1
|
Chaaban A, Salman Z, Karam L, Kobeissy PH, Ibrahim JN. Updates on the role of epigenetics in familial mediterranean fever (FMF). Orphanet J Rare Dis 2024; 19:90. [PMID: 38409042 PMCID: PMC10898143 DOI: 10.1186/s13023-024-03098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease caused by mutations in the MEFV (MEditerranean FeVer) gene that affects people originating from the Mediterranean Sea. The high variability in severity and clinical manifestations observed not only between ethnic groups but also between and within families is mainly related to MEFV allelic heterogeneity and to some modifying genes. In addition to the genetic factors underlying FMF, the environment plays a significant role in the development and manifestation of this disease through various epigenetic mechanisms, including DNA methylation, histone modification, and noncoding RNAs. Indeed, epigenetic events have been identified as an important pathophysiological determinant of FMF and co-factors shaping the clinical picture and outcome of the disease. Therefore, it is essential to better understand the contribution of epigenetic factors to autoinflammatory diseases, namely, FMF, to improve disease prognosis and potentially develop effective targeted therapies. In this review, we highlight the latest updates on the role of epigenetics in FMF.
Collapse
Affiliation(s)
- Ahlam Chaaban
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Zeina Salman
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
2
|
Tavukcuoglu Z, Akkaya-Ulum YZ, Yersal N, Horzum U, Akbaba TH, Karadag O, Esendagli G, Korkusuz P, Ozen S, Balci-Peynircioglu B. Characterization of serum extracellular vesicles and their differential level of miR-197-3p in familial Mediterranean fever patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:557-571. [PMID: 38041620 DOI: 10.1080/15257770.2023.2283187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES The aim of this study was to analyze the existence of miRNAs derived from serum extracellular vesicles (EVs) in familial Mediterranean fever (FMF) patients. Our group has previously shown the association of certain miRNAs with FMF. METHODS Serum samples of adult and pediatric FMF patients and their age matched controls were used in the study. Serum EVs were characterized by transmission electron microscopy (TEM) and flow cytometry. RNAs were isolated from EVs and levels of miR-197-3p and miR-20a-5p were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS EV characterization using TEM demonstrated fraction of 30-120 nm-sized particles with cup-shaped morphology. Flow cytometry results revealed the CD63 and CD81 positive populations as 53.3% in serum EVs. We showed that miR-197-3p and miR-20a-5p were "circulating miRNAs" and carried in EVs of FMF patients and controls. In FMF patients, level of miR-197-3p was significantly decreased. There was no significant alteration in the level for miR-20a-5p between patients and controls. CONCLUSION We showed the differential level of miR-197-3p in serum EVs of the FMF patients. miR-197-3p's potential as a biomarker and therapeutic target in FMF pathogenesis warrants further investigation.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nilgun Yersal
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Omer Karadag
- Department of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
3
|
Bildirici AE. Familial Mediterranean fever and microRNAs. Int J Immunogenet 2023; 50:273-280. [PMID: 37794570 DOI: 10.1111/iji.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Familial Mediterranean fever (FMF) is an inherited disorder caused by the gain of function mutations in MEFV (MEditerranean FeVer) gene loci. FMF affects more than 100,000 people worldwide and generally seen in the eastern Mediterranean region and causes the lifelong diseases which have a significant effect on the patient's life quality and health systems. The identification of low penetrant or heterozygous MEFV gene mutations in clinically diagnosed FMF patients was considered that epigenetic or environmental factors may display a role in FMF pathogenesis. Epigenetics might be defined as heritable changes that affect gene expression without any changes in the genome. MicroRNAs (miRNAs) are the main group of small noncoding RNAs, and an important element of epigenetic mechanisms and their discoveries revolutionized our knowledge about biological processes, such as malignant, infectious and autoimmune mechanisms, and contributed to the development of the epigenetic areas. In this review, the studies focusing on the roles of miRNAs in FMF pathogenesis in the last decades were examined and the importance of miRNAs as therapeutic agents which are promising for diagnosis and treatment was discussed.
