1
|
Veronesi F, Contartese D, Di Sarno L, Borsari V, Fini M, Giavaresi G. In Vitro Models of Cell Senescence: A Systematic Review on Musculoskeletal Tissues and Cells. Int J Mol Sci 2023; 24:15617. [PMID: 37958603 PMCID: PMC10650924 DOI: 10.3390/ijms242115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1β, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Deyanira Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Laura Di Sarno
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| |
Collapse
|
2
|
Berni M, Veronesi F, Fini M, Giavaresi G, Marchiori G. Relations between Structure/Composition and Mechanics in Osteoarthritic Regenerated Articular Tissue: A Machine Learning Approach. Int J Mol Sci 2023; 24:13374. [PMID: 37686179 PMCID: PMC10487849 DOI: 10.3390/ijms241713374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.
Collapse
Affiliation(s)
- Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| |
Collapse
|
3
|
Boffa A, Perucca Orfei C, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, de Girolamo L, Filardo G. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 2: bone marrow-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-023-07320-3. [PMID: 36823238 DOI: 10.1007/s00167-023-07320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Aim of this systematic review was to determine if bone marrow-derived cell-based injectable therapies induce disease-modifying effects in joints affected by osteoarthritis (OA) in animal models. METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical animal studies comparing injectable bone marrow-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Fifty-three studies were included (1819 animals) with an increasing publication trend over time. Expanded cells were used in 48 studies, point-of-care products in 3 studies, and both approaches were investigated in 2 studies. Among the 47 studies presenting results on the disease-modifying effects, 40 studies (85%) reported better results with bone marrow-derived products compared to OA controls, with positive findings evident in 14 out of 20 studies (70%) in macroscopic assessment, in 30 out of 41 studies (73%) in histological assessment, and in 10 out of 13 studies (77%) in immunohistochemical evaluations. Clinical evaluations showed positive results in 7 studies out of 9 (78%), positive imaging results in 11 studies out of 17 (65%), and positive biomarker results in 5 studies out of 10 (50%). While 36 out of 46 studies (78%) reported positive results at the cartilage level, only 3 out of 10 studies (30%) could detect positive changes at the synovial level. The risk of bias was low in 42% of items, unclear in 50%, and high in 8%. CONCLUSION This systematic review of preclinical studies demonstrated that intra-articular injections of bone marrow-derived products can induce disease-modifying effects in the treatment of OA, slowing down the progression of cartilage damage with benefits at macroscopic, histological, and immunohistochemical levels. Positive results have been also observed in terms of clinical and imaging findings, as well as in the modulation of inflammatory and cartilage biomarkers, while poor effects have been described on the synovial membrane. These findings are important to understand the potential of bone marrow-derived products and to guide further research to optimise their use in the clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | | | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (Israel Institute of Technology), Haifa, Israel
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France
- SAS Remedex, Marseille, France
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
4
|
Ageing and Osteoarthritis Synergically Affect Human Synoviocyte Cells: An In Vitro Study on Sex Differences. J Clin Med 2022; 11:jcm11237125. [PMID: 36498698 PMCID: PMC9739144 DOI: 10.3390/jcm11237125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a chronic inflammatory disease that affects all of the joints, especially those of the elderly. Aging is a natural and irreversible biological process implicated in the pathophysiology of many chronic diseases, such as osteoarthritis. Inflammation and oxidative stress are the main factors involved in osteoarthritis and aging, respectively, with the production of several pro-inflammatory cytokines such as Interleukin 1β (IL1β) and reactive oxygen species. The aim of the study was to set-up an in vitro model of osteoarthritis and aging, focusing on the sex differences by culturing male and female fibroblast-like synoviocytes (FLSs) with IL1β, hydrogen peroxide (H2O2), IL1β+H2O2 or a growth medium (control). IL1β+H2O2 reduced the cell viability and microwound healing potential, increased Caspase-3 expression and reactive oxygen species and IL6 production; IL1β increased IL6 production more than the other conditions did; H2O2 increased Caspase-3 expression and reactive oxygen species production; Klotho expression showed no differences among the treatments. The FLSs from female donors demonstrated a better response capacity in unfavorable conditions of inflammation and oxidative stress than those from the male donors did. This study developed culture conditions to mimic the aging and osteoarthritis microenvironment to evaluate the behavior of the FLSs which play a fundamental role in joint homeostasis, focusing on the sex-related aspects that are relevant in the osteoarthritis pathophysiology.
