1
|
Dave S, Patel B. The lipocalin saga: Insights into its role in cancer-associated cachexia. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167684. [PMID: 39837432 DOI: 10.1016/j.bbadis.2025.167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC. Anorexia is a significant contributor to worsening CAC. Anorexia can be found in the early or advanced stages of cancer. Anorexia in cancer patients arises from a confluence of factors. Tumor-related inflammatory cytokines can directly impact the gastrointestinal tract, leading to dysphagia and compromised gut function. Additionally, increased serotonin and hormonal disruptions lead to early satiety, suppressing appetite. Due to the complexities in the pathogenesis of the disease, identifying druggable targets is a challenge. Research is ongoing to identify novel targets for the treatment of this condition. Recent research suggests a potential link between elevated levels of Lipocalin 2 (LCN2) and cachexia in cancer patients. LCN2, a glycoprotein primarily released by neutrophils, is implicated in numerous illnesses, including skin disorders, cancer, atherosclerosis, and type 2 diabetes. LCN2 suppresses hunger by binding to the melanocortin-4 receptors. Several in vitro, in vivo, and clinical studies indicate the association between LCN2 levels and appetite suppression. Further research should be explored emphasizing the significance of well-crafted clinical trials to confirm LCN2's usefulness as a therapeutic target and its ability to help cancer patients who are suffering from the fatal hallmark of cachexia. This review explores LCN2's function in the multifaceted dynamics of CAC and anorexia.
Collapse
Affiliation(s)
- Srusti Dave
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | - Bhoomika Patel
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
2
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Shi C, Wang C, Fu Z, Liu J, Zhou Y, Cheng B, Zhang C, Li S, Zhang Y. Lipocalin 2 (LCN2) confers acquired resistance to almonertinib in NSCLC through LCN2-MMP-9 signaling pathway. Pharmacol Res 2024; 201:107088. [PMID: 38295916 DOI: 10.1016/j.phrs.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Almonertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC). However, the development of resistance inevitably occurs and poses a major obstacle to the clinical efficacy of almonertinib. Therefore, a clear understanding of the mechanism is of great significance to overcome drug resistance to almonertinib in the future. In this study, NCI-H1975 cell lines resistant to almonertinib (NCI-H1975 AR) were developed by concentration-increasing induction and were employed for clarification of underlying mechanisms of acquired resistance. Through RNA-seq analysis, the HIF-1 and TGF-β signaling pathways were significantly enriched by gene set enrichment analysis. Lipocalin-2 (LCN2), as the core node in these two signaling pathways, were found to be positively correlated to almonertinib-resistance in NSCLC cells. The function of LCN2 in the drug resistance of almonertinib was investigated through knockdown and overexpression assays in vitro and in vivo. Moreover, matrix metalloproteinases-9 (MMP-9) was further identified as a critical downstream effector of LCN2 signaling, which is regulated via the LCN2-MMP-9 axis. Pharmacological inhibition of MMP-9 could overcome resistance to almonertinib, as evidenced in both in vitro and in vivo models. Our findings suggest that LCN2 was a crucial regulator for conferring almonertinib-resistance in NSCLC and demonstrate the potential utility of targeting the LCN2-MMP-9 axis for clinical treatment of almonertinib-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinmei Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanfeng Zhou
- Department of Preclinical Translational Science, Shanghai Hansoh Biomedical Co.,Ltd., Shanghai 201203. China
| | - Bao Cheng
- Department of Chemistry, Shanghai Hansoh Biomedical Co., Ltd, Shanghai 201203, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
4
|
Han B, An Z, Gong T, Pu Y, Liu K. LCN2 Promotes Proliferation and Glycolysis by Activating the JAK2/STAT3 Signaling Pathway in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2024; 196:717-728. [PMID: 37178251 DOI: 10.1007/s12010-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to explore the molecular mechanism of LCN2 regulating aerobic glycolysis on abnormal proliferation of HCC cells. Based on the prediction of GEPIA database, the expression levels of LCN2 in hepatocellular carcinoma tissues were detected by RT-qPCR analysis, western blot, and immunohistochemical staining, respectively. In addition, CCK-8 kit, clone formation, and EdU staining were used to analyze the effect of LCN2 on the proliferation of hepatocellular carcinoma cells. Glucose uptake and lactate production were detected using kits. In addition, western blot was used to detect the expressions of aerobic glycolysis-related proteins. Finally, western blot was used to detect the expressions of phosphorylation of JAK2 and STAT3. We found LCN2 was upregualted in hepatocellular carcinoma tissues. CCK-8 kit, clone formation, and EdU staining results showed that LCN2 could promote the proliferation in hepatocellular carcinoma cells (Huh7 and HCCLM3 cells). Western blot results and kits confirmed that LCN2 significantly promotes aerobic glycolysis in hepatocellular carcinoma cells. Western blot results showed that LCN2 could significantly upregulate the phosphorylation of JAK2 and STAT3. Our results indicated that LCN2 activated the JAK2/STAT3 signaling pathway, promoted aerobic glycolysis, and accelerated malignant proliferation of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Baojun Han
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Zhiming An
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Teng Gong
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Yu Pu
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ke Liu
- General Surgery, Santai County Hospital of Traditional Chinese Medicine, Tongchuan Town, Santai County, Mianyang, 621100, Sichuan Province, China.