Collapse
|
4
|
Zhang J, Lee PY, Aksentijevich I, Zhou Q. How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annu Rev Genet 2023; 57:245-274. [PMID: 37562411 DOI: 10.1146/annurev-genet-030123-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
5
|
Zervou MI, Goulielmos GN. Comment on: Detection of a rare variant in PSTPIP1 through three generations in a family with an initial diagnosis of FMF/MKD-overlapping phenotype. Rheumatology (Oxford) 2023; 62:e280-e281. [PMID: 36864619 DOI: 10.1093/rheumatology/kead102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Affiliation(s)
- Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
6
|
Akbaba TH, Akkaya-Ulum YZ, Batu ED, Penco F, Wittkowski H, Kant B, van Gijn ME, Foell D, Gattorno M, Ozen S, Balci-Peynircioglu B. Dysregulation of miRNA-30e-3p targeting IL-1β in an international cohort of systemic autoinflammatory disease patients. J Mol Med (Berl) 2023:10.1007/s00109-023-02327-2. [PMID: 37212859 DOI: 10.1007/s00109-023-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Autoinflammation is the standard mechanism seen in systemic autoinflammatory disease (SAID) patients. This study aimed to investigate the effect of a candidate miRNA, miR-30e-3p, which was identified in our previous study, on the autoinflammation phenotype seen in SAID patients and to analyze its expression in a larger group of European SAID patients. We examined the potential anti-inflammatory effect of miR-30e-3p, which we had defined as one of the differentially expressed miRNAs in microarray analysis involved in inflammation-related pathways. This study validated our previous microarray results of miR-30e-3p in a cohort involving European SAID patients. We performed cell culture transfection assays for miR-30e-3p. Then, in transfected cells, we analyzed expression levels of pro-inflammatory genes; IL-1β, TNF-α, TGF-β, and MEFV. We also performed functional experiments, caspase-1 activation by fluorometric assay kit, apoptosis assay by flow cytometry, and cell migration assays by wound healing and filter system to understand the possible effect of miR-30e-3p on inflammation. Following these functional assays, 3'UTR luciferase activity assay and western blotting were carried out to identify the target gene of the aforementioned miRNA. MiR-30e-3p was decreased in severe European SAID patients like the Turkish patients. The functional assays associated with inflammation suggested that miR-30e-3p has an anti-inflammatory effect. 3'UTR luciferase activity assay demonstrated that miR-30e-3p directly binds to interleukin-1-beta (IL-1β), one of the critical molecules of inflammatory pathways, and reduces both RNA and protein levels of IL-1β. miR-30e-3p, which has been associated with IL-1β, a principal component of inflammation, might be of potential diagnostic and therapeutic value for SAIDs. KEY MESSAGES: miR-30e-3p, which targets IL-1β, could have a role in the pathogenesis of SAID patients. miR-30e-3p has a role in regulating inflammatory pathways like migration, caspase-1 activation. miR-30e-3p has the potential to be used for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Federica Penco
- Unit of Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helmut Wittkowski
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Benjamin Kant
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marielle E van Gijn
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Dirk Foell
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Marco Gattorno
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Seza Ozen
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
7
|
Saad N, Duroux-Richard I, Touitou I, Jeziorski E, Apparailly F. MicroRNAs in inflammasomopathies. Immunol Lett 2023; 256-257:48-54. [PMID: 37023968 DOI: 10.1016/j.imlet.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNA sequences that negatively regulate the expression of protein-encoding genes at the post-transcriptional level. They play a role in the regulation of inflammatory responses by controlling the proliferation and activation of immune cells and their expression is disrupted in several immune-mediated inflammatory disorders. Among these, autoinflammatory diseases (AID) are a group of rare hereditary disorders caused by abnormal activation of the innate immune system and characterized by recurrent fevers. Major groups of AID are inflammasomopathies, which are associated with hereditary defects in the activation of inflammasomes, cytosolic multiprotein signaling complexes regulating IL-1 family cytokine maturation and pyroptosis. The study of the role of miRNAs in AID is only recently emerging and remains scarce in inflammasomopathies. In this review, we describe the AID and inflammasomopathies, and the current knowledge on the role of miRNAs in disease processes.
