1
|
Bei M, Cao Q, Zhao C, Xiao Y, Chen Y, Xiao H, Sun X, Tian F, Yang M, Wu X. Heterotopic ossification: Current developments and emerging potential therapies. Chin Med J (Engl) 2025:00029330-990000000-01404. [PMID: 39819765 DOI: 10.1097/cm9.0000000000003244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT This review aimed to provide a comprehensive analysis of the etiology, epidemiology, pathology, and conventional treatment of heterotopic ossification (HO), especially emerging potential therapies. HO is the process of ectopic bone formation at non-skeletal sites. HO can be subdivided into two major forms, acquired and hereditary, with acquired HO predominating. Hereditary HO is a rare and life-threatening genetic disorder, but both forms can cause severe complications, such as peripheral nerve entrapment, pressure ulcers, and disability if joint ankylosis develops, which heavily contributes to a reduced quality of life. Modalities have been proposed to treat HO, but none have emerged as the gold standard. Surgical excision remains the only effective modality; however, the optimal timing is controversial and may cause HO recurrence. Recently, potential therapeutic strategies have emerged that focus on the signaling pathways involved in HO, and small molecule inhibitors have been shown to be promising. Moreover, additional specific targets, such as small interfering RNAs (siRNAs) and non-coding RNAs, could be used to effectively block HO or develop combinatorial therapies for HO.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Qiyong Cao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Chunpeng Zhao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Yaping Xiao
- Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Yimin Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Honghu Xiao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xu Sun
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Faming Tian
- School Of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Minghui Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| |
Collapse
|
2
|
Li P, Zhang W, Zhang J, Liu J, Fu J, Wei Z, Le S, Xu J, Wang L, Zhang Z. Macrophage migration inhibitory factor promotes heterotopic ossification by mediating ROS/HIF-1α positive feedback loop and activating Wnt/β-catenin signaling pathway. Bone 2025; 190:117331. [PMID: 39549900 DOI: 10.1016/j.bone.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Heterotopic ossification (HO) refers to the development of bone tissue in areas other than the skeletal system. The development and maturation of the skeletal system are significantly influenced by macrophage migration inhibitory factor (MIF). The objective of this study was to examine the impact of MIF on the in vitro osteogenic differentiation and mineralization of tendon-derived stem cells (TDSCs), mediated by a positive feedback loop involving ROS/HIF-1α/MIF. METHODS TDSCs were isolated and identified from the hind limbs of C57/BL6 mice. The functional and procedural roles of MIF in HO, focusing on the impact of MIF on the differentiation of TDSCs into bone-forming cells were investigated in vitro. Seventy-five mice were randomly assigned to five groups. Gene expression and histological analyses of MIF and its receptors, and determine the expression of osteogenic markers in vivo. RESULTS The results revealed a positive and concentration-dependent effect of MIF on the osteogenic differentiation of TDSCs. Furthermore, an ROS/HIF-1α/MIF positive loop was detected in the simulated early trauma hypoxic microenvironment, resulting in a 3 to 4 folds increase in MIF expression levels. MIF was also found to enhance double the expression levels of markers associated with bone and cartilage at the site of injury, consequently facilitating the development of HO, which was thought to be associated with the activation of the Wnt/β-catenin pathway. CONCLUSION MIF, which mediates the ROS/HIF-1α/MIF positive feedback loop during the hypoxic phase of HO, triggers the Wnt/β-catenin signaling pathway to enhance the osteogenic differentiation and formation of HO in TDSCs.
Collapse
Affiliation(s)
- Ping Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Wensheng Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jiaming Fu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengnong Wei
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Shiyong Le
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopedics, Guangzhou, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Hatamoto Y, Tanoue Y, Tagawa R, Yasukata J, Shiose K, Kose Y, Watanabe D, Tanaka S, Chen KY, Ebine N, Ueda K, Uehara Y, Higaki Y, Sanbongi C, Kawanaka K. Greater energy surplus promotes body protein accretion in healthy young men: A randomized clinical trial. Clin Nutr 2024; 43:48-60. [PMID: 39423761 DOI: 10.1016/j.clnu.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Caloric overfeeding combined with adequate protein intake increases not only body fat mass but also fat-free mass. However, it remains unclear whether the increase in fat-free mass due to overfeeding is associated with an increase in total body protein mass. We evaluated the hypothesis that overfeeding would promote an increase in total body protein mass. METHODS In our randomized controlled trial, 23 healthy young men were fed a diet equivalent to their energy requirements with a +10 % energy surplus from protein alone or a +40 % energy surplus (+10 % from protein, +30 % from carbohydrate) for 6 weeks. We estimated total body protein mass by a four-compartment model using dual-energy X-ray absorptiometry, deuterium dilution, and hydrostatic underwater weighing. RESULTS The 40 % energy surplus over 6 weeks significantly increased body protein mass compared to baseline by 3.7 % (0.44 kg; 95 % confidence interval [CI], 0.21-0.67 kg; P = 0.003); however, the 10 % energy surplus did not result in a significant change (0.00 kg; 95 % CI, -0.38-0.39 kg; P = 0.980). A significant interaction between intervention duration (time) and energy surplus (group) was observed for total body protein mass (P = 0.035, linear mixed-effects model), with a trend toward a significant difference in total body protein mass gain between groups (P = 0.059, Wilcoxon rank sum test). The increase in body protein mass due to the energy surplus was correlated with an increase in fat mass (r = 0.820, p = 0.002). CONCLUSIONS A higher energy intake was found to promote an increase in body protein mass in healthy men consuming excess protein, suggesting the importance of energy surplus in body protein accumulation. This effect of energy surplus may be related to factors such as increased body fat mass and the associated secretion of adipokines. TRIAL REGISTRATION The trial was registered with the University Hospital Medical Information Network Clinical Trial Registry as UMIN000034158.