Collapse
|
5
|
Delbaldo C, Tschon M, Martini L, Fini M, Codispoti G. Benefits of Applying Nanotechnologies to Hydrogels in Efficacy Tests in Osteoarthritis Models-A Systematic Review of Preclinical Studies. Int J Mol Sci 2022; 23:ijms23158236. [PMID: 35897805 PMCID: PMC9368605 DOI: 10.3390/ijms23158236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022] Open
Abstract
Osteoarthritis (OA) is a severe musculoskeletal disease with an increasing incidence in the worldwide population. Recent research has focused on the development of innovative strategies to prevent articular cartilage damage and slow down OA progression, and nanotechnologies applied to hydrogels have gained particular interest. The aim of this systematic review is to investigate the state of the art on preclinical in vitro and in vivo efficacy studies applying nanotechnologies to hydrogels in OA models to elucidate the benefits of their applications. Three databases were consulted for eligible papers. The inclusion criteria were in vitro and in vivo preclinical studies, using OA cells or OA animal models, and testing hydrogels and nanoparticles (NPs) over the last ten years. Data extraction and quality assessment were performed. Eleven papers were included. In vitro studies evidenced that NP-gels do not impact on cell viability and do not cause inflammation in OA cell phenotypes. In vivo research on rodents showed that these treatments could increase drug retention in joints, reducing inflammation and preventing articular cartilage damage. Nanotechnologies in preclinical efficacy tests are still new and require extensive studies and technical hits to determine the efficacy, safety, fate, and localization of NPs for translation into an effective therapy for OA patients.
Collapse
|
6
|
Dhillon J, Kraeutler MJ, Belk JW, Scillia AJ. Umbilical Cord-Derived Stem Cells for the Treatment of Knee Osteoarthritis: A Systematic Review. Orthop J Sports Med 2022; 10:23259671221104409. [PMID: 35859650 PMCID: PMC9289921 DOI: 10.1177/23259671221104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The use of mesenchymal stem cells (MSCs) for the treatment of knee
osteoarthritis (OA) has gained recent interest in the orthopaedics
community. Purpose: To review the literature to evaluate the efficacy of umbilical cord–derived
MSCs in the treatment of OA of the knee joint. Study Design: Systematic review; Level of evidence, 4. Methods: We searched the PubMed, Cochrane Library, and Embase databases to identify
studies with evidence levels from 1 to 4 that evaluated the clinical
efficacy of human umbilical cord–derived MSC (hUC-MSC) injections for knee
OA. The search phrase used was “umbilical cord knee osteoarthritis.” In the
studies reviewed, patients were assessed based on the macroscopic
International Cartilage Regeneration & Joint Preservation Society (ICRS)
score, Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC), visual analog scale (VAS) for pain, and the subjective
International Knee Documentation Committee (IKDC) score. Results: A total of 7 studies met inclusion criteria, including 385 patients
undergoing injection of hUC-MSCs (mean age, 59.7 years). The mean follow-up
was 23.4 months. Weighted averages of the WOMAC, macroscopic ICRS,
subjective IKDC, and VAS scores all showed improvement from before to after
treatment. No severe adverse reactions were recorded. Conclusion: Patients undergoing treatment of knee OA with hUC-MSCs might be expected to
experience improvements in clinical outcomes. Additional high-quality
randomized studies are needed to better determine the efficacy of hUC-MSC
for the treatment of knee OA.
Collapse
Affiliation(s)
- Jaydeep Dhillon
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Matthew J Kraeutler
- Department of Orthopaedic Surgery, St. Joseph's University Medical Center, Paterson, New Jersey, USA
| | - J Wilson Belk
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anthony J Scillia
- Department of Orthopaedic Surgery, St. Joseph's University Medical Center, Paterson, New Jersey, USA.,Academy Orthopaedics, Wayne, New Jersey, USA
| |
Collapse
|
7
|
Gardner JE, Williams CW, Bowers RL. Subchondral versus intra-articular orthobiologic injections for the treatment of knee osteoarthritis: a review. Regen Med 2022; 17:389-400. [PMID: 35410486 DOI: 10.2217/rme-2021-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent perspectives suggest that osteoarthritis (OA) is a disease involving not only the articular cartilage but also the osteochondral unit, including the synovium, supportive cartilage and subchondral bone. Current conservative treatments for OA are symptomatic and do not prevent progression or reverse the disease process. Compelling data show that intra-articular orthobiologic injections, such as platelet-rich plasma and mesenchymal stromal cells, are effective in providing relief of OA symptoms. However, recent data suggest that injections of orthobiologics into the subchondral bone may be superior to intra-articular injections for the management of OA. This review highlights the rationale and current evidence for intra-articular and subchondral bone injections of orthobiologics for the treatment of OA.
Collapse
Affiliation(s)
- James E Gardner
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher W Williams
- Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA.,Interventional Orthopedics of Atlanta, Atlanta, GA 30305, USA
| | - Robert L Bowers
- Department of Orthopaedics, Emory University, Atlanta, GA 30322, USA.,Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Pagani S, Veronesi F, Giavaresi G, Filardo G, Papio T, Romandini I, Fini M. Autologous Protein Solution Effect on Chondrogenic Differentiation of Mesenchymal Stem Cells from Adipose Tissue and Bone Marrow in an Osteoarthritic Environment. Cartilage 2021; 13:225S-237S. [PMID: 33583216 PMCID: PMC8804741 DOI: 10.1177/1947603521993217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is an inflammatory and degenerative disease, and the numerous treatments currently used are not fully effective. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) are proposed for OA treatment as biologic therapies. The aim of the study was to observe the role of autologous protein solution (APS), a type of PRP, on chondrogenic differentiation of 2 types of MSCs, from bone marrow (BMSCs) and adipose tissue (ADSCs), in an in vitro osteoarthritic microenvironment. DESIGN Inflammatory culture conditions, mimicking OA, were obtained by adding interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα), or synovial fluid from patient osteoarthritic knees (OSF), to the culture medium. MSCs were then treated with APS. RESULTS After 1 month of culture, both cell types formed mature micromasses, partially altered in the presence of IL-1β and TNFα but quite preserved with OSF. Inflammatory conditions hindered differentiation in terms of gene expression, not counterbalanced by APS. APS triggered type I collagen deposition and above all contributed to decrease the expression of metalloproteinases in the most aggressive conditions (IL-1β and TNFα in the culture medium). ADSCs originated micromasses more mature and less prone toward osteogenic lineage than BMSCs, thus showing to better adapt in an aggressive environment than BMSC. CONCLUSIONS APS seems to act better on inflammation front and, between cell types, ADSCs respond better to the inflammatory microenvironment of OA and to the treatment with APS than BMSCs.