Collapse
Affiliation(s)
- Norma Saad
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
| | - Isabelle Duroux-Richard
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
| | - Isabelle Touitou
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France; Department of Molecular genetics, Medical Genetics of Rare and Autoinflammatory disease unit, Montpellier University Hospital, Montpellier, France; Centre de référence des maladies autoinflammatoires et des amyloses d'origine inflammatoire, CeRéMAIA, Montpellier University Hospital, Montpellier, France
| | - Eric Jeziorski
- Centre de référence des maladies autoinflammatoires et des amyloses d'origine inflammatoire, CeRéMAIA, Montpellier University Hospital, Montpellier, France; Department of Paediatric Emergency and Post-Emergency, Team of General Paediatrics, Infectious Diseases and Clinical Immunology, Montpellier University Hospital, Montpellier, France
| | - Florence Apparailly
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France; Clinical Department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France.
| |
Collapse
|
8
|
The Assessment of Selected miRNA Profile in Familial Mediterranean Fever. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6495700. [PMID: 34692839 PMCID: PMC8528586 DOI: 10.1155/2021/6495700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022]
Abstract
Familial Mediterranean fever (FMF) is the most prevalent autoinflammatory disease. Typical findings are recurrent fever attacks with serositis, skin rash, and synovitis. FMF is caused by mutations in the MEFV gene, encoding pyrin protein. Pyrin functions in innate immunity and triggers inflammation via inflammatory mediators' production and acts as the primary regulatory component of the inflammasome. On the other hand, various miRNAs play crucial roles in the pathogenesis of different types of cancers and immune-related and neurodegenerative diseases. However, their association with FMF is still unclear. Therefore, in this study, we assessed the roles of selected thirteen miRNAs associated with immune functions. We recruited genetically diagnosed 28 FMF patients and 28 healthy individuals. The expression profiling of the miRNAs was determined by qRT-PCR and normalized to SNORD61. Our analysis revealed that miR-34a-5p, miR-142-3p, miR-216a-5p, miR-340-5p, miR-429, and miR-582-5p were upregulated, whereas miR-107, miR-569, and miR-1304-5p were downregulated in the FMF patients. Among them, miR-107 was found to be the most remarkable in M694V homozygous mutants compared to other homozygous mutants. During clinical follow-up of the patients with M694V mutation, which is closely related to amyloidosis, evaluation of mir-107 expression might be crucial and suggestive. Our results showed that miRNAs might serve a function in the pathogenesis of FMF. Further studies may provide novel and effective diagnostic and therapeutic agents that target examined miRNAs. Targeting miRNAs in FMF seems to be promising and may yield a new generation of rational therapeutics and diagnostic or monitoring tools enabling FMF treatment.
Collapse
|
9
|
Natarelli L, Parca L, Mazza T, Weber C, Virgili F, Fratantonio D. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2. Noncoding RNA 2021; 7:14. [PMID: 33670580 PMCID: PMC7931055 DOI: 10.3390/ncrna7010014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory system is one of the most affected targets of SARS-CoV-2. Various therapies have been utilized to counter viral-induced inflammatory complications, with diverse success rates. Pending the distribution of an effective vaccine to the whole population and the achievement of "herd immunity", the discovery of novel specific therapies is to be considered a very important objective. Here, we report a computational study demonstrating the existence of target motifs in the SARS-CoV-2 genome suitable for specific binding with endogenous human micro and long non-coding RNAs (miRNAs and lncRNAs, respectively), which can, therefore, be considered a conceptual background for the development of miRNA-based drugs against COVID-19. The SARS-CoV-2 genome contains three motifs in the 5'UTR leader sequence recognized by selective nucleotides within the seed sequence of specific human miRNAs. The seed of 57 microRNAs contained a "GGG" motif that promoted leader sequence-recognition, primarily through offset-6mer sites able to promote microRNAs noncanonical binding to viral RNA. Similarly, lncRNA H19 binds to the 5'UTR of the viral genome and, more specifically, to the transcript of the viral gene Spike, which has a pivotal role in viral infection. Notably, some of the non-coding RNAs identified in our study as candidates for inhibiting SARS-CoV-2 gene expression have already been proposed against diverse viral infections, pulmonary arterial hypertension, and related diseases.