Collapse
Affiliation(s)
- Yoichi Hatamoto
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yukiya Tanoue
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Ryoichi Tagawa
- Wellness Science Labs, Meiji Holdings Co Ltd, Tokyo, Japan; School of Sports Sciences, Waseda University, Saitama, Japan
| | - Jun Yasukata
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Institute for Comprehensive Education, Kagoshima University, Kagoshima, Japan
| | - Keisuke Shiose
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Faculty of Education, University of Miyazaki, Miyazaki, Japan
| | - Yujiro Kose
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| | - Daiki Watanabe
- School of Sports Sciences, Waseda University, Saitama, Japan; Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shigeho Tanaka
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; Faculty of Nutrition, Kagawa Nutrition University, Saitama, Japan; Institute of Nutrition Sciences, Kagawa Nutrition University, Saitama, Japan
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Naoyuki Ebine
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Keisuke Ueda
- Nutritionals Development Dept. Global Nutritional Business Div. Meiji Co., Ltd. Tokyo Japan, Japan
| | - Yoshinari Uehara
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Yasuki Higaki
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Chiaki Sanbongi
- Nutrition and Food Function Group Health Science Research Unit, R&D Division, Meiji Co, Ltd, Tokyo, Japan
| | - Kentaro Kawanaka
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan; Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
4
|
Jiang H, Ding Y, Wu Y, Xie Y, Tian Q, Yang C, Liu Y, Lin X, Song B, He H, Wan L, Tian X. Eupalinolide A attenuates trauma-induced heterotopic ossification of tendon in mice by promoting YAP degradation through TOLLIP-mediated selective autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156163. [PMID: 39467430 DOI: 10.1016/j.phymed.2024.156163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Inhibiting the aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs) is an effective strategy for treating traumatic heterotopic ossification (HO) in tendons. PURPOSE This study aimed to investigate whether eupalinolide A (EA) could prevent tendon HO progression by suppressing the osteogenic differentiation of TDSCs. METHODS The effects of EA on osteogenic differentiation and key signaling pathways in TDSCs were examined in vitro to assess its therapeutic potential and elucidate the underlying molecular mechanisms. Furthermore, the therapeutic efficacy of EA was evaluated in a mouse model of trauma-induced tendon HO via local injection therapy. RESULTS EA significantly inhibited the osteogenic differentiation of TDSCs by targeting YAP in vitro. Specifically, EA facilitated the recruitment of E3 ubiquitin ligase HECW1, which mediated K27-linked polyubiquitination of YAP, leading to its degradation via the TOLLIP-mediated selective autophagy pathway. In vivo, EA mitigated trauma-induced tendon HO by inhibiting the YAP pathway. CONCLUSIONS EA could be a potential therapeutic agent for treating traumatic tendon HO. The therapeutic target HECW1 involved in YAP degradation via autophagy presents a new therapeutic avenue to attenuate the progression of traumatic tendon HO.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Orthopaedics, The State Key Clinical Specialty in Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yan Ding
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua 418000 Hunan Province, China
| | - Yongfu Wu
- Department of Pharmacy, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinyu Tian
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, 510630 Guangzhou, China
| | - Yakui Liu
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China
| | - Bin Song
- Department of Joint Surgery and Sports Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510655, China.
| | - Hebei He
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630, Guangzhou, China.
| | - Li Wan
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xinggui Tian
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany; University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
5
|
Jiang T, Ao X, Xiang X, Zhang J, Cai J, Fu J, Zhang W, Zheng Z, Chu J, Huang M, Zhang Z, Wang L. Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification. JCI Insight 2024; 10:e179759. [PMID: 39589893 PMCID: PMC11721298 DOI: 10.1172/jci.insight.179759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Soft tissue trauma can cause immune system disturbance and neuropathological invasion, resulting in heterotopic ossification (HO) due to aberrant chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the molecular mechanisms behind the interaction between the immune and nervous systems in promoting HO pathogenesis are unclear. In this study, we found that mast cell-specific deletion attenuated localized tissue inflammation, with marked inhibition of HO endochondral osteogenesis. Likewise, blockage of nerve growth factor (NGF) receptor, known as tropomyosin receptor kinase A (TrkA), led to similar attenuations in tissue inflammation and HO. Moreover, while NGF/TrkA signaling did not directly affect MSCs chondrogenic differentiation, it modulated mast cell activation in traumatic soft tissue. Mechanistically, lipid A in LPS binding to TrkA enhanced NGF-induced TrkA phosphorylation, synergistically stimulating mast cells to release neurotrophin-3 (NT3), thereby promoting MSC chondrogenic differentiation in situ. Finally, analysis of single-cell datasets and human pathological specimens confirmed the important role of mast cell-mediated neuroinflammation in HO pathogenesis. In conclusion, NGF regulates mast cells in soft tissue trauma and drives HO progression via paracrine NT3. Targeted early inhibition of mast cells holds substantial promise for treating traumatic HO.
Collapse
Affiliation(s)
- Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jieyi Cai
- Department of General Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wensheng Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhenyu Zheng
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jun Chu
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Minjun Huang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| |
Collapse
|
6
|
Lei C, Li Y, Chen J, Nie D, Song X, Lei C, Zhou Y, Wang W, Sun J. Leptin promotes tendon stem/progenitor cell senescence through the AKT-mTOR signaling pathway. Exp Cell Res 2024; 442:114274. [PMID: 39393753 DOI: 10.1016/j.yexcr.2024.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Dysregulated adipokine production is an influencing factor for the homeostatic imbalance of tendons. High levels of serum leptin may be a potential link between increasing adiposity and tendinopathy, while the detailed mechanistic explanation was not well-defined. In this study, we investigated the regulatory role of leptin in the tendon stem/progenitor cells (TSPCs) and the molecular mechanism within, and determined the effect of high levels of leptin on tendon recovery. We demonstrated that leptin reduced the viability of isolated rat TSPCs in a dose-dependent way, accompanied with increased transdifferentiation and altered gene expression of a series of extracellular matrix (ECM) enzymatic modulators. Also, we found that leptin could dose-dependently promote TSPCs senescence, while exhibiting limited effect in apoptotic or autophagic induction. Mechanistic study evidenced that leptin treatment increased the AKT/mTOR signaling activity and elevated the expression of leptin receptor (LEPR) in TSPCs, without marked change in MAPK or STAT5 activation. Further, we confirmed that rapamycin treatment, but not AKT inhibition, effectively reduced the leptin-promoted TSPCs senescence. In a rat model with Achilles wounding, exposure to leptin profoundly delayed tendon healing, which was effectively rescued with rapamycin treatment. Our results suggested that leptin could cause intrinsic cellular deficits in TSPCs and impede tendon repair through the AKT/mTOR signaling pathway. These findings evidenced for an important role of elevated leptin levels in the care of tendinopathy and tendon tears.
Collapse
Affiliation(s)
- Changbin Lei
- Department of Orthopedics, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Yanmei Li
- Department of Medical Technology and Health Management, Chongqing Nursing Vocational College, Chongqing, 400010, China; Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jiafeng Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing Medical University, Chongqing, 400010, China
| | - Daibang Nie
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing Medical University, Chongqing, 400010, China
| | - Xin Song
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing Medical University, Chongqing, 400010, China
| | - Cece Lei
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing Medical University, Chongqing, 400010, China
| | - Yiqin Zhou
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200000, China
| | - Wang Wang
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing Medical University, Chongqing, 400010, China.
| | - Jiuyi Sun
- Department of Orthropedics, Navy Medical Center of PLA, Naval Medical University, Shanghai, 200000, China.
