1
|
Tang T, Chen H, Hu L, Ye J, Jing C, Xu C, Wu X, Chen Y, Chen Z, Zhou H, Fan L, Fu X, Qian C, Chen J, Tan Z, Liu J, Zeng H, Chen G, Liu F. TIMP1 protects against blood-brain barrier disruption after subarachnoid haemorrhage by inhibiting ubiquitination of astrocytic β1-integrin. Stroke Vasc Neurol 2024; 9:671-684. [PMID: 38485231 DOI: 10.1136/svn-2023-002956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Astrocytes regulate blood-brain barrier (BBB) integrity, whereas subarachnoid haemorrhage (SAH) results in astrocyte dysregulation and BBB disruption. Here, we explored the involvement of tissue inhibitor of matrix metalloprotease-1 (TIMP1) in astrocyte-mediated BBB protection during SAH, along with its underlying mechanisms. METHODS C57BL/6J mice were used to establish a model of SAH. The effects of TIMP1 on SAH outcomes were analysed by intraperitoneal injection of recombinant mouse TIMP1 protein (rm-TIMP1; 250 µg/kg). The roles of TIMP1 and its effector β1-integrin on astrocytes were observed by in vivo transduction with astrocyte-targeted adeno-associated virus carrying TIMP1 overexpression plasmid or β1-integrin RNAi. The molecular mechanisms underlying TIMP1 and β1-integrin interactions were explored in primary cultured astrocytes stimulated with red blood cells (RBCs). RESULTS TIMP1 was upregulated after SAH. Administration of rm-TIMP1 mitigated SAH-induced early brain injury (EBI) in male and female mice. TIMP1 was primarily expressed in astrocytes; its overexpression in astrocytes led to increased β1-integrin expression in astrocytes, along with the preservation of astrocytic endfoot attachment to the endothelium and subsequent recovery of endothelial tight junctions. All of these effects were reversed by the knockdown of β1-integrin in astrocytes. Molecular analysis showed that TIMP1 overexpression decreased the RBC-induced ubiquitination of β1-integrin; this effect was partially achieved by inhibiting the interaction between β1-integrin and the E3 ubiquitin ligase Trim21. CONCLUSION TIMP1 inhibits the interaction between β1-integrin and Trim21 in astrocytes, thereby rescuing the ubiquitination of astrocytic β1-integrin. It subsequently restores interactions between astrocytic endfeet and the endothelium, as well as BBB integrity, eventually mitigating SAH-induced EBI.
Collapse
Affiliation(s)
- Tianchi Tang
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Huaijun Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Libin Hu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jingya Ye
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaohui Jing
- Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Chaoran Xu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xinyan Wu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yike Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zihang Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hang Zhou
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Linfeng Fan
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiongjie Fu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Cong Qian
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jingsen Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Zhongju Tan
- Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Liu
- Department of Nursing, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hanhai Zeng
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Gao Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Fuyi Liu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| |
Collapse
|
2
|
Deng H, Liu S, Li D, Wang W, Ye L, Xu S, Wang X, Li Y. Investigating the pharmacological mechanism of Zhengyuan jiaonang for treating colorectal cancer via network pharmacology analysis and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117607. [PMID: 38110132 DOI: 10.1016/j.jep.2023.117607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/17/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhengyuan jiaonang (ZYJN) is a traditional Chinese patent medicine (CPM) used in China for adjuvant cancer therapy, which has been proved to have anti-fatigue effects. AIM OF STUDY The study aims to investigate the antitumor effects of ZYJN and its underlying mechanisms using subcutaneous transplant CT26 model. MATERIALS AND METHODS Fingerprint analysis of ZYJN was performed using high performance liquid chromatography. The potential targets of ZYJN were predicted using bioinformatic analysis, which were further validated by Western Blot assay. Subcutaneous transplant CT26 model was used to evaluate the antitumor effects of ZYJN. The effects of ZYJN on the tumor immune microenvironment were investigated by flow cytometry. Transparent imaging was used to investigate the effects of ZYJN on fibrosis and angiogenesis. RESULTS ZYJN