| |
Collapse
|
5
|
Guo J, Yan YZ, Chen J, Duan Y, Zeng P. Identification of Hub Genes and Pathways of Middle Cerebral Artery Occlusion in Aged Rats Using the Gene Expression Omnibus Database. Crit Rev Immunol 2024; 44:1-12. [PMID: 38505917 DOI: 10.1615/critrevimmunol.2023051702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Stroke remained the leading cause of disability in the world, and the most important non-modifiable risk factor was age. The treatment of stroke for elder patients faced multiple difficulties due to its complicated pathogenesis and mechanism. Therefore, we aimed to identify the potential differentially expressed genes (DEGs) and singnalling pathways for aged people of stroke. To compare the DEGs in the aged rats with or without middle cerebral artery occlusion (MCAO) and to analyse the important genes and the key signaling pathways involved in the development of cerebral ischaemia in aged rats. The Gene Expression Omnibus (GEO) analysis tool was used to analyse the DEGs in the GSE166162 dataset of aged MCAO rats compared with aged sham rats. Differential expression analysis was performed in aged MCAO rats and sham rats using limma. In addition, the 74 DEGs (such as Fam111a, Lcn2, Spp1, Lgals3 and Gpnmb were up-regulated; Egr2, Nr4a3, Arc, Klf4 and Nr4a1 were down-regulated) and potential compounds corresponding to the top 20 core genes in the Protein-Protein Interaction (PPI) network was constructed using the STRING database (version 12.0). Among these 30 compounds, resveratrol, cannabidiol, honokiol, fucoxanthin, oleandrin and tyrosol were significantly enriched. These DEGs were subjected to Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the most significantly enriched pathway in aged MCAO rats. Moreover, innate immune response, the complement and coagulation cascades signaling pathway, the IL-17 and other signaling pathways were significantly correlated with the aged MCAO rats. Our study indicates that multiple genes and pathological processes involved in the aged people of stroke. The immune response might be the key pathway in the intervention of cerebral infarction in aged people.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yi-Zhi Yan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinglou Chen
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yang Duan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | | |
Collapse
|
6
|
Saenz-Pipaon G, Jover E, van der Bent ML, Orbe J, Rodriguez JA, Fernández-Celis A, Quax PHA, Paramo JA, López-Andrés N, Martín-Ventura JL, Nossent AY, Roncal C. Role of LCN2 in a murine model of hindlimb ischemia and in peripheral artery disease patients, and its potential regulation by miR-138-5P. Atherosclerosis 2023; 385:117343. [PMID: 37871404 DOI: 10.1016/j.atherosclerosis.2023.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Eva Jover
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain
| | - Jose A Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain
| | - Amaya Fernández-Celis
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose A Paramo
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain; Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Natalia López-Andrés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Anne Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain.