Collapse
Affiliation(s)
- Stefania Pagani
- Complex Structure of Surgical Sciences
and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Veronesi
- Complex Structure of Surgical Sciences
and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy,Francesca Veronesi, Complex Structure of
Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di
Barbiano 1/10, Bologna, 40136, Italy.
| | - Gianluca Giavaresi
- Complex Structure of Surgical Sciences
and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tiziana Papio
- Applied and Translational Research
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Iacopo Romandini
- 2nd Orthopaedic and Traumatologic
Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Complex Structure of Surgical Sciences
and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
9
|
Desando G, Bartolotti I, Cattini L, Tschon M, Martini L, Fini M, Schiavinato A, Soranzo C, Grigolo B. Prospects on the Potential In Vitro Regenerative Features of Mechanically Treated-Adipose Tissue for Osteoarthritis Care. Stem Cell Rev Rep 2021; 17:1362-1373. [PMID: 33469783 PMCID: PMC8316247 DOI: 10.1007/s12015-020-10099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 11/06/2022]
Abstract
Gathering a better grasp on the adipose stromal vascular fraction (SVF) is demanding among clinicians for osteoarthritis (OA) care because of its promising but multifaceted clinical outcomes. The aim of this preclinical in vitro study was to test whether the mechanical approach with Hy-Tissue SVF system, a class IIa CE marked device of adipose tissue micro-fragmentation, influences the biological features and functions of SVF. We compared mechanical generated-SVF (mSVF) with the enzymatic generated-SVF (eSVF) by testing cell survival, phenotype, differentiation, and paracrine properties using ELISA assays. Both adipose SVF showed 80% viable cells and enrichment for CD-44 marker. The mSVF product preserved the functions of cell populations within the adipose tissue; however, it displayed lowered nucleated cell recovery and CFU-F than eSVF. As for multipotency, mSVF and eSVF showed similar differentiation commitment for osteochondral lineages. Both adipose SVF exhibited an increased release of VEGF, HGF, IGF-1 and PDGF-bb, involved in pathways mediating osteochondral repair and cell migration. Both mSVF and eSVF also displayed high release for the anti-inflammatory cytokine IL-10. After in vitro culture, supernatants from both mSVF and eSVF groups showed a low release of cytokines except for IL-10, thereby giving evidence of functional changes after culture expansion. In this study, mSVF showed active cell populations in the adipose tissue comparable to eSVF with excellent survival, differentiation and paracrine properties under a new mechanical adipose tissue micro-fragmentation system; thereby suggesting its potential use as a minimally invasive technique for OA treatment.
Collapse
Affiliation(s)
- G Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - I Bartolotti
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - L Cattini
- Laboratorio di ImmunoReumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italia
| | - M Tschon
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italia
| | - L Martini
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italia
| | - M Fini
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italia
| | - A Schiavinato
- Fidia Farmaceutici S.p.A, Abano Terme, Padova, 35031, Italy
| | - C Soranzo
- Fidia Farmaceutici S.p.A, Abano Terme, Padova, 35031, Italy
| | - B Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| |
Collapse
|
10
|
Tschon M, Contartese D, Pagani S, Borsari V, Fini M. Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data. J Clin Med 2021; 10:3178. [PMID: 34300344 PMCID: PMC8303951 DOI: 10.3390/jcm10143178] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Many risk factors for osteoarthritis (OA) have been noted, while gender/sex differences have been understated. The work aimed to systematically review literature investigating as primary aim the relationship between gender/sex related discriminants and OA. The search was performed in PubMed, Science Direct and Web of Knowledge in the last 10 years. Inclusion criteria were limited to clinical studies of patients affected by OA in any joints, analyzing as primary aim gender/sex differences. Exclusion criteria were review articles, in vitro, in vivo and ex vivo studies, case series studies and papers in which gender/sex differences were adjusted as confounding variable. Of the 120 records screened, 42 studies were included. Different clinical outcomes were analyzed: morphometric differences, followed by kinematics, pain, functional outcomes after arthroplasty and health care needs of patients. Women appear to use more health care, have higher OA prevalence, clinical pain and inflammation, decreased cartilage volume, physical difficulty, and smaller joint parameters and dimensions, as compared to men. No in-depth studies or mechanistic studies analyzing biomarker differential expressions, molecular pathways and omic profiles were found that might drive preclinical and clinical research towards sex-/gender-oriented protocols.