| |
Collapse
|
7
|
Yoshida S, Nakamura S, Saita K, Oya S, Ogihara S. Differences in the Demographics and Clinical Characteristics between the Ossification of the Posterior Longitudinal Ligament and Ossification of the Ligamentum Flavum in Patients Who Underwent Thoracic Spinal Surgery for Compressive Myelopathy. Neurol Med Chir (Tokyo) 2024; 64:184-191. [PMID: 38403719 PMCID: PMC11153844 DOI: 10.2176/jns-nmc.2023-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) and ossification of the ligamentum flavum (OLF) are related diseases associated with the ossification of spinal ligaments that can occasionally lead to thoracic myelopathy. We retrospectively analyzed the clinical data of 34 consecutive patients who underwent thoracic spinal surgeries for OPLL and/or OLF at our hospital between July 2010 and June 2022, and statistically compared data between patients with thoracic OPLL (TOPLL; n = 12) and those with thoracic OLF (TOLF; n = 22). The mean age of the TOPLL group was significantly lower than that of the TOLF group (53.7 vs. 68.4 years). The TOPLL group exhibited a greater female predominance than the TOLF group (58.3% vs. 18.2%). The median body mass index of the TOPLL group was significantly higher than that of the TOLF group (33.0 vs. 26.0 kg/m2). Patients with TOPLL significantly required instrumented fusion and repetitive surgical intervention more than those with TOLF (83.3% vs. 9.1%; 50.0% vs. 0.0%). Although neurological deterioration just after the intervention was more common in patients with TOPLL (41.7% vs. 4.6%), no difference was observed in thoracic Japanese Orthopaedic Association score and recovery rate in the chronic phase between TOPLL and TOLF. The TOPLL group had a younger onset, female dominance, and a greater degree of obesity when compared with the TOLF group. The surgery for TOPLL is challenging, considering that it requires long-range decompression and fusion, subsequent operations, careful management, and long-term follow-up, when compared to TOLF, which necessitates only simple decompression.
Collapse
Affiliation(s)
- Shinsuke Yoshida
- Department of Neurosurgery, Saitama Medical Center, Saitama Medical University
| | - Sho Nakamura
- Department of Neurosurgery, Saitama Medical Center, Saitama Medical University
| | - Kazuo Saita
- Department of Orthopaedic Surgery, Saitama Medical Center, Saitama Medical University
| | - Soichi Oya
- Department of Neurosurgery, Saitama Medical Center, Saitama Medical University
| | - Satoshi Ogihara
- Department of Orthopaedic Surgery, Saitama Medical Center, Saitama Medical University
| |
Collapse
|
8
|
Jiang H, Ding Y, Lin X, Tian Q, Liu Y, He H, Wu Y, Tian X, Zwingenberger S. Malvidin attenuates trauma-induced heterotopic ossification of tendon in rats by targeting Rheb for degradation via the ubiquitin-proteasome pathway. J Cell Mol Med 2024; 28:e18349. [PMID: 38686493 PMCID: PMC11058603 DOI: 10.1111/jcmm.18349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
The pathogenesis of trauma-induced heterotopic ossification (HO) in the tendon remains unclear, posing a challenging hurdle in treatment. Recognizing inflammation as the root cause of HO, anti-inflammatory agents hold promise for its management. Malvidin (MA), possessing anti-inflammatory properties, emerges as a potential agent to impede HO progression. This study aimed to investigate the effect of MA in treating trauma-induced HO and unravel its underlying mechanisms. Herein, the effectiveness of MA in preventing HO formation was assessed through local injection in a rat model. The potential mechanism underlying MA's treatment was investigated in the tendon-resident progenitor cells of tendon-derived stem cells (TDSCs), exploring its pathway in HO formation. The findings demonstrated that MA effectively hindered the osteogenic differentiation of TDSCs by inhibiting the mTORC1 signalling pathway, consequently impeding the progression of trauma-induced HO of Achilles tendon in rats. Specifically, MA facilitated the degradation of Rheb through the K48-linked ubiquitination-proteasome pathway by modulating USP4 and intercepted the interaction between Rheb and the mTORC1 complex, thus inhibiting the mTORC1 signalling pathway. Hence, MA presents itself as a promising candidate for treating trauma-induced HO in the Achilles tendon, acting by targeting Rheb for degradation through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhouChina
| | - Yan Ding
- Department of Diagnostics, School of MedicineHunan University of MedicineHuaihuaHunan ProvinceChina
| | - Xuemei Lin
- Department of Pediatric OrthopedicsGuangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
| | - Qinyu Tian
- Department of Orthopaedics and Traumatology, Faculty of MedicineThe Chinese University of Hong KongHong KongSARChina
| | - Yakui Liu
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| | - Hebei He
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative MedicineJinan UniversityGuangzhouPR China
| | - Yongfu Wu
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhouChina
| | - Xinggui Tian
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| | - Stefan Zwingenberger
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| |
Collapse
|
9
|
Mao D, Wang K, Jiang H, Mi J, Pan X, Zhao G, Rui Y. Suppression of Overactive Insulin-Like Growth Factor 1 Attenuates Trauma-Induced Heterotopic Ossification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:430-446. [PMID: 38101566 DOI: 10.1016/j.ajpath.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Heterotopic ossification (HO) is the ectopic bone formation in soft tissues. Aside from hereditary HO, traumatic HO is common after orthopedic surgery, combat-related injuries, severe burns, or neurologic injuries. Recently, mammalian target of rapamycin (mTOR) was demonstrated to be involved in the chondrogenic and osteogenic processes of HO formation. However, its upstream signaling mechanism remains unknown. The current study used an Achilles tendon puncture-induced HO model to show that overactive insulin-like growth factor 1 (IGF-1) was involved in the progression of HO in mice. Micro-computed tomography imaging showed that IGF-1 not only accelerated the rate of osteogenesis and increased ectopic bone volume but also induced spontaneous ectopic bone formation in undamaged Achilles tendons. Blocking IGF-1 activity with IGF-1 antibody or IGF-1 receptor inhibitor picropodophyllin significantly inhibited HO formation. Mechanistically, IGF-1/IGF-1 receptor activates phosphatidylinositol 3-kinase (PI3K)/Akt signaling to promote the phosphorylation of mTOR, resulting in the chondrogenic and osteogenic differentiation of tendon-derived stem cells into chondrocytes and osteoblasts in vitro and in vivo. Inhibitors of PI3K (LY294002) and mTOR (rapamycin) both suppressed the IGF-1-stimulated mTOR signal and mitigated the formation of ectopic bones significantly. In conclusion, these results indicate that IGF-1 mediated the progression of traumatic HO through PI3K/Akt/mTOR signaling, and suppressing IGF-1 signaling cascades attenuated HO formation, providing a promising therapeutic strategy targeting HO.