Collapse
Affiliation(s)
- Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
| | - Luca Parca
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Tommaso Mazza
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fabio Virgili
- Council for Agricultural Research and Economics, Research Center for Food and Nutrition, 00178 Rome, Italy;
| | - Deborah Fratantonio
- Biotechnology and Biopharmaceutics, Department of Biosciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| |
Collapse
|
10
|
Okuyan HM, Begen MA. miRNAs as attractive diagnostic and therapeutic targets for Familial Mediterranean Fever. Mod Rheumatol 2021; 31:949-959. [PMID: 33427536 DOI: 10.1080/14397595.2020.1868674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Familial Mediterranean Fever (FMF) is a hereditary early-onset disease that causes periodical fever attack, excessive release of IL-1β, serositis, arthritis and peritonitis. Genetic analyses conducted on FMF patients (mutated and non-mutated) have highlighted that additional contributing factors such as epigenetics and environment play a role in clinical manifestations of FMF. Recently researchers report that microRNAs (miRNAs), implicated in epigenetic mechanisms, may contribute to the pathogenesis of FMF. miRNAs, a member of the captivating noncoding RNA family, are the single-strand transcripts that work in physiological and pathophysiological processes by regulating target gene expression. Recent studies have shown that miRNAs are associated with various mechanisms involved in the pathogenesis of FMF, such as apoptosis, inflammation and autophagy. Moreover, these miRNAs molecules might have potential use in treatment, therapeutic response monitoring and the diagnosis of subtypes of the disease in the future. Motivated by these potential benefits (diagnostic and therapeutic) of miRNAs, we focus on recent advances of clinical significances and potential action mechanisms of miRNAs in FMF pathogenesis and discuss their potential use for FMF.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Mehmet A Begen
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry; Ivey Business School; University of Western Ontario, London, Canada
| |
Collapse
|
11
|
Familial Mediterranean fever-related miR-197-3p targets IL1R1 gene and modulates inflammation in monocytes and synovial fibroblasts. Sci Rep 2021; 11:685. [PMID: 33436947 PMCID: PMC7803773 DOI: 10.1038/s41598-020-80097-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Familial Mediterranean fever (FMF); is an autosomal recessively inherited autoinflammatory disease caused by the mutations in the Mediterranean Fever (MEFV) gene. Recent studies have shown that epigenetic control mechanisms, particularly non-coding RNAs, may play a role in the pathogenesis of autoinflammation. microRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression at the post-transcriptional level. The phenotypic heterogeneity of FMF disease suggests that FMF may not be a monogenic disease, suggesting that epigenetic factors may affect phenotypic presentation. Here we examined the potential anti-inflammatory effect of miR-197-3p, which is a differentially expressed miRNA in FMF patients, by using inflammation related functional assays. We monitored gene expression levels of important cytokines, as well as performed functional studies on IL-1β secretion, caspase-1 activation, apoptosis assay, and cell migration assay. These experiments were used to evaluate the different stages of inflammation following pre-miR-197 transfection. Anti-miR-197 transfections were performed to test the opposite effect. 3′UTR luciferase activity assay was used for target gene studies. Our results obtained by inflammation-related functional assays demonstrated an anti-inflammatory effect of miR-197-3p in different cell types (synovial fibroblasts, monocytes, macrophages). 3′UTR luciferase activity assay showed that miR-197-3p directly binds to the interleukin-1beta (IL-1β) receptor, type I (IL1R1) gene, which is one of the key molecules of the inflammatory pathways. This study may contribute to understand the role of miR-197-3p in autoinflammation process. Defining the critical miRNAs may guide the medical community in a more personalized medicine in autoinflammatory diseases.
Collapse
|
12
|
Akbaba TH, Sag E, Balci-Peynircioglu B, Ozen S. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases. Curr Rheumatol Rep 2020; 22:46. [DOI: 10.1007/s11926-020-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Schnappauf O, Aksentijevich I. Current and future advances in genetic testing in systemic autoinflammatory diseases. Rheumatology (Oxford) 2020; 58:vi44-vi55. [PMID: 31769854 PMCID: PMC6878845 DOI: 10.1093/rheumatology/kez294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are a group of inflammatory disorders caused by dysregulation in the innate immune system that leads to enhanced immune responses. The clinical diagnosis of SAIDs can be difficult since individually these are rare diseases with considerable phenotypic overlap. Most SAIDs have a strong genetic background, but environmental and epigenetic influences can modulate the clinical phenotype. Molecular diagnosis has become essential for confirmation of clinical diagnosis. To date there are over 30 genes and a variety of modes of inheritance that have been associated with monogenic SAIDs. Mutations in the same gene can lead to very distinct phenotypes and can have different inheritance patterns. In addition, somatic mutations have been reported in several of these conditions. New genetic testing methods and databases are being developed to facilitate the molecular diagnosis of SAIDs, which is of major importance for treatment, prognosis and genetic counselling. The aim of this review is to summarize the latest advances in genetic testing for SAIDs and discuss potential obstacles that might arise during the molecular diagnosis of SAIDs.