Collapse
Affiliation(s)
| | - Deyanira Contartese
- Surgical Sciences and Tecnologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.T.); (S.P.); (V.B.); (M.F.)
| | | | | | | |
Collapse
|
11
|
Hernigou J, Vertongen P, Rasschaert J, Hernigou P. Role of Scaffolds, Subchondral, Intra-Articular Injections of Fresh Autologous Bone Marrow Concentrate Regenerative Cells in Treating Human Knee Cartilage Lesions: Different Approaches and Different Results. Int J Mol Sci 2021; 22:ijms22083844. [PMID: 33917689 PMCID: PMC8068069 DOI: 10.3390/ijms22083844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/29/2023] Open
Abstract
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis. We investigated by a literature review whether joint, subchondral bone, or/and scaffolds implantation of fresh autologous bone marrow aspirate concentrated (BMAC) containing mesenchymal stem cells (MSCs) would improve osteoarthritis (OA). There is in vivo evidence that suggests that all these different approaches (intra-articular injections, subchondral implantation, scaffolds loaded with BMAC) can improve the patient. This review analyzes the evidence for each different approach to treat OA. We found that the use of intra-articular injections resulted in a significant relief of pain symptoms in the short term and was maintained in 12 months. However, the clinical trials indicate that the application of autologous bone marrow concentrates in combination with scaffolds or in injection in the subchondral bone was superior to intra-articular injection for long-term results. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome was a common issue faced by all the studies when biopsies were performed, except for scaffolds implantation in which some hyaline cartilage was found. The review suggests also that both implantation of subchondral BMAC and scaffolds loaded with BMAC could reduce the need for further surgery.
Collapse
Affiliation(s)
- Jacques Hernigou
- Department of Orthopedic Surgery, EpiCURA Hospital, 7331 Baudour, Belgium;
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Pascale Vertongen
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Joanne Rasschaert
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Philippe Hernigou
- Department of Orthopaedic Surgery, Faculty of Medicine, UPEC (University Paris-Est, Créteil), 94000 Créteil, France
- Correspondence:
| |
Collapse
|
12
|
Kon E, Di Matteo B, Delgado D, Cole BJ, Dorotei A, Dragoo JL, Filardo G, Fortier LA, Giuffrida A, Jo CH, Magalon J, Malanga GA, Mishra A, Nakamura N, Rodeo SA, Sampson S, Sánchez M. Platelet-rich plasma for the treatment of knee osteoarthritis: an expert opinion and proposal for a novel classification and coding system. Expert Opin Biol Ther 2020; 20:1447-1460. [PMID: 32692595 DOI: 10.1080/14712598.2020.1798925] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Platelet-rich plasma (PRP) is able to modulate the joint environment by reducing the inflammatory distress and promoting tissue anabolism. Therefore, it has gained increasing popularity among clinicians in the treatment of osteoarthritis (OA), and it is currently proposed beside consolidated options such as viscosupplementation. AREAS COVERED A systematic review of all available meta-analyses evaluating intra-articular PRP injections in patients affected by knee OA was performed, to understand how this biologic treatment approach compares to the traditional injective therapies available in clinical practice. Moreover, a novel coding system and 'minimum reporting requirements' are proposed to improve future research in this field and promote a better understanding of the mechanisms of action and indications. EXPERT OPINION The main limitation in the current literature is the extreme variability of PRP products used, with often paucity or even lack of data on the biologic features of PRP, which should not be considered as a simple substance, but rather a 'procedure' requiring accurate reporting of the characteristics of the product but also all preparation and application modalities. This approach will aid in matching the optimal PRP product to specific patient factors, leading to improved outcomes and the elucidation of the cost-effectiveness of this treatment.