could inhibit colorectal cancer growth when administered alone or in combination with 5-FU. The combination of ZYJN and 5-FU could significantly increase the serum level of albumin (ALB) and decrease the serum level of aspartate aminotransferase (AST). In addition, the combination of ZYJN at 0.75 g/kg and 5-FU significantly decreased the serum level of vascular endothelial growth factors (VEGF) and inhibited the angiogenesis of CT26 cancer. The combination of ZYJN at 1.50 g/kg and 5-FU could promote the fibrosis process of CT26 cancer. Additionally, combination of ZYJN and 5-FU could significantly increase the percentage of tumor-infiltrating T cells and CD4+ T cells in the late stage of CT26 model, while ZYJN at 1.50 g/kg increased the percentage of NK cells as well as CD8+ T cells in the early stage of CT26 model. Western Blot analysis revealed that administration of ZYJN at 0.75 g/kg reduced the expression of PI3K-p110α, CDK1, CCNB1 and MMP-9, and inhibited the phosphorylation of Akt (Thr308). CONCLUSIONS ZYJN could inhibit the tumor growth of CT26 colorectal cancer by promoting tumor fibrosis, suppressing angiogenesis, migration, and invasion and modulating the tumor immune microenvironment. ZYJN enhanced the efficacy and reduced the toxicity of chemotherapy drugs in combination therapy. Our findings provide evidence for the clinical application of ZYJN in cancer treatment.
Collapse
Affiliation(s)
- Haidong Deng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Siqi Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Didi Li
- Thousand Dimensions (Beijing) Science and Technology Co., Ltd, Beijing, 102699, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ling Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Peña-Flores JA, Muela-Campos D, Guzmán-Medrano R, Enríquez-Espinoza D, González-Alvarado K. Functional Relevance of Extracellular Vesicle-Derived Long Non-Coding and Circular RNAs in Cancer Angiogenesis. Noncoding RNA 2024; 10:12. [PMID: 38392967 PMCID: PMC10891584 DOI: 10.3390/ncrna10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer lipid membrane that function as important intercellular communication by transporting active biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many biological processes, including a plethora of diseases including cancer. Growing evidence shows an active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Doctoral Program in Biomedical and Stomatological Sciences, Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico; (D.M.-C.); (R.G.-M.); (D.E.-E.); (K.G.-A.)
| | | | | | | | | |
Collapse
|
4
|
Chernikov IV, Staroseletz YY, Tatarnikova IS, Sen’kova AV, Savin IA, Markov AV, Logashenko EB, Chernolovskaya EL, Zenkova MA, Vlassov VV. siRNA-Mediated Timp1 Silencing Inhibited the Inflammatory Phenotype during Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24021641. [PMID: 36675165 PMCID: PMC9865963 DOI: 10.3390/ijms24021641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.
Collapse
|
5
|
Ribieras AJ, Ortiz YY, Li Y, Huerta CT, Le N, Shao H, Vazquez-Padron RI, Liu ZJ, Velazquez OC. E-Selectin/AAV2/2 Gene Therapy Alters Angiogenesis and Inflammatory Gene Profiles in Mouse Gangrene Model. Front Cardiovasc Med 2022; 9:929466. [PMID: 35783833 PMCID: PMC9243393 DOI: 10.3389/fcvm.2022.929466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
For patients with chronic limb-threatening ischemia and limited revascularization options, alternate means for therapeutic angiogenesis and limb salvage are needed. E-selectin is a cell adhesion molecule that is critical for inflammation and neovascularization in areas of wound healing and ischemia. Here, we tested the efficacy of modifying ischemic limb tissue by intramuscular administration of E-selectin/AAV2/2 (adeno-associated virus serotype 2/2) to modulate angiogenic and inflammatory responses in a murine hindlimb gangrene model. Limb appearance, reperfusion, and functional recovery were assessed for 3 weeks after induction of ischemia. Mice receiving E-selectin/AAV2/2 gene therapy had reduced gangrene severity, increased limb and footpad perfusion, enhanced recruitment of endothelial progenitor cells, and improved performance on treadmill testing compared to control group. Histologically, E-selectin/AAV2/2 gene therapy was associated with increased vascularity and preserved myofiber integrity. E-selectin/AAV2/2 gene therapy also upregulated a panel of pro-angiogenic genes yet downregulated another group of genes associated with the inflammatory response. This novel gene therapy did not induce adverse effects on coagulability, or hematologic, hepatic, and renal function. Our findings highlight the potential of E-selectin/AAV2/2 gene therapy for improving limb perfusion and function in patients with chronic limb-threatening ischemia.