Collapse
Affiliation(s)
- Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China; Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hong Jiang
- Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Department of Hand Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingyi Mi
- Department of Sports Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China.
| | - Yongjun Rui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
10
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
11
|
Jiang H, Xie Y, Lu J, Li H, Zeng K, Hu Z, Wu D, Yang J, Yao Z, Chen H, Gong X, Yu X. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 2024; 20:76-93. [PMID: 37647255 PMCID: PMC10761048 DOI: 10.1080/15548627.2023.2249392] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1β: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenxia Yao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Gong
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Luo G, Sun Z, Liu H, Yuan Z, Wang W, Tu B, Li J, Fan C. Verteporfin attenuates trauma-induced heterotopic ossification of Achilles tendon by inhibiting osteogenesis and angiogenesis involving YAP/β-catenin signaling. FASEB J 2023; 37:e23057. [PMID: 37367700 DOI: 10.1096/fj.202300568r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Heterotopic ossification occurs as a pathological ossification condition characterized by ectopic bone formation within soft tissues following trauma. Vascularization has long been established to fuel skeletal ossification during tissue development and regeneration. However, the feasibility of vascularization as a target of heterotopic ossification prevention remained to be further clarified. Here, we aimed to identify whether verteporfin as a widely used FDA-approved anti-vascularization drug could effectively inhibit trauma-induced heterotopic ossification formation. In the current study, we found that verteporfin not only dose dependently inhibited the angiogenic activity of human umbilical vein endothelial cells (HUVECs) but also the osteogenic differentiation of tendon stem cells (TDSCs). Moreover, YAP/β-catenin signaling axis was downregulated by the verteporfin. Application of lithium chloride, an agonist of β-catenin, recovered TDSCs osteogenesis and HUVECs angiogenesis that was inhibited by verteporfin. In vivo, verteporfin attenuated heterotopic ossification formation by decelerating osteogenesis and the vessels densely associated with osteoprogenitors formation, which could also be readily reversed by lithium chloride, as revealed by histological analysis and Micro-CT scan in a murine burn/tenotomy model. Collectively, this study confirmed the therapeutic effect of verteporfin on angiogenesis and osteogenesis in trauma-induced heterotopic ossification. Our study sheds light on the anti-vascularization strategy with verteporfin as a candidate treatment for heterotopic ossification prevention.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhengqiang Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bing Tu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, PR China
| |
Collapse
|
13
|
Ye G, Huang Y, Yin L, Wang J, Huang X, Bin X. Association between LEPR polymorphism and susceptibility of osteoporosis in Chinese Mulao people. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:10-16. [PMID: 35086395 DOI: 10.1080/21691401.2021.2020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To explore the association between the single nucleotide polymorphism (SNP) of leptin receptor (LEPR) gene and the susceptibility to osteoporosis (OP) among Chinese Mulao people. A total of 738 people were involved. Bone mineral density (BMD) was examined by calcaneus ultrasound attenuation measurement. Six SNPs of LEPR were detected. The genotypes, allele frequencies, linkage disequilibrium, and haplotype were analyzed. BMD decreased with age and males had higher BMD than women. The proportion of normal bone mass decreased with age, and morbidity of OP increased. Three out of six SNPs showed a difference between OP and normal group. Individuals with AA genotype of rs1137100 in OP group outnumber the normal group, AA increased the risk of OP. In rs2767485, CT increased the risk of OP, C allele may be susceptible to OP. TT genotype of rs465555 was susceptible genotype of OP, T locus may be associated with OP. Strong linkage disequilibrium was detected among rs1137100, rs1137101, and rs4655555. Four haplotypes were constructed, among which, AACGCT and GGTGTA increased the risk of OP by 3.9 and 4.2 times, respectively, whereas, GGCGTA reduced 74% of OP susceptibility. The rs1137100, rs2767485, and rs465555 of LEPR were associated with OP in Chinese Mulao people.
Collapse
Affiliation(s)
- Guangbin Ye
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China.,Medical College of Guangxi University, Nanning, China
| | | | - Lianfei Yin
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiufeng Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoyun Bin
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
14
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
15
|
Galunisertib attenuates progression of trauma-induced heterotopic ossification via blockage of Smad2/3 signaling in mice. Eur J Pharmacol 2022; 928:175109. [PMID: 35738451 DOI: 10.1016/j.ejphar.2022.175109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Heterotopic ossification (HO) is the formation of bony tissues in the extraskeletal system. To date, no effective therapy has been developed for the treatment of HO, although increasing evidences have shown that inhibition of TGF-β signaling has potential as a new therapeutic approach for attenuating HO progression. Results from previous clinical trials have demonstrated that patients with malignant tumors exhibit excellent tolerability to Galunisertib, a TGF-β receptor I kinase inhibitor. However, its therapeutic potential in preventing HO and inhibitory effect on osteogenesis remain unclear. In this study, we demonstrated that intragastrical administration of Galunisertib, at a concentration as low as 10 mg/kg, was not only fairly effective in preventing HO development in a dose-dependent manner, but also generated a non-toxic response in a novel Achilles tendon puncture-induced traumatic HO model in mice. Moreover, Galunisertib treatment in the early phases of HO development, including the inflammatory and chondrogenic period, resulted in better therapeutic effects instead of eliminating already formed bony tissues. Mechanistically, Galunisertib suppressed the osteogenic differentiation capacity of tendon-derived stem cells (TDSCs) by interfering with the Smad2/3 signaling pathway, blocking the phosphorylation of Smad2/3 translocated from cytoplasm into the nucleus to regulate the expression of both osteogenesis-related transcription factors and related proteins. Results from in vivo experiments further validated Galunisertib's effect on HO attenuation, by intercepting the TGF-β/Smad2/3 signaling pathway. In conclusion, our findings demonstrated Galunisertib's potential as a prophylactic drug for the treatment of traumatic HO or other related diseases triggered by over-expressed TGF-β.
Collapse
|
16
|
Sun Y, Lin Y, Chen Z, Breland A, Lineaweaver WC, Zhang F. Heterotopic Ossification in Burn Patients. Ann Plast Surg 2022; 88:S134-S137. [PMID: 34270474 DOI: 10.1097/sap.0000000000002901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Heterotopic ossification (HO) is a known complication of burns. The incidence of this complication is low. The etiology is unclear, but experiment conducted about HO can be significant. Currently, there are still no targeted, effective preventive and therapeutic measures against it. In this study, the relevant literature is summarized to demonstrate the potential pathogenic mechanisms, diagnosis, prophylaxis, and treatment measures of HO in burn patients. Early diagnosis and treatment can be effective in improving the prognosis of patients.
Collapse
Affiliation(s)
- Yi Sun
- From the Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University
| | - Yuzhe Lin
- From the Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University
| | | | | | | | | |
Collapse
|
17
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
18
|
Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and tendinopathy. J Orthop Translat 2022; 31:80-90. [PMID: 34976728 PMCID: PMC8666605 DOI: 10.1016/j.jot.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic tendinopathy is a debilitating tendon disorder with disappointing treatment outcomes. This review focuses on the potential roles of chronic low-grade inflammation in promoting tendinopathy in obesity. A systematic literature search was performed to identify all clinical studies supporting the actions of obesity-associated inflammatory mediators in the development of tendinopathy. The mechanisms of obesity-induced chronic inflammation in adipose tissue are firstly reviewed. Common inflammatory mediators potentially linking obesity and the development of tendinopathy, and their association with mechanical overuse, are discussed, along with pre-clinical evidences and a systematic literature search on clinical studies. The potential contribution of local adipose tissues in the promotion of inflammation, pain and tendon degeneration is then discussed. The future research directions are proposed. Translational potential statement Better understanding of the roles of obesity-associated inflammatory mediators on tendons will clarify the pathophysiological drivers of tendinopathy in patients with obesity and identify possible treatment targets. Further studies on the mechanisms of obesity-induced chronic inflammation on tendon are a promising direction for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Corresponding author. Room 74037, 5/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, China.