Collapse
Affiliation(s)
- Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University , Milan, Italy
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Milan, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University , Milan, Italy
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Milan, Italy
- First Moscow State Medical University - Sechenov University , Moscow, Russia
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas San José , Vitoria-Gasteiz, Spain
| | - Brian J Cole
- Department of Orthopaedics, Rush University Medical Center , Chicago, Illinois, USA
| | - Andrea Dorotei
- Department of Biomedical Sciences, Humanitas University , Milan, Italy
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Milan, Italy
| | - Jason L Dragoo
- Department of Orthopedic Surgery, University of Colorado , Englewood, Colorado, USA
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli , Bologna, Italy
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY, USA
| | - Alberto Giuffrida
- Department of Biomedical Sciences, Humanitas University , Milan, Italy
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Milan, Italy
| | - Chris H Jo
- Department of Orthopedic Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jeremy Magalon
- Aix Marseille Univ, INSERM, INRA, C2VN , Marseille, France
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, IN, SERM CIC BT , Marseille, France
| | - Gerard A Malanga
- New Jersey Regenerative Institute LLC, Cedar Knolls, NJ; Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School , Newark, NJ, USA
| | - Allan Mishra
- Department of Orthopaedic Surgery, Menlo Medical Clinic, Stanford University Medical Center, Menlo Park , CA, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University , Osaka, Japan
| | - Scott A Rodeo
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery , New York, New York, USA
| | - Steven Sampson
- David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José , Vitoria-Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas San José , Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Veronesi F, Berni M, Marchiori G, Cassiolas G, Muttini A, Barboni B, Martini L, Fini M, Lopomo NF, Marcacci M, Kon E. Evaluation of cartilage biomechanics and knee joint microenvironment after different cell-based treatments in a sheep model of early osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2020; 45:427-435. [PMID: 32661637 DOI: 10.1007/s00264-020-04701-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Aiming to prevent cartilage damage during early osteoarthritis (OA), the therapeutic challenge is to restore and maintain the physiological and functional properties of such a tissue with minimally invasive therapeutic strategies. METHODS Accordingly, an in vivo model of early OA in sheep was here treated through three different cell therapies (culture expanded ADSCs, SVF, and culture expanded AECs) thus to preserve the joint surface from the progression of the pathology. Three months after the treatment injections, their performance was assessed through mechanical automated mapping (Young's modulus and cartilage thickness), gross evaluation of articular surfaces, and biochemical analysis of the synovial fluid. RESULTS No severe degeneration was observed after three months from OA induction. Cartilage mechanical properties were crucial to identify early degeneration. All the treatments improved the macroscopic cartilage surface aspect and reduced pro-inflammatory cytokines in the synovial fluid. Among the three treatments, SVF highlighted the best performance while ADSCs the worst. CONCLUSION Despite that the evaluated experimental time is an early follow-up and, thus, longer trial is mandatory to properly assess treatments effectiveness, the proposed multidisciplinary approach allowed to obtain preliminary, but also crucial, results concerning the reduction in OA signs on cartilage properties, in osteophyte development and in all the inflammatory markers.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Matteo Berni
- Medical Technology Laboratory, Laboratory of Biomechanics and Technology Innovation, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Gregorio Marchiori
- Laboratory of Biomechanics and technology innovation, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Giorgio Cassiolas
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Aurelio Muttini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.,StemTeCh Group, Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st, Moscow, Russia, 119991
| |
Collapse
|
14
|
Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. INTERNATIONAL ORTHOPAEDICS 2020; 45:525-538. [PMID: 32661635 PMCID: PMC7843474 DOI: 10.1007/s00264-020-04703-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Purpose To investigate the available literature on the use of bone marrow aspirate concentrate (BMAC) and summarize the current evidence supporting its potential for the injective treatment of joints affected by osteoarthritis (OA). Methods A systematic literature search was conducted on three electronic databases (PubMed, Embase, and Cochrane Library) in April 2020, using the following string: “((bone marrow concentrate) OR (BMC) OR (bone marrow aspirate concentrate) OR (BMAC)) AND (osteoarthritis)”, and inclusion criteria: clinical and preclinical (animal) studies of any level of evidence, written in English language, and evaluating the intra-articular or subchondral use of BMAC for the injective treatment of OA joints. Results The publication trend remarkably increased over time. A total of 22 studies were included in the qualitative data synthesis: four preclinical studies and 18 clinical studies, for a total number of 4626 patients. Safety was documented by all studies, with a low number of adverse events. An overall improvement in pain and function was documented in most of the studies, but the clinical studies present significant heterogeneity, few patients, short-term follow-up, and overall poor methodology. Conclusion There is a growing interest in the field of BMAC injections for the treatment of OA, with promising results in preclinical and clinical studies in terms of safety and effectiveness. Nevertheless, the current knowledge is still preliminary. Preclinical research is still needed to optimize BMAC use, as well as high-level large controlled trials to better understand the real potential of BMAC injections for the treatment of patients affected by OA.
Collapse
|
15
|
Liu X, Shortt C, Zhang F, Bater MQ, Cowman MK, Kirsch T. Extracellular Vesicles Released From Articular Chondrocytes Play a Major Role in Cell-Cell Communication. J Orthop Res 2020; 38:731-739. [PMID: 31736104 PMCID: PMC7071989 DOI: 10.1002/jor.24525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
The purpose of this investigation was to determine the role of extracellular vesicles (EVs), released from articular chondrocytes in a physiological or pathological state, in cell-cell communication with other articular chondrocytes or chondrocyte precursor cells. The conditioned medium from interleukin-1β (IL-1β)-treated human articular chondrocytes stimulated catabolic events and inhibited type II collagen expression in articular chondrocytes to a much greater degree than medium from IL-1β-treated chondrocytes after complete removal of EVs. The vehicle-treated and IL-1β-treated human articular chondrocytes released EVs of similar size; however, the number of EVs released by IL-1β-treated chondrocytes was markedly higher than the number of EVs released from the vehicle-treated cells. Furthermore, our findings demonstrate that similar to medium from IL-1β-treated chondrocytes containing EVs, EVs isolated from medium of IL-1β-treated chondrocytes stimulated catabolic events in articular chondrocytes, whereas EVs isolated from the medium of vehicle-treated chondrocytes inhibited catabolic events and increased messenger RNA levels of aggrecan and type II collagen in IL-1β-treated chondrocytes. Furthermore, the medium containing EVs from vehicle-treated articular chondrocytes or EVs isolated from this medium stimulated chondrogenesis of C3H10T1/2 cells, whereas medium containing EVs from IL-1β-treated chondrocytes or EVs isolated from this medium inhibited chondrogenesis. Our findings suggest that EVs released by articular chondrocytes play a key role in the communication between joint cells and ultimately in joint homeostasis, maintenance, pathology, and repair. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:731-739, 2020.