Collapse
Affiliation(s)
- Antoine J. Ribieras
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yan Li
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carlos T. Huerta
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nga Le
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Zhao-Jun Liu
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Omaida C. Velazquez
| |
Collapse
|
6
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Tang J, Kang Y, Huang L, Wu L, Peng Y. TIMP1 preserves the blood-brain barrier through interacting with CD63/integrin β 1 complex and regulating downstream FAK/RhoA signaling. Acta Pharm Sin B 2020; 10:987-1003. [PMID: 32642407 PMCID: PMC7332810 DOI: 10.1016/j.apsb.2020.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and the associated microvascular hyperpermeability are hallmark features of several neurological disorders, including traumatic brain injury (TBI). However, there is no viable therapeutic strategy to rescue BBB function. Tissue inhibitor of metalloproteinase-1 (TIMP1) has been considered to be beneficial for vascular integrity, but the molecular mechanisms underlying the functions of TIMP1 remain elusive. Here, we report that TIMP1 executes a protective role on neuroprotective function via ameliorating BBB disruption in mice with experimental TBI. In human brain microvessel endothelial cells (HBMECs) exposed to hypoxia and inflammation injury, the recombinant TIMP1 (rTIMP1) treatment maintained integrity of junctional proteins and trans-endothelial tightness. Mechanistically, TIMP1 interacts with CD63/integrin β1 complex and activates downstream FAK signaling, leading to attenuation of RhoA activation and F-actin depolymerization for endothelial cells structure stabilization. Notably, these effects depend on CD63/integrin β1 complex, instead of the MMP-inhibitory function. Together, our results identified a novel MMP-independent function of TIMP1 in regulating endothelial barrier integrity. Therapeutic interventions targeting TIMP1 and its downstream signaling may be beneficial to protect BBB function following brain injury and neurological disorders.
Collapse
Affiliation(s)
- Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Longjian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Nwadozi E, Rudnicki M, De Ciantis M, Milkovich S, Pulbere A, Roudier E, Birot O, Gustafsson T, Ellis CG, Haas TL. High-fat diet pre-conditioning improves microvascular remodelling during regeneration of ischaemic mouse skeletal muscle. Acta Physiol (Oxf) 2020; 229:e13449. [PMID: 32012450 DOI: 10.1111/apha.13449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
AIM Critical limb ischaemia (CLI) is characterized by inadequate angiogenesis, arteriolar remodelling and chronic myopathy, which are most severe in type 2 diabetic patients. Hypertriglyceridaemia, commonly observed in these patients, compromises macrovascular function. However, the effects of high-fat diet-induced increases in circulating lipids on microvascular remodelling are not established. Here, we investigated if high-fat diet would mimic the detrimental effect of type 2 diabetes on post-ischaemia vascular remodelling and muscle regeneration, using a mouse model of hindlimb ischaemia. METHODS Male C57Bl6/J mice were fed with normal or high-fat diets for 8 weeks prior to unilateral femoral artery ligation. Laser doppler imaging was used to assess limb perfusion recovery. Vascular recovery, inflammation, myofibre regeneration and fibrosis were assessed at 4 or 14 days post-ligation by histology and RNA analyses. Capillary-level haemodynamics were assessed by intravital microscopy of control and regenerating muscles 14 days post-ligation. RESULTS High-fat diet increased muscle succinate dehydrogenase activity and capillary-level oxygen supply. At 4 days post-ligation, no diet differences were detected in muscle damage, inflammatory infiltration or capillary activation. At 14 days post-ligation, high fat-fed mice displayed accelerated limb blood flow recovery, elevated capillary and arteriole densities as well as greater red blood cell supply rates and capillary-level oxygen supply. Regenerating muscles from high fat-fed mice displayed lower interstitial fat and collagen deposition. CONCLUSION The muscle-level adaptations to high-fat diet improved multiple aspects of muscle recovery in response to ischaemia and did not recapitulate the worse outcomes seen in diabetic CLI patients.