Collapse
Affiliation(s)
- Oskar Schnappauf
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Altered expression of apoptosis-related, circulating cell-free miRNAs in children with familial Mediterranean fever: a cross-sectional study. Rheumatol Int 2020; 41:103-111. [PMID: 32140884 DOI: 10.1007/s00296-020-04541-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Familial Mediterranean Fever (FMF) is the most common hereditary autoinflammatory disorder characterized by recurrent fever and serositis episodes. Identification of low penetrant or heterozygous MEFV mutations in clinically diagnosed FMF patients did raise a concern on whether epigenetic or environmental factors play an additional role in FMF pathogenesis. We aimed to investigate the expression profile of apoptosis-related miRNAs in FMF and their influence on clinical manifestations in the present study. METHOD 191 pediatric FMF patients and 31 healthy children included in the study. Expressions of 33 apoptosis-related, circulating cell-free miRNAs were evaluated by a quantitative polymerase chain reaction, statistically calculated within ΔΔCt values and fold changes were evaluated by Welch T test, in which p < 0.05 were considered to be significant. RESULTS Nineteen miRNAs, including let-7a-5p, let-7c, let-7 g-5p, miR-15b-5p, miR-16-5p, miR-17-5p, miR-23a-3p, miR-24-3p, miR-25-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, miR-29c-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-106b-5p, miR-146a-5p, and miR-195-5p, were found down-regulated; miR-15a-5p, miR-29b-3p, miR-181a-5p, miR-181b-5p, miR-181c-5p, miR-214-3p, and miR-365a-3p were up-regulated in FMF patients. In detail, these miRNAs were similar among FMF patients in terms of genotype, colchicine response, and having an inflammatory attack during analysis. CONCLUSION We found that 26 apoptosis-related circulating miRNAs were deregulated in children with FMF. Thus, we speculate that these miRNAs have a role in FMF pathogenesis via apoptotic mechanisms.
Collapse
|
15
|
Assessment of Circulating Microribonucleic Acids in Patients With Familial Mediterranean Fever. Arch Rheumatol 2019; 35:52-59. [PMID: 32637920 DOI: 10.5606/archrheumatol.2020.7414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to evaluate the plasma expression of microribonucleic acids (miRNAs) that may be associated with the pathogenesis of familial Mediterranean fever (FMF). Patients and methods Thirty patients with FMF (18 males, 12 females; mean age 9.1±4.7 years; range, 3 to 15.5 years) and 30 age- and sex-matched healthy children (18 males, 12 females; mean age 9.5±4.6 years; range, 4 to 16.5 years) were included in this study. The plasma levels of four candidate miRNAs (miRNA-16, miRNA-155, miRNA-204 and miRNA-451) were measured in all subjects. The plasma levels of miRNAs were analyzed with real- time polymerase chain reaction in attack and remission periods of patients and healthy controls (HCs). Results Plasma miRNA-204 levels of FMF patients were decreased 6.5 fold in remission period compared to HCs (p<0.001). This decrease was more prominent in M694V mutation carriers. Plasma miRNA-155 levels of FMF patients were lower in remission period (p=0.03). Conclusion Our findings showed significant alterations in the plasma expression of miRNA-155 and miRNA-204 in FMF patients compared to HCs. Our data suggest that miRNA-155 and miRNA-204 may be related to the pathogenesis of FMF. Further comprehensive and functional researches may help to clarify the role of miRNAs in FMF and elucidate the pathogenesis of the disease.
Collapse
|
16
|
Balci-Peynircioglu B, Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z. Potential of miRNAs to predict and treat inflammation from the perspective of Familial Mediterranean Fever. Inflamm Res 2019; 68:905-913. [PMID: 31342094 DOI: 10.1007/s00011-019-01272-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
AIM microRNAs (miRNAs) are small noncoding RNAs that play critical roles in physiological networks by regulating host genome expression at the post-transcriptional level. miRNAs are known to be key regulators of various biological processes in different types of immune cells, and they are known to regulate immunological functions. Differential expression of miRNAs has been documented in several diseases, including autoinflammatory and autoimmune diseases. This review aimed to focus on miRNAs and their association with autoimmune and autoinflammatory diseases. METHODS All related literature was screened from PubMed, and we discussed the possible role of miRNAs in disease prediction and usage as therapeutic agents from the perspective of Familial Mediterranean Fever (FMF). CONCLUSIONS FMF is an inherited autosomal recessive autoinflammatory disease caused by mutations in the MEditerranean FeVer (MEFV) gene, which encodes the protein pyrin. Recent studies have demonstrated that miRNAs may be effective in the pathogenesis of FMF and offer a potential explanation for phenotypic heterogeneity. Further understanding of the role of miRNAs in the pathogenesis of these diseases may help to identify molecular diagnostic markers, which may be important for the differential diagnosis of autoinflammatory diseases. Studies have shown that in the near future, traditional therapies in autoinflammatory diseases may be replaced with novel effective, miRNA-based therapies, such as the delivery of miRNA mimics or antagonists. These approaches may be important for predictive, preventive, and personalized medicine.