| | | |
Collapse
|
19
|
Cebey-López M, Currás-Tuala MJ, Gómez-Rial J, Rivero-Calle I, Pardo-Seco J, Mendez-Gallart R, Pischedda S, Gómez-Carballa A, Barral-Arca R, Justicia-Grande A, Viz-Lasheras S, Rodríguez-Tenreiro C, Gómez R, Salas A, Martinón-Torres F. Case Report: Everolimus reduced bone turnover markers but showed no clinical benefit in a patient with severe progressive osseous heteroplasia. Front Pediatr 2022; 10:936780. [PMID: 36483469 PMCID: PMC9723155 DOI: 10.3389/fped.2022.936780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progressive osseous heteroplasia (POH) is an ultrarare genetic disorder characterized by an inactivating mutation in the GNAS gene that causes heterotopic ossification. Inhibition of the mammalian target of the rapamycin (mTOR) signalling pathway has been proposed as a therapy for progressive bone fibrodysplasia and non-genetic forms of bone heteroplasia. Herein, we describe the impact of using Everolimus as a rescue therapy for an identical twin girl exhibiting an aggressive clinical phenotype of POH. METHODS Clinical evaluation of the progression of the disease during Everolimus treatment was performed periodically. Cytokine markers involved in bone metabolism and protein markers related to bone activity were analyzed to explore bone turnover activity. RESULTS The patient received Everolimus therapy for 36 weeks. During treatment, no clinical improvement of the disease was perceived. Analysis of biochemical parameters, namely, β-CTX (r 2 = -0.576, P-value = 0.016) and PNIP (r 2 = -0.598, P-value = 0.011), indicated that bone turnover activity was significantly reduced. Additionally, bone metabolism-related biomarkers showed only a significant positive correlation with PTH levels. CONCLUSIONS Everolimus treatment did not modify the clinical progression of the disease in an aggressive form of POH, although an impact on the protein markers studied was observed.
Collapse
Affiliation(s)
- M Cebey-López
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - M J Currás-Tuala
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Gómez-Rial
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Servicio de inmunologia, Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Santiago de Compostela, Spain
| | - I Rivero-Calle
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Pardo-Seco
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Mendez-Gallart
- Pediatric Surgery, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - S Pischedda
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Gómez-Carballa
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Barral-Arca
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Justicia-Grande
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - S Viz-Lasheras
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodríguez-Tenreiro
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital (SERGAS), Santiago de Compostela, Spain
| | - A Salas
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,GenPoB Research Group, Instituto de Investigación Sanitaria, Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Spain
| | - F Martinón-Torres
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Bolam SM, Park YE, Konar S, Callon KE, Workman J, Monk AP, Coleman B, Cornish J, Vickers MH, Munro JT, Musson DS. Obesity Impairs Enthesis Healing After Rotator Cuff Repair in a Rat Model. Am J Sports Med 2021; 49:3959-3969. [PMID: 34694156 DOI: 10.1177/03635465211049219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Being overweight or obese is associated with poor outcomes and an increased risk of failure after rotator cuff (RC) surgery. However, the effect of obesity on enthesis healing has not been well characterized. HYPOTHESES Diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of RC repair, and a dietary intervention in the perioperative period would improve enthesis healing. STUDY DESIGN Controlled laboratory study. METHODS Male Sprague-Dawley rats were divided into 3 weight-matched groups (n = 26 per group): control diet (CD), high-fat diet (HFD), or HFD until surgery and then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate repair. Animals were sacrificed, and RCs were harvested at 2 and 12 weeks after surgery for biomechanical and histological evaluations. Metabolic end points were assessed using dual-energy X-ray absorptiometry and plasma analyses. RESULTS DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. At 12 weeks after surgery, the body fat percentage (P = .0021) and plasma leptin concentration (P = .0025) were higher in the HFD group compared with the CD group. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.20 (P = .0078), 4.98 (P = .0003), and 8.68 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P = .0278) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P = .0960). There were no differences in the biomechanical and histological results between the groups at 2 weeks after surgery. Body mass at the time of surgery, plasma leptin concentration, and body fat percentage were negatively correlated with histology scores and plasma leptin concentration was correlated with load to failure at 12 weeks after surgery. CONCLUSION DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring a normal weight with dietary changes after surgery did not improve healing outcomes. CLINICAL RELEVANCE Obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after surgery. Exploring interventions that improve the metabolic state of obese patients and counseling patients appropriately about their modest expectations after repair should be considered.
Collapse
Affiliation(s)
- Scott M Bolam
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Young-Eun Park
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Karen E Callon
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Josh Workman
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - A Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - David S Musson
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Deshmukh V, Seo T, O'Green A, Ibanez M, Hofilena B, KC S, Stewart J, Dellamary L, Chiu K, Ghias A, Barroga C, Kennedy S, Tambiah J, Hood J, Yazici Y. SM04755, a small-molecule inhibitor of the Wnt pathway, as a potential topical treatment for tendinopathy. J Orthop Res 2021; 39:2048-2061. [PMID: 33104243 PMCID: PMC8451793 DOI: 10.1002/jor.24898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
The Wnt pathway is upregulated in tendinopathy, affecting inflammation and tenocyte differentiation. Given its potential role in tendinopathy, this signaling pathway may be a relevant target for treatment. The current study examined the therapeutic potential of SM04755, a topical, small-molecule Wnt pathway inhibitor, for the treatment of tendinopathy using in vitro assays and animal models. In vitro, SM04755 decreased Wnt pathway activity, induced tenocyte differentiation, and inhibited catabolic enzymes and pro-inflammatory cytokines in human mesenchymal stem cells, rat tendon-derived stem cells, and human peripheral blood mononuclear cells. Evaluation of the mechanism of action of SM04755 by biochemical profiling and computational modeling identified CDC-like kinase 2 (CLK2) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) as molecular targets. CLK and DYRK1A inhibition by siRNA knockdown or pharmacological inhibition induced tenocyte differentiation and reduced tenocyte catabolism. In vivo, topically applied SM04755 showed therapeutically relevant exposure in tendons with low systemic exposure and no detectable toxicity in rats. Moreover, SM04755 showed reduced tendon inflammation and evidence of tendon regeneration, decreased pain, and improved weight-bearing function in rat collagenase-induced tendinopathy models compared with vehicle control. Together, these data demonstrate that CLK2 and DYRK1A inhibition by SM04755 resulted in Wnt pathway inhibition, enhanced tenocyte differentiation and protection, and reduced inflammation. SM04755 has the potential to benefit symptoms and modify disease processes in tendinopathy.