Collapse
Affiliation(s)
- Emmanuel Nwadozi
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Martina Rudnicki
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Matthew De Ciantis
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics University of Western Ontario London ON Canada
| | - Alexandru Pulbere
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Emilie Roudier
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Olivier Birot
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Thomas Gustafsson
- Division of Clinical Physiology Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
- Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | | | - Tara L. Haas
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| |
Collapse
|
9
|
Dvoretskiy S, Garg K, Munroe M, Pincu Y, Mahmassani ZS, Coombs C, Blackwell B, Garcia G, Waterstradt G, Lee I, Drnevich J, Rhodes JS, Boppart MD. The impact of skeletal muscle contraction on CD146 +Lin - pericytes. Am J Physiol Cell Physiol 2019; 317:C1011-C1024. [PMID: 31433691 PMCID: PMC6879875 DOI: 10.1152/ajpcell.00156.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Unaccustomed resistance exercise can initiate skeletal muscle remodeling and adaptive mechanisms that can confer protection from damage and enhanced strength with subsequent stimulation. The myofiber may provide the primary origin for adaptation, yet multiple mononuclear cell types within the surrounding connective tissue may also contribute. The purpose of this study was to evaluate the acute response of muscle-resident interstitial cells to contraction initiated by electrical stimulation (e-stim) and subsequently determine the contribution of pericytes to remodeling as a result of training. Mice were subjected to bilateral e-stim or sham treatment. Following a single session of e-stim, NG2+CD45-CD31- (NG2+Lin-) pericyte, CD146+Lin- pericyte, and PDGFRα+ fibroadipogenic progenitor cell quantity and function were evaluated via multiplex flow cytometry and targeted quantitative PCR. Relative quantity was not significantly altered 24 h postcontraction, yet unique gene signatures were observed for each cell population at 3 h postcontraction. CD146+Lin- pericytes appeared to be most responsive to contraction, and upregulation of genes related to immunomodulation and extracellular matrix remodeling was observed via RNA sequencing. Intramuscular injection of CD146+Lin- pericytes did not significantly increase myofiber size yet enhanced ECM remodeling and angiogenesis in response to repeated bouts of e-stim for 4 wk. The results from this study provide the first evidence that CD146+Lin- pericytes are responsive to skeletal muscle contraction and may contribute to the beneficial outcomes associated with exercise.
Collapse
Affiliation(s)
- Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Koyal Garg
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charlotte Coombs
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brent Blackwell
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gabriela Garcia
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Garret Waterstradt
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Isaac Lee
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, High Performance Biological Computing, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
10
|
Xu Y, Geng R, Yuan F, Sun Q, Liu B, Chen Q. Identification of differentially expressed key genes between glioblastoma and low-grade glioma by bioinformatics analysis. PeerJ 2019; 7:e6560. [PMID: 30867991 PMCID: PMC6409090 DOI: 10.7717/peerj.6560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Gliomas are a very diverse group of brain tumors that are most commonly primary tumor and difficult to cure in central nervous system. It’s necessary to distinguish low-grade tumors from high-grade tumors by understanding the molecular basis of different grades of glioma, which is an important step in defining new biomarkers and therapeutic strategies. We have chosen the gene expression profile GSE52009 from gene expression omnibus (GEO) database to detect important differential genes. GSE52009 contains 120 samples, including 60 WHO II samples and 24 WHO IV samples that were selected in our analysis. We used the GEO2R tool to pick out differently expressed genes (DEGs) between low-grade glioma and high-grade glioma, and then we used the database for annotation, visualization and integrated discovery to perform gene ontology analysis and Kyoto encyclopedia of gene and genome pathway analysis. Furthermore, we used the Cytoscape search tool for the retrieval of interacting genes with molecular complex detection plug-in applied to achieve the visualization of protein–protein interaction (PPI). We selected 15 hub genes with higher degrees of connectivity, including tissue inhibitors metalloproteinases-1 and serum amyloid A1; additionally, we used GSE53733 containing 70 glioblastoma samples to conduct Gene Set Enrichment Analysis. In conclusion, our bioinformatics analysis showed that DEGs and hub genes may be defined as new biomarkers for diagnosis and for guiding the therapeutic strategies of glioblastoma.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Brain Tumor Clinical Center of Wuhan, Wuhan, Hubei, China