| |
Collapse
|
7
|
Zheng XQ, Lin JL, Huang J, Wu T, Song CL. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 2023; 24:695-711. [PMID: 37402956 DOI: 10.1007/s11154-023-09812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one's lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
8
|
Zhao RY, Wei PJ, Sun X, Zhang DH, He QY, Liu J, Chang JL, Yang Y, Guo ZN. Role of lipocalin 2 in stroke. Neurobiol Dis 2023; 179:106044. [PMID: 36804285 DOI: 10.1016/j.nbd.2023.106044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Ruo-Yu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Peng-Ju Wei
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jun-Lei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| |
Collapse
|
9
|
Zhou Z, Wang T, Jia Y, Wang T, Luo E, Zhong J, Zhang J, Wang J, Wei Y, Zhao D, Yao B. Transcriptional sequencing analysis reveals the potential use of deer antler for “tonifying the kidney and strengthening bone”. J Orthop Surg Res 2022; 17:419. [PMID: 36104709 PMCID: PMC9476563 DOI: 10.1186/s13018-022-03308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background It is recorded in the Chinese Pharmacopoeia that deer antlers can be used to tonify the kidney and strengthen bone. Although numerous studies have demonstrated that deer antler has protective effects on the kidney and bone, its molecular mechanisms remain to be elucidated. The aim of this study was to explore the molecular mechanism underlying its effects on the bone and kidney. Methods Water extract of pilose antler was prepared and then filtered through a 0.45 μm Hollow Fiber Cartridge (GE Healthcare, USA). The filtrate was freeze-dried by a Heto PowerDry LL3000 Freeze Dryer (Thermo, USA) and stored at − 80 °C. Rats were treated with deer antler extract (DAE) prepared in advance, and gene regulatory network in the kidney and bone was detected by RNA-Seq technique. Micro-CT was used to detect bone trabecular formation, bone mineral density (BMD) and bone volume fraction (BV/TV). Results The results demonstrate that DAE could jointly heighten renal function by maintaining renal homeostasis, combating renal fibrosis, and reducing renal inflammation by regulating ion transport. Furthermore, DAE can strengthen the bone system by stimulating osteoblast differentiation and regulating bone regeneration and the bone marrow microenvironment. Micro-CT results confirmed that DAE can promote bone trabecular formation and increase BMD and BV/TV. We also identified many genes that can regulate both the kidney and bone simultaneously, which explained the theory of “kidney governing bone” at the molecular level and provided possible strategies for further application of this theory to treat diseases. Conclusions DAE enhances renal function, maintains renal homeostasis, positively regulates skeletal system development, and increases bone mineral density. The underlying mechanism involves improving the expression levels of functional genes involved in renal function and regulation and repair, as well as genes that positively regulate skeletal system development. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03308-w.
Collapse
|
10
|
Woods K, Guezguez B. Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia. Front Cell Dev Biol 2021; 9:714716. [PMID: 34447754 PMCID: PMC8383146 DOI: 10.3389/fcell.2021.714716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogenous cell population found in a wide range of tissues in the body, known for their nutrient-producing and immunomodulatory functions. In the bone marrow (BM), these MSCs are critical for the regulation of hematopoietic stem cells (HSC) that are responsible for daily blood production and functional immunity throughout an entire organism's lifespan. Alongside other stromal cells, MSCs form a specialized microenvironment BM tissue called "niche" that tightly controls HSC self-renewal and differentiation. In addition, MSCs are crucial players in maintaining bone integrity and supply of hormonal nutrients due to their capacity to differentiate into osteoblasts and adipocytes which also contribute to cellular composition of the BM niche. However, MSCs are known to encompass a large heterogenous cell population that remains elusive and poorly defined. In this review, we focus on deciphering the BM-MSC biology through recent advances in single-cell identification of hierarchical subsets with distinct functionalities and transcriptional profiles. We also discuss the contribution of MSCs and their osteo-adipo progeny in modulating the complex direct cell-to-cell or indirect soluble factors-mediated interactions of the BM HSC niche during homeostasis, aging and myeloid malignancies. Lastly, we examine the therapeutic potential of MSCs for rejuvenation and anti-tumor remedy in clinical settings.
Collapse
Affiliation(s)
- Kevin Woods
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Borhane Guezguez
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Kandarakov OF, Kravatsky YV, Polyakova NS, Bruter AV, Gordeeva EG, Belyavsky AV. Mitomycin C Treatment of Stromal Layers Enhances the Support of In Vitro Hematopoiesis in Co-Culture Systems. Mol Biol 2021. [DOI: 10.1134/s0026893321010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
13
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
14
|
Ponzetti M, Rucci N. Updates on Osteoimmunology: What's New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne) 2019; 10:236. [PMID: 31057482 PMCID: PMC6482259 DOI: 10.3389/fendo.2019.00236] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
The term osteoimmunology was coined many years ago to describe the research field that deals with the cross-regulation between bone cells and the immune system. As a matter of fact, many factors that are classically considered immune-related, such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α, Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we used to think would only regulate each other and take care of remodeling bone, actually regulate immune cells, by creating the so-called "endosteal niche." Both osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main milestones at the base of the osteoimmunology and present the key cellular players of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts, bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and neutrophils. We will also briefly describe some pathological conditions in which the bone-immune system cross-talk plays a crucial role, with the final aim to portray the state of the art in the mechanisms regulating the bone-immune system interplay, and some of the latest molecular players in the field. This is important to encourage investigation in this field, to identify new targets in the treatment of bone and immune diseases.
Collapse
|