Collapse
Affiliation(s)
| | - Tim Seo
- Samumed, LLCSan DiegoCaliforniaUSA
| | | | | | | | - Sunil KC
- Samumed, LLCSan DiegoCaliforniaUSA
| | | | | | | | | | | | | | | | - John Hood
- Formerly Samumed, LLCSan DiegoCaliforniaUSA
| | | |
Collapse
|
22
|
Xu K, Lin C, Ma D, Chen M, Zhou X, He Y, Moqbel SAA, Ma C, Wu L. Spironolactone Ameliorates Senescence and Calcification by Modulating Autophagy in Rat Tendon-Derived Stem Cells via the NF- κB/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5519587. [PMID: 34306308 PMCID: PMC8263237 DOI: 10.1155/2021/5519587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/24/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Tendinopathy is a disabling musculoskeletal disease, the pathological process of which is tightly associated with inflammation. Spironolactone (SP) has been widely used as a diuretic in clinical practice. Recently, SP has shown anti-inflammatory features in several diseases. Tendon-derived stem cells (TDSCs), a subset cell type from tendon tissue possessing clonogenic capacity, play a vital role in the pathological process of tendinopathy. In the present study, the protective effect of SP on TDSCs was demonstrated under simulated tendinopathy conditions both in vitro and in vivo. SP contributed to the maintenance of TDSC-specific genes or proteins, while suppressing the interleukin- (IL-) 1β-induced overexpression of inflammation-mediated factors. Additionally, IL-1β-induced cellular senescence in TDSCs was inhibited, while autophagy was enhanced, as determined via β-galactosidase activity, western blot (WB), and quantitative real-time polymerase chain reaction analysis. With the aid of several emerging bioinformatics tools, the mitogen-activated protein kinase (MAPK) pathway likely participated in the effect of SP, which was further validated through WB analysis and the use of MAPK agonist. Immunofluorescence analysis and an NF-κB agonist were used to confirm the inhibitory effect of SP on IL-1β-induced activation of the NF-κB pathway. X-ray, immunofluorescence, immunohistochemistry, hematoxylin and eosin staining, histological grades, and Masson staining showed that SP ameliorated tendinopathy in an Achilles tenotomy (AT) rat model in vivo. This work elucidates the protective role of SP on the pathological process of tendinopathy both in vitro and in vivo, indicating a potential therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Mengyao Chen
- Department of Medical Oncology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
23
|
Elli S, Schiaffini G, Macchi M, Spezia M, Chisari E, Maffulli N. High-fat diet, adipokines and low-grade inflammation are associated with disrupted tendon healing: a systematic review of preclinical studies. Br Med Bull 2021; 138:126-143. [PMID: 34057461 DOI: 10.1093/bmb/ldab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aetiopathogenesis of tendinopathy is uncertain, but inflammation may play a role in the early phase of tendinopathy and in tendon healing response. We investigated the most up-to-date evidence about the association between obesity, high-fat diet and tendinopathy, focusing on the role of adipokines, inflammatory pathways and molecular changes. SOURCES OF DATA A systematic review was performed searching PubMed, Embase and Cochrane Library databases following the PRISMA guidelines. We included studies of any level of evidence published in peer-reviewed journals. The risk of bias (SIRCLE) was assessed, as was the methodological quality (CAMARADES) of the included studies. We excluded all the articles with a high risk of bias and/or low quality after the assessment. After applying the inclusion and exclusion criteria, we included 14 studies of medium or high quality. AREAS OF AGREEMENT A high-fat diet negatively affects tendon quality, increasing the risk of rupture and tendinopathy. AREAS OF CONTROVERSY Controversial evidence exists on both tendon fat infiltration secondary to a dysregulation of the lipid metabolism and of a molecular effect of inflammatory pathways. GROWING POINTS The secretion of adipokines is strictly related to fat ingestion and body composition and can potentially act on tendon physiology and injury. AREAS TIMELY FOR DEVELOPING RESEARCH Adipokines, low-grade inflammation and fat intake play a role in disrupting tendon healing and setting up tendinopathy. Further high-quality research is needed to better define the molecular pathways involved.
Collapse
Affiliation(s)
- Silvia Elli
- University of Milan, Via Festa del Perdono 7 - 20122 Milano, Italy
| | | | - Marina Macchi
- University of Milan, Via Festa del Perdono 7 - 20122 Milano, Italy
| | - Matteo Spezia
- University of Padua, Via 8 Febbraio, 2 - 35122 Padova, Italy
| | - Emanuele Chisari
- University of Catania, Piazza Università, 2 - 95131 Catania, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy.,Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4DG, UK.,Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke on Trent ST4 7QB, UK
| |
Collapse
|
24
|
Kusano T, Nakatani M, Ishiguro N, Ohno K, Yamamoto N, Morita M, Yamada H, Uezumi A, Tsuchida K. Desloratadine inhibits heterotopic ossification by suppression of BMP2-Smad1/5/8 signaling. J Orthop Res 2021; 39:1297-1304. [PMID: 32043642 DOI: 10.1002/jor.24625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/30/2020] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is a pathological condition in which ectopic bone forms within soft tissues such as skeletal muscle. Human platelet-derived growth factor receptor α positive (PDGFRα+) cells, which were proved to be the original cells of HO were incubated in osteogenic differentiation medium with Food and Drug Administration-approved compounds. Alkaline phosphatase activity was measured as a screening to inhibit osteogenic differentiation. For the compounds which inhibited osteogenic differentiation of PDGFRα+ cells, we examined dose dependency of its effect using alizarin red S staining and its cell toxicity using WST-8. In addition, regulation of bone morphogenetic proteins (BMP)-Smad signaling which is the major signal of osteogenic differentiation was investigated by Western blotting to elucidate the mechanism of osteogenesis inhibitory effect by the compound. In vivo experiment, complete transverse incision of Achilles tendons in mice was made and mice were fed the compound by mixing with drinking water after operation. Ten weeks after operation, we assessed and quantified HO by micro-computed tomography scan. Intriguingly, we discovered desloratadine inhibited osteogenic differentiation of PDGFRα+ cells using the drug repositioning method. Desloratadine inhibited osteogenic differentiation of the cells dose dependently without cell toxicity. Desloratadine suppressed phosphorylation of Smad1/5/8 induced by BMP2 in PDGFRα+ cells. In Achilles tenotomy mice model, desloratadine treatment significantly inhibited ectopic bone formation compared with control. In conclusion, we discovered desloratadine inhibited osteogenic differentiation using human PDGFRα+ cells and proved its efficacy using Achilles tenotomy ectopic bone formation model in vivo. Our study paved the way to inhibit HO in early clinical use because of its guaranteed safety.