Collapse
|
17
|
Yin J, Hu T, Xu L, Li P, Li M, Ye Y, Pang Z. Circular RNA expression profile in peripheral blood mononuclear cells from Crohn disease patients. Medicine (Baltimore) 2019; 98:e16072. [PMID: 31261517 PMCID: PMC6617429 DOI: 10.1097/md.0000000000016072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Crohn disease (CD) is a multifactorial autoimmune disease which is characterized by chronic and recurrent gastrointestinal tract inflammatory disorder. However, the molecular mechanisms of CD remain unclear. Increasing evidences have demonstrated that circular RNAs (circRNAs) participate in the pathogenesis of a variety of disease and were considered as ideal biomarkers in human disease. This study aimed to investigate circRNA expression profiles and detect new biomarkers in inflammatory bowel disease (IBD). Differentially expression of circRNAs between CD and HCs (health controls) were screened by microarray analysis. Peripheral blood mononuclear cells (PBMCs) from 5 CD patients and 5 HCs were included in the microarray analysis. Then, the differences were validated by quantitative polymerase chain reaction (qPCR) following reverse transcription polymerase chain reaction (RT-PCR) in the patients of CD and sex- and age-matched HCs. The most differential expressed circRNA was further validated in ulcerative colitis (UC) patients. Statistical significance between CD, UC, and HCs was analyzed by Student t test for unpaired samples or one-way analysis of variance (ANOVA). Diagnostic value of each circRNA was assessed by receiver operating characteristic (ROC) curve. We identified 155 up-regulated circRNAs and 229 down-regulated ones by microarray analysis in PBMCs from CD patients compared with HCs. Besides, 4 circRNAs (092520, 102610, 004662, and 103124) were significantly up-regulated validated by RT-PCR and qPCR between CD and HCs. ROC curve analysis suggested important values of circRNAs (092520, 102610, 004662, and 103124) in CD diagnosis, with area under the curve (AUC) as 0.66, 0.78, 0.85, and 0.74, respectively. Then, we further identified that the relative expression levels of circRNA_004662 was upregulated significantly in CD patients compared with UC patients. Herein, the upregulation of the 4 circRNAs (092520, 102610, 004662, or 103124) in PBMCs can be served as potential diagnostic biomarkers of CD, and circRNA_004662 might be a novel candidate for differentiating CD from UC. Moreover, a circRNA-microRNA-mRNA network predicted that circRNA_004662 appeared to be correlated with mammalian target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Juan Yin
- Digestive Disease and Nutrition Research Center
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lijuan Xu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ping Li
- Digestive Disease and Nutrition Research Center
| | - Meifen Li
- Digestive Disease and Nutrition Research Center
| | - Yulan Ye
- Digestive Disease and Nutrition Research Center
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhi Pang
- Digestive Disease and Nutrition Research Center
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
20
|
Abstract
Innate immunity is traditionally thought of as the first line of defense against pathogens that enter the body. It is typically characterized as a rather weak defense mechanism, designed to restrict pathogen replication until the adaptive immune response generates a tailored response and eliminates the infectious agent. However, intensive research in recent years has resulted in better understanding of innate immunity as well as the discovery of many effector proteins, revealing its numerous powerful mechanisms to defend the host. Furthermore, this research has demonstrated that it is simplistic to strictly separate adaptive and innate immune functions since these two systems often work synergistically rather than sequentially. Here, we provide a broad overview of innate pattern recognition receptors in antiviral defense, with a focus on the TRIM family, and discuss their signaling pathways and mechanisms of action with special emphasis on the intracellular antibody receptor TRIM21.
Collapse
Affiliation(s)
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Evaluation of the effects of miRNAs in familial Mediterranean fever. Clin Rheumatol 2018; 38:635-643. [DOI: 10.1007/s10067-017-3914-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
22
|
Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 2017; 13:593-605. [DOI: 10.1038/nrrheum.2017.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|