Collapse
Affiliation(s)
- Xiaoming Liu
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA,Current addresses: Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA,Current addresses: FoodMarble Digestive Health, Dublin 2, Ireland
| | - Fenglin Zhang
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Mariah Q. Bater
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Mary K. Cowman
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA,Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA,Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| |
Collapse
|
16
|
Schivo S, Khurana S, Govindaraj K, Scholma J, Kerkhofs J, Zhong L, Huang X, van de Pol J, Langerak R, van Wijnen AJ, Geris L, Karperien M, Post JN. ECHO, the executable CHOndrocyte: A computational model to study articular chondrocytes in health and disease. Cell Signal 2020; 68:109471. [DOI: 10.1016/j.cellsig.2019.109471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
|
17
|
Desai MJ, Mansfield JT, Robinson DM, Miller BC, Borg-Stein J. Regenerative Medicine for Axial and Radicular Spine-Related Pain: A Narrative Review. Pain Pract 2020; 20:437-453. [PMID: 31869517 DOI: 10.1111/papr.12868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/03/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Regenerative injection-based therapy has established itself as a therapeutic option for the management of a variety of painful musculoskeletal conditions. The aim of this work was to review the current literature regarding regenerative injection therapy for axial/radicular spine pain. METHODS A comprehensive literature review was conducted on the use of regenerative medicine for axial/radicular spine pain. Eligible articles analyzed the therapeutic injection effects of platelet-rich plasma (PRP), prolotherapy, or mesenchymal signaling cells (MSCs) via intradiscal, facet joint, epidural, or sacroiliac joint delivery. RESULTS Regarding intradiscal PRP, there are level I/IV studies supporting its use. Regarding intradiscal prolotherapy, there are level III to IV studies supporting its use. Regarding intradiscal MSCs, there are level I/IV studies supporting its use with the exception of one level IV study that found no significant improvement at 12 months. Regarding facet joint injections with PRP, there are level I/IV studies supporting its use. Regarding facet joint injections with prolotherapy, there are level IV studies supporting its use, though the one level I study did not demonstrate any statistical significance supporting its use. Regarding epidural injections with PRP, there are level I/IV studies supporting its use. Regarding epidural injections with prolotherapy, there are level IV studies supporting its use, though the one level I study did not demonstrate statistical significance beyond 48 hours. Regarding sacroiliac joint injections with PRP, there are level I/IV studies supporting its use. Regarding sacroiliac joint injections with prolotherapy, there are level I/III studies supporting its use. CONCLUSIONS Currently, there are level I studies to support the use of PRP and MSC injections for discogenic pain; facet joint injections with PRP; epidural injections of autologous conditioned serum and epidural prolotherapy; and PRP and prolotherapy for sacroiliac joint pain. One level I study showed that facet joint prolotherapy has no significant benefit. Notably, no intervention has multiple published level I studies.
Collapse
Affiliation(s)
- Mehul J Desai
- International Spine, Pain & Performance Center, Washington, DC, U.S.A.,George Washington University, Washington, DC, U.S.A.,Division of Pain Medicine, Virginia Hospital Center, Arlington, Virginia, U.S.A
| | - John Taylor Mansfield
- Department of Physical Medicine and Rehabilitation, MedStar Georgetown University Hospital, Washington, DC, U.S.A
| | - David M Robinson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, U.S.A
| | - Benjamin C Miller
- Department of Physical Medicine and Rehabilitation, MedStar Georgetown University Hospital, Washington, DC, U.S.A
| | - Joanne Borg-Stein
- Division of Sports and Musculoskeletal Rehabilitation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, U.S.A
| |
Collapse
|
18
|
Allogeneic Versus Autologous Injectable Mesenchymal Stem Cells for Knee Osteoarthritis: Review and Current Status. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Borem R, Madeline A, Bowman M, Gill S, Tokish J, Mercuri J. Differential Effector Response of Amnion- and Adipose-Derived Mesenchymal Stem Cells to Inflammation; Implications for Intradiscal Therapy. J Orthop Res 2019; 37:2445-2456. [PMID: 31287173 DOI: 10.1002/jor.24412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)- and amnion (AM)-derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin-1β (IL-1β) and tumor necrosis factor-α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro- and anti-inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD- and AM-MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM-MSCs produced significantly more anti-inflammatory IL-10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2 ; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD-MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2 ; 34.75 ± 2.49%; respectively). Conversely, AD-MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro-inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL-1β (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM-MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD-MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM-MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM-MSCs producing more anti-inflammatories and demonstrating enhanced chondrogenesis compared with AD-MSCs, which produced more pro-inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445-2456, 2019.
