tissue loss or overgrowth. Pharmacological manipulation to prevent spindle misorientation will enable a better understanding of how spindle orientation is involved in physiological and pathological conditions and will provide therapeutic possibilities to treat patients associated with abnormal tissue function caused by spindle misorientation. N-terminal-deleted Rho guanine nucleotide dissociation inhibitor β (RhoGDIβ/RhoGDI2/LyGDI) produced by caspase-3 activation perturbs spindle orientation in surviving cells following exposure to either ionizing radiation or UVC. Thus, presumably, RhoGDIβ cleaved by caspase-3 activation acts as a determinant of radiation-induced spindle misorientation that promote aberrant tissue repair due to deregulation of directional organization of cell population and therefore becomes a potential target of drugs to prevent such response. The objective of this study was to screen and identify chemicals that suppress RhoGDIβ expression. We focused our attention on ascorbic acid (AA) derivatives because of their impact on the maintenance of skin tissue homeostasis. Here, we screened for AA derivatives that suppress RhoGDIβ expression in HeLa cells and identified a lipophilic derivative, 2-O-octadecylascorbic acid (2-OctadecylAA), as a novel RhoGDIβ inhibitor that ameliorated ionizing radiation-induced abnormal spindle orientations. Among all examined AA derivatives, which were also antioxidative, the inhibition activity was specific to 2-OctadecylAA. Therefore, this activity was not due to simple antioxidant properties. 2-OctadecylAA was previously shown to prevent hepatocellular carcinoma development. Our findings suggest that the anticarcinogenic effects of 2-OctadecylAA are partly due to RhoGDIβ inhibition mechanisms by which spindle orientation perturbations are attenuated. Thus, the molecular targeting features of RhoGDIβ warrant its further development for the treatment or control of spindle orientation abnormalities that affect epithelial homeostasis.
Collapse
Affiliation(s)
- Natsumi Doi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Hiro Togari
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Kenji Minagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yuji Iwaoka
- Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Akihiro Tai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Koichi Nakaoji
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Kazuhiko Hamada
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Xie F, Shao S, Zhang B, Deng S, Ur Rehman Aziz A, Liao X, Liu B. Differential phosphorylation regulates the shear stress-induced polar activity of Rho-specific guanine nucleotide dissociation inhibitor α. J Cell Physiol 2020; 235:6978-6989. [PMID: 32003021 DOI: 10.1002/jcp.29594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
The activity of Rho-specific guanine nucleotide dissociation inhibitor α (RhoGDIα) is regulated by its own phosphorylation at different amino acid sites. These phosphorylation sites may have a crucial role in local Rho GTPases activation during cell migration. This paper is designed to explore the influence of phosphorylation on shear stress-induced spatial RhoGDIα activation. Based on the fluorescence resonance energy transfer biosensor sl-RhoGDIα, which was constructed to test the RhoGDIα activity in living cells, new RhoGDIα phosphomimetic mutation (sl-S101E/S174E, sl-Y156E, sl-S101E, sl-S174E) and phosphorylation-deficient mutation (sl-S101A/S174A, sl-Y156A, sl-S101A, sl-S174A) biosensors were designed to test their effects on RhoGDIα activation upon shear stress application in human umbilical vein endothelial cells (HUVECs). The results showed lower RhoGDIα activity at the downstream of HUVECs (the region from the edge of the nucleus to the edge of the cell along with the flow). The overall decrease in RhoGDIα activity was inhibited by Y156A-mutant, whereas the polarized RhoGDIα and Rac1 activity were blocked by S101A/S174A mutant. It is concluded that the Tyr156 phosphorylation mainly mediates shear stress-induced overall RhoGDIα activity, while Ser101/Ser174 phosphorylation mediates its polarization. This study demonstrates that differential phosphorylation of RhoGDIα regulates shear stress-induced spatial RhoGDIα activation, which could be a potential target to control cell migration.
Collapse
Affiliation(s)
- Fei Xie
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Shao
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Baohong Zhang
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Sha Deng
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Aziz Ur Rehman Aziz
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Liu
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
4
|
Doi N, Kunimatsu Y, Fujiura K, Togari H, Minagi K, Nakaoji K, Hamada K, Temme A, Tatsuka M. RhoGDIβ affects HeLa cell spindle orientation following UVC irradiation. J Cell Physiol 2019; 234:15134-15146. [PMID: 30652309 DOI: 10.1002/jcp.28154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
The molecular signals that regulate mitotic spindle orientation to determine the proper division axis play a critical role in the development and maintenance of tissue homeostasis. However, deregulation of signaling events can result in spindle misorientation, which in turn can trigger developmental defects and cancer progression. Little is known about the cellular signaling pathway involved in the misorientation of proliferating cells that evade apoptosis after DNA damage. In this study, we found that perturbations to spindle orientation were induced in ultraviolet C (UVC)-irradiated surviving cells. N-terminal truncated Rho GDP-dissociation inhibitor β (RhoGDIβ), which is produced by UVC irradiation, distorted the spindle orientation of HeLa cells cultured on Matrigel. The short hairpin RNA-mediated knockdown of RhoGDIβ significantly attenuated UVC-induced misorientation. Subsequent expression of wild-type RhoGDIβ, but not a noncleavable mutant, RhoGDIβ (D19A), again led to a relative increase in spindle misorientation in response to UVC. Our findings revealed that RhoGDIβ impacts spindle orientation in response to DNA damage.
Collapse
Affiliation(s)
- Natsumi Doi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Yuuki Kunimatsu
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kouhei Fujiura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Hiro Togari
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kenji Minagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Koichi Nakaoji
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Kazuhiko Hamada
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| |
Collapse
|