| |
Collapse
|
11
|
Piryani SO, Jiao Y, Kam AYF, Liu Y, Vo-Dinh T, Chen BJ, Chao NJ, Doan PL. Endothelial Cell-Derived Extracellular Vesicles Mitigate Radiation-Induced Hematopoietic Injury. Int J Radiat Oncol Biol Phys 2019; 104:291-301. [PMID: 30763662 DOI: 10.1016/j.ijrobp.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Extracellular vesicles (EVs) are shed vesicles that bear a combination of nucleic acids and proteins. EVs are becoming recognized as a mode of cell-to-cell communication. Because hematopoietic stem cells reside in proximity to endothelial cells (ECs), we investigated whether EC-derived EVs could regulate hematopoietic stem cell regeneration after ionizing radiation. METHODS AND MATERIALS We generated EVs derived from primary murine marrow ECs. We sought to determine the response of irradiated hematopoietic stem and progenitor cells to syngeneic or allogeneic EVs in culture assays. Starting 24 hours after either sublethal or lethal irradiation, mice were treated with EVs or saline or cultured primary marrow endothelial cells to determine the hematopoietic response in vivo. RESULTS We demonstrate that EVs bear nuclear material and express EC-specific markers. Treatment with EVs promoted cell expansion and increased the number of colony-forming units compared to irradiated, hematopoietic cell cultures treated with cytokines alone. After total body irradiation, EV-treated mice displayed preserved marrow cellularity, marrow vessel integrity, and prolonged overall survival compared with controls treated with saline. Treatment of irradiated hematopoietic stem/progenitor cells (HSPCs) with EVs from different genetic strains showed results similar to treatment of HSPCs from syngeneic EVs. Mechanistically, treatment of irradiated HSPCs with EVs resulted in decreased levels of annexin V+ apoptotic cell death, which is mediated in part by tissue inhibitor of metalloproteinase-1. CONCLUSIONS Our findings show that syngeneic or allogeneic EVs could serve as cell-derived therapy to deliver physiologic doses of nucleic acids and growth factors to hematopoietic cells to accelerate hematopoietic regeneration.
Collapse
Affiliation(s)
- Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Angel Y F Kam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Biomedical Engineering Chemistry, Duke University, Durham, North Carolina
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Biomedical Engineering Chemistry, Duke University, Durham, North Carolina
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina.
| |
Collapse
|
12
|
Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins. Ann Biomed Eng 2016; 45:884-897. [PMID: 27752921 DOI: 10.1007/s10439-016-1747-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023]
Abstract
After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate. The obtained pulsatile pressures and flow rates (diastolic/systolic: 80/120 mmHg and 200/100 mL/min, respectively) showed a reliable mimicking of the complex coronary hemodynamic environment. Saphenous vein segments from patients undergoing coronary artery bypass grafting (n = 12) were subjected to stimulation in our bioreactor with coronary pulsatile pressure/flow patterns or with venous-like perfusion. After 7-day stimulation, SVs were fixed and stained for morphometric evaluation and immunofluorescence. Results were compared with untreated segments of the same veins. Morphometric and immunofluorescence analysis revealed that 7 days of pulsatile stimulation: (i) did not affect integrity of the vessel wall and lumen perimeter, (ii) significantly decreased both intima and media thickness, (iii) led to partial endothelial denudation, and (iv) induced apoptosis in the vessel wall. These data are consistent with the early vessel remodeling events involved in venous bypass adaptation to arterial flow/pressure patterns. The pulsatile system proved to be a suitable device to identify ex vivo mechanical cues leading to graft adaptation.
Collapse
|