Collapse
Affiliation(s)
- Ryan Borem
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Allison Madeline
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Mackenzie Bowman
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| | - Sanjitpal Gill
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, 29651
| | - John Tokish
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634.,Department of Orthopaedic Surgery, Mayo Clinic, Phoenix, Arizona, 85054
| | - Jeremy Mercuri
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
20
|
Refractory Knee Osteoarthritis: Adipose-Derived Stromal Cells Versus Bone Marrow Aspiration Concentrate. PM R 2019; 10:524-532. [PMID: 29776486 DOI: 10.1016/j.pmrj.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
|
21
|
Regenerative Features of Adipose Tissue for Osteoarthritis Treatment in a Rabbit Model: Enzymatic Digestion Versus Mechanical Disruption. Int J Mol Sci 2019; 20:ijms20112636. [PMID: 31146351 PMCID: PMC6601012 DOI: 10.3390/ijms20112636] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Evaluating cell migration after cell-based treatment is important for several disorders, including osteoarthritis (OA), as it might influence the clinical outcome. This research explores migrating expanded-adipose stromal cells (ASCs) and adipose niches after enzymatic and mechanical processes. Bilateral anterior cruciate ligament transection induced a mild grade of OA at eight weeks in adult male New Zealand rabbits. ASCs, enzymatic stromal vascular fraction (SVF), and micro fragmented adipose tissue (MFAT) were intra-articularly injected in the knee joint. Assessments of cell viability and expression of specific markers, including CD-163 wound-healing macrophages, were done. Cell migration was explored through labelling with PKH26 dye at 7 and 30 days alongside co-localization analyses for CD-146. All cells showed good viability and high percentages of CD-90 and CD-146. CD-163 was significantly higher in MFAT compared to SVF. Distinct migratory potential and time-dependent effects were observed among cell-based treatments. At day 7, both ASCs and SVF migrated towards synovium, whereas for MFAT versus cartilage, a different migration pattern was noticed at day 30. The long-term distinct cell migration of ASCs, SVF, and MFAT open interesting clinical insights on their potential use for OA treatment. Moreover, the highest expression of CD-163 in MFAT, rather than SVF, might have an important role in directly mediating cartilage tissue repair responses.
Collapse
|
22
|
Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA. Bone Marrow-Derived and Adipose-Derived Mesenchymal Stem Cell Therapy in Primary Knee Osteoarthritis: A Narrative Review. PM R 2019; 11:177-191. [PMID: 30010050 DOI: 10.1016/j.pmrj.2018.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Abstract
Regenerative medicine in the context of musculoskeletal injury is a broad term that offers potential therapeutic solutions to restore or repair damaged tissue. The current focus in recent literature and clinical practice has been on cell based therapy. In particular, much attention has been centered on autologous bone marrow concentrate and adipose-derived mesenchymal stem cells (MSCs) for cartilage and tendon disorders. This article provides an overview of MSC-derived therapy and offers a comprehensive review of adipose- and bone marrow-derived MSC therapy in primary knee osteoarthritis. LEVEL OF EVIDENCE: IV.
Collapse
Affiliation(s)
- Prathap Jayaram
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Orthopedic Surgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Uzoh Ikpeama
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX
| | - Joshua B Rothenberg
- Departments of Regenerative Medicine and Orthopedic Biologics, BocaCare Orthopedics, Boca Raton Regional Hospital, Boca Raton, FL
| | - Gerard A Malanga
- Department of Physical Medicine and Rehabilitation, Rutgers School of Biomedical and Health Sciences, Newark, NJ; Rutgers University and New Jersey Regenerative Medicine Institute, Cedar Knolls, NJ
| |
Collapse
|
23
|
Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. Stem Cells 2018; 36:1311-1328. [PMID: 29761573 DOI: 10.1002/stem.2847] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 12/18/2022]
Abstract
The objective of this Review is to describe the safety and efficacy of adipose stem/stromal cells (ASC) and stromal vascular fraction (SVF) in treating common diseases and the next steps in research that must occur prior to clinical use. Pubmed, Ovid Medline, Embase, Web of Science, and the Cochrane Library were searched for articles about use of SVF or ASC for disease therapy published between 2012 and 2017. One meta-analysis, 2 randomized controlled trials, and 16 case series were included, representing 844 human patients. Sixty-nine studies were performed in preclinical models of disease. ASCs improved symptoms, fistula healing, remission, and recurrence rates in severe cases of inflammatory bowel disease. In osteoarthritis, ASC and SVF improved symptom-related, functional, radiographic, and histological scores. ASC and SVF were also shown to improve clinical outcomes in ischemic stroke, multiple sclerosis, myocardial ischemia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, chronic liver failure, glioblastoma, acute kidney injury, and chronic skin wounds. These effects were primarily paracrine in nature and mediated through reduction of inflammation and promotion of tissue repair. In the majority of human studies, autologous ASC and SVF from liposuction procedures were used, minimizing the risk to recipients. Very few serious, treatment-related adverse events were reported. The main adverse event was postprocedural pain. SVF and ASC are promising therapies for a variety of human diseases, particularly for patients with severe cases refractory to current medical treatments. Further randomized controlled trials must be performed to elaborate potential safety and efficacy prior to clinical use. Stem Cells 2018;36:1311-1328.
Collapse
Affiliation(s)
- Marjorie E Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Plastic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,La Cell LLC, New Orleans BioInnovation Center, New Orleans, Louisiana, USA.,Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| |
Collapse
|
24
|
Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflamm Res 2018; 67:467-477. [PMID: 29362849 DOI: 10.1007/s00011-018-1131-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.