Collapse
Affiliation(s)
- Taiki Kusano
- Department of Orthopaedic Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.,Division of Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Naoki Yamamoto
- Center for Joint Research Facilities Support, Fujita Health University, Research Promotion and Support Headquarters, Toyoake, Japan
| | - Mitsuhiro Morita
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Harumoto Yamada
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Akiyoshi Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
25
|
Wang T, Chen P, Chen L, Zhou Y, Wang A, Zheng Q, Mitchell CA, Leys T, Tuan RS, Zheng MH. Reduction of mechanical loading in tendons induces heterotopic ossification and activation of the β-catenin signaling pathway. J Orthop Translat 2021; 29:42-50. [PMID: 34094857 PMCID: PMC8142054 DOI: 10.1016/j.jot.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tendons are the force transferring tissue that enable joint movement. Excessive mechanical loading is commonly considered as a primary factor causing tendinopathy, however, an increasing body of evidence supports the hypothesis that overloading creates microdamage of collagen fibers resulting in a localized decreased loading on the cell population within the damaged site. Heterotopic ossification is a complication of late stage tendinopathy, which can significantly affect the mechanical properties and homeostasis of the tendon. Here, we the examine the effect of mechanical underloading on tendon ossification and investigate its underlying molecular mechanism. Method Rabbit Achilles tendons were dissected and cultured in an underloading environment (3% cyclic tensile stain,0.25 Hz, 8 h/day) for either 10, 15 or 20 days. Using isolated tendon-derived stem cells (TDSCs) 3D constructs were generated, cultured and subjected to an underloading environment for 6 days. Histological assessments were performed to evaluate the structure of the 3D constructs; qPCR and immunohistochemistry were employed to study TDSC differentiation and the β-catenin signal pathway was investigated by Western blotting. Mechanical testing was used to determine ability of the tendon to withstand force generation. Result Tendons cultured for extended times in an environment of underloading showed progressive heterotopic ossification and a reduction in biomechanical strength. qPCR revealed that 3D TDSCs constructs cultured in an underloading environment exhibited increased expression of several osteogenic genes: these include RUNX2, ALP and osteocalcin in comparison to tenogenic differentiation markers (scleraxis and tenomodulin). Immunohistochemical analysis further confirmed high osteocalcin production in 3D TDSCs constructs subject to underloading. Western blotting of TDSC constructs revealed that β-catenin accumulation and translocation were associated with an increase in phosphorylation at Ser552 and decrease phosphorylation at Ser33. Conclusion These findings unveil a potential mechanism for heterotopic ossification in tendinopathy due to the underloading of TDSCs at the damage sites, and also that β-catenin could be a potential target for treating heterotopic ossification in tendons. The Translational potential Tendon heterotopic ossification detrimentally affect quality of life especially for those who has atheletic career. This study reveals the possible mechanism of heterotpic ossification in tendon related to mechanical loading. This study provided the possible to develop a mechanical stimulation protocol for preventive and therapeutic purpose for tendon heterotopic ossification.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Peilin Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Lianzhi Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Christopher A Mitchell
- Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Toby Leys
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ming H Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Wei B, Lu J. Characterization of Tendon-Derived Stem Cells and Rescue Tendon Injury. Stem Cell Rev Rep 2021; 17:1534-1551. [PMID: 33651334 DOI: 10.1007/s12015-021-10143-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
The natural healing ability of tendon is limited, and it cannot restore the native structure and function of tendon injuries. Tendon-derived stem cells (TDSCs) are a new type of pluripotent stem cells with multi-directional differentiation potential and are expected to become a promising cell-seed for the treatment of tendon injuries in the future. In this review, we outline the latest advances in the culture and identification of TDSCs. In addition, the influencing factors on the differentiation of TDSCs are discussed. Moreover, we aim to discuss recent studies to enhance TDSCs treatment of injured tendons. Finally, we identify the limitations of the current understanding of TDSCs biology, the main challenges of using their use, and potential therapeutic strategies to inform cell-based tendon repair.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Zhang J, Tang J, Liu J, Yan B, Yan B, Huang M, Zhang Z, Wang L. Melatonin Promotes Heterotopic Ossification Through Regulation of Endothelial-Mesenchymal Transition in Injured Achilles Tendons in Rats. Front Cell Dev Biol 2021; 9:629274. [PMID: 33644068 PMCID: PMC7905064 DOI: 10.3389/fcell.2021.629274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Although heterotopic ossification (HO) has been reported to be a common complication of the posttraumatic healing process, the underlying mechanism remains unknown. Endothelial-mesenchymal transition (EndMT) is known to play a role in HO, and our recent study observed that neuroendocrine signals can promote HO by modulating EndMT. Melatonin, a neuroendocrine hormone secreted mainly by the pineal gland, has been documented to perform its function in the skeletal system. This study aimed at describing the expression of melatonin during the formation of HO in rat models of Achilles tendon injury and to further investigate its role in regulating EndMT in HO. Histological staining revealed the expression of melatonin throughout the formation of heterotopic bone in injured Achilles tendons, and the serum melatonin levels were increased after the initial injury. Double immunofluorescence showed that the MT2 melatonin receptor was notably expressed at the sites of injury. Micro-CT showed the enhancement of heterotopic bone volume and calcified areas in rats treated with melatonin. Additionally, our data showed that melatonin induced EndMT in primary rat aortic endothelial cells (RAOECs), which acquired traits including migratory function, invasive function and EndMT and MSC marker gene and protein expression. Furthermore, our data exhibited that melatonin promoted the osteogenic differentiation of RAOECs undergoing EndMT in vitro. Importantly, inhibition of the melatonin-MT2 pathway by using the MT2 selective inhibitor 4-P-PDOT inhibited melatonin-induced EndMT and osteogenesis both in vivo and in vitro. In conclusion, these findings demonstrated that melatonin promoted HO through the regulation of EndMT in injured Achilles tendons in rats, and these findings might provide additional directions for the management of HO.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jiajun Tang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bo Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| |
Collapse
|
28
|
Xu K, Zhang Z, Chen M, Moqbel SAA, He Y, Ma C, Jiang L, Xiong Y, Wu L. Nesfatin-1 Promotes the Osteogenic Differentiation of Tendon-Derived Stem Cells and the Pathogenesis of Heterotopic Ossification in Rat Tendons via the mTOR Pathway. Front Cell Dev Biol 2020; 8:547342. [PMID: 33344440 PMCID: PMC7744791 DOI: 10.3389/fcell.2020.547342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition involved in tendinopathy. Adipokines are known to play a key role in HO of tendinopathy. Nesfatin-1, an 82-amino acid adipokine is closely reportedly associated with diabetes mellitus (DM), which, in turn, is closely related to tendinopathy. In the present study, we aimed to investigate the effects of nesfatin-1 on the osteogenic differentiation of tendon-derived stem cells (TDSCs) and the pathogenesis of tendinopathy in rats. In vitro, TDSCs were incubated in osteogenic induction medium for 14 days with different nesfatin-1 concentration. In vivo, Sprague Dawley rats underwent Achilles tenotomy to evaluate the effect of nesfatin-1 on tendinopathy. Our results showed that the expression of nesfatin-1 expression in tendinopathy patients was significantly higher than that in healthy subjects. Nesfatin-1 affected the cytoskeleton and reduced the migration ability of TDSCs in vitro. Furthermore, nesfatin-1 inhibited the expression of Scx, Mkx, and Tnmd and promoted the expression of osteogenic genes, such as COL1a1, ALP, and RUNX2; these results suggested that nesfatin-1 inhibits cell migration, adversely impacts tendon phenotype, promotes osteogenic differentiation of TDSCs and the pathogenesis of HO in rat tendons. Moreover, we observed that nesfatin-1 suppressed autophagy and activated the mammalian target of rapamycin (mTOR) pathway both in vitro and in vivo. The suppression of the mTOR pathway alleviated nesfatin-1-induced HO development in rat tendons. Thus, nesfatin-1 promotes the osteogenic differentiation of TDSC and the pathogenesis of HO in rat tendons via the mTOR pathway; these findings highlight a new potential therapeutic target for tendinopathy.