Collapse
|
25
|
Veronesi F, Borsari V, Sartori M, Orciani M, Mattioli-Belmonte M, Fini M. The use of cell conditioned medium for musculoskeletal tissue regeneration. J Cell Physiol 2017; 233:4423-4442. [PMID: 29159853 DOI: 10.1002/jcp.26291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Tissue regenerative medicine combines the use of cells, scaffolds, and molecules to repair damaged tissues. Different cell types are employed for musculoskeletal diseases, both differentiated and mesenchymal stromal cells (MSCs). In recent years, the hypothesis that cell-based therapy is guided principally by cell-secreted factors has become increasingly popular. The aim of the present literature review was to evaluate preclinical and clinical studies that used conditioned medium (CM), rich in cell-factors, for musculoskeletal regeneration. Thirty-one were in vitro, 12 in vivo studies, 1 was a clinical study, and 2 regarded extracellular vesicles. Both differentiated cells and MSCs produce CM that induces reduction in inflammation and increases synthetic activity. MSC recruitment and differentiation, endothelial cell recruitment and angiogenesis have also been observed. In vivo studies were performed with CM in bone and periodontal defects, arthritis and muscle dystrophy pathologies. The only clinical study was performed with CM from MSCs in patients needing alveolar bone regeneration, showing bone formation and no systemic or local complications. Platelet derived growth factor receptor β, C3a, vascular endothelial growth factor, monocyte chemoattractant protein-1 and -3, interleukin 3 and 6, insulin-like growth factor-I were identified as responsible of cell migration, proliferation, osteogenic differentiation, and angiogenesis. The use of CM could represent a new regenerative treatment in several musculoskeletal pathologies because it overcomes problems associated with the use of cells and avoids the use of exogenous GFs or gene delivery systems. However, some issues remain to be clarified.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
26
|
Hayashi K, Suzuki A, Abdullah Ahmadi S, Terai H, Yamada K, Hoshino M, Toyoda H, Takahashi S, Tamai K, Ohyama S, Javid A, Suhrab Rahmani M, Hasib MM, Nakamura H. Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Sci Rep 2017; 7:13092. [PMID: 29026131 PMCID: PMC5638934 DOI: 10.1038/s41598-017-13360-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
Lumbar spinal stenosis (LSS) is one of the most frequent causes of low back pain and gait disturbance in the elderly. Ligamentum flavum (LF) hypertrophy is the main pathomechanism of LSS, but the reason for its occurrence is not clearly elucidated. In this study, we established a novel animal model of intervertebral mechanical stress concentration and investigated the biological property of the LF. The LF with mechanical stress concentration showed degeneration with elastic fibres disruption and cartilage matrix increase, which are similar to the findings in hypertrophied LF from patients with LSS. By contrast, decreased Col2a1 expression was found in the LF at fixed levels, in which mechanical stress was strongly reduced. These findings indicate that mechanical stress plays a crucial role in LF hypertrophy through cartilage matrix increase. The findings also suggest that fusion surgery, which eliminates intervertebral instability, may change the property of the LF and lead to the relief of patients' symptoms.
Collapse
Affiliation(s)
- Kazunori Hayashi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Sayed Abdullah Ahmadi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Yamada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masatoshi Hoshino
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takahashi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Tamai
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoichiro Ohyama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akgar Javid
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mohammad Suhrab Rahmani
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Maruf Mohammad Hasib
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Salamanna F, Contartese D, Nicoli Aldini N, Barbanti Brodano G, Griffoni C, Gasbarrini A, Fini M. Bone marrow aspirate clot: A technical complication or a smart approach for musculoskeletal tissue regeneration? J Cell Physiol 2017. [PMID: 28639702 DOI: 10.1002/jcp.26065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the methods employed to improve healing of damaged tissues is the use of cellular based therapies. A number of regenerative medicine based strategies, from in vitro expanded mesenchymal stem cells (MSCs) to "one-step" procedures using bone marrow (BM) in toto (BM aspirate; BMA) or BM concentrate (BMC), have been developed. Recently, orthopedic researchers focused their attention on the clinical therapeutic potential of BMC and BMA for musculoskeletal regeneration. BMA is reported as an excellent source of cells and growth factors. However, the quality of BM harvest and aspirate is extremely technique-dependent and, due to the presence of megakaryocytes and platelets, BMA is prone to clot. BMA clot formation is usually considered a complication hampering the procedures on both BMC preparation and MSC expansion. Therefore, different protocols have been developed to avoid and/or degrade clots. However, from a biological point of view there is a strong rationale for the use of BMA clot for tissue engineering strategies. This descriptive systematic literature review summarizes preclinical and clinical studies dealing the use of BMA clot for orthopedic procedures and provided some evidence supporting its use as a cell based therapy for cartilage and bone regeneration. Despite these results, there are still few preclinical and clinical studies that carefully evaluate the safety and efficacy of BMA clot in orthopedic procedures. Thus, implementing biological knowledge and both preclinical and clinical studies could help researchers and clinicians to understand if BMA clots can really be considered a possible therapeutic tool.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Nicolò Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|