Collapse
Affiliation(s)
- Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanfeng Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, The First People's Hospital of Huzhou, Huzhou, China
| | - Mengyao Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Moqbel SAA, Xu K, Chen Z, Xu L, He Y, Wu Z, Ma C, Ran J, Wu L, Xiong Y. Tectorigenin Alleviates Inflammation, Apoptosis, and Ossification in Rat Tendon-Derived Stem Cells via Modulating NF-Kappa B and MAPK Pathways. Front Cell Dev Biol 2020; 8:568894. [PMID: 33195199 PMCID: PMC7642480 DOI: 10.3389/fcell.2020.568894] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Tendinopathy is a common musculoskeletal disorder that mainly affects athletes and people of older age. Tumor necrosis factor-α (TNF-α) plays an important role in initiating tendinopathy. Tectorigenin, an extract component of Belam-canda Chinesis, possesses anti-inflammatory and anti-apoptosis activity. The present study was established to investigate the role of tectorigenin against the pathogenetic effects of TNF-α on tendon-derived stem cells (TDSCs) in vivo and in vitro. The findings indicated that TNF-α is able to induce TDSC inflammation, apoptosis, and ossification, as well as activate nuclear factor-kappa B and mitogen-activated protein kinase (MAPK). Furthermore, the results confirmed that tectorigenin is able to inhibit the TNF-α-induced inflammation, apoptosis, and ossification. Tectorigenin treatment decreases activation of NF-kappa B and MAPK signaling in TDSCs. Tectorigenin ameliorates tendinopathy in the in vivo rat model. Thus, these data reveal that tectorigenin can serve as a potential treatment for tendinopathy.
Collapse
Affiliation(s)
- Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuezhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Gao Y, Xi B, Li J, Li Z, Xu J, Zhong M, Xu Q, Lian Y, Wei R, Wang L, Cao H, Jin L, Zhang K, Dong J. Scoparone alleviates hepatic fibrosis by inhibiting the TLR-4/NF-κB pathway. J Cell Physiol 2020; 236:3044-3058. [PMID: 33090488 DOI: 10.1002/jcp.30083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-β, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors' tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.
Collapse
Affiliation(s)
- Ya Gao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Boting Xi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jiani Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zimeng Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Qiongmei Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Yuanyu Lian
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Riming Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Liping Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
31
|
Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats. J Transl Med 2020; 100:762-776. [PMID: 31896816 DOI: 10.1038/s41374-019-0367-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition that results from traumatic injuries or genetic diseases, for which the underlying mechanisms remain unclear. Recently, we have demonstrated the expression of neurotrophin-3 (NT-3) and its role in promoting HO formation via mediating endothelial-mesenchymal transition (EndMT) of vascular endothelial cells. The current study investigated the role of NT-3 on the surrounding mesenchymal cells and its potential origin throughout HO formation at injured Achilles tendons in rats. We used an Achilles tenotomy to induce HO formation in vivo and cultured primary tendon-derived stem cells (TDSCs) to investigate the underlying mechanisms mediating the osteogenesis in vitro. Furthermore, RAW264.7 cells were employed to identify the origin of NT-3. The mRNA levels of NGF, BDNF, NT-3, and NT-4 and their tyrosine protein kinase (Trk) receptors as well as p75 receptor were elevated at injury sites. NT-3 and TrkC showed the highest induction. Neutralization of the NT-3-induced effects by the pan-Trk inhibitor GNF5837 reduced the expression of bone/cartilage-related genes while injection of NT-3 promoted HO formation with elevated mRNA of bone/cartilage-related markers at injured sites. In vitro, NT-3 accelerated osteogenic differentiation and mineralization of TDSCs through activation of the ERK1/2 and PI3K/Akt signaling pathways. Moreover, the colocalization of NT-3 and macrophages, including M1 and M2 macrophages, was observed in injured sites throughout HO formation, and in vitro studies demonstrated that activated macrophages mediated the secretion of NT-3. In addition, an increasing concentration of serum or supernatant NT-3 was observed both in vivo and in vitro. Depletion of macrophages with clodronate-loaded liposomes reduced HO formation as well as secretion and mRNA expression of NT-3. Our study suggests that macrophage-derived NT-3 may promote HO formation and osteogenesis of TDSCs via the ERK1/2 and PI3K/Akt signaling pathways, which may provide new insights for the therapeutic directions of HO in the future.
Collapse
|
32
|
Chen Y, Shen W, Tang C, Huang J, Fan C, Yin Z, Hu Y, Chen W, Ouyang H, Zhou Y, Mao Z, Chen X. Targeted pathological collagen delivery of sustained-release rapamycin to prevent heterotopic ossification. SCIENCE ADVANCES 2020; 6:eaay9526. [PMID: 32494667 PMCID: PMC7239699 DOI: 10.1126/sciadv.aay9526] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/07/2020] [Indexed: 05/29/2023]
Abstract
Heterotopic ossification (HO) in connective tissues like tendons and ligaments severely damages tissue structure. The pathogenesis of HO remains unclear but may involve mTOR. The results presented here indicate that tendon stem/progenitor cells do not undergo osteochondrogenic differentiation when mTOR signaling is inactivated by gene knockout or rapamycin (RAPA) treatment. Meanwhile, it is necessary to deliver RAPA to the injured sites and avoid disturbing the normal tendon. A RAPA delivery system, developed using collagen hybrid peptide (CHP) to modify the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, targeted RAPA specifically to pathological tendon collagen. The CHP-PLGA-RAPA nanoparticles showed excellent pathological collagen affinity, sustained-release ability, and bioactivity. In a mouse model of tendon HO, CHP-PLGA-RAPA nanoparticles specifically bound to pathological tendon and strongly suppressed HO progression. The mTOR signaling pathway appears to be a viable therapeutic target for tendon HO, and CHP-PLGA nanoparticles may be valuable for the treatment of tendon-related diseases.
Collapse
Affiliation(s)
- Yangwu Chen
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chenqi Tang
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jiayun Huang
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chunmei Fan
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yejun Hu
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weishan Chen
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yiting Zhou
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Chen
- Dr. Li Dak Sum–Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
33
|
Antiaging Factor Klotho Retards the Progress of Intervertebral Disc Degeneration through the Toll-Like Receptor 4-NF- κB Pathway. Int J Cell Biol 2020; 2020:8319516. [PMID: 32256598 PMCID: PMC7106913 DOI: 10.1155/2020/8319516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Antiaging protein Klotho exhibits impressive properties of anti-inflammation, however is declined early after intervertebral disc injury, making Klotho restoration an attractive strategy of treating intervertebral disc inflammatory disorders. Here, we have found that Klotho is enriched in nucleus pulposus (NP) cells and Klotho overexpression attenuates H2O2-induced acute inflammation essentially via suppressing Toll-like receptor 4 (TLR4). The proinflammatory NF-κB signaling and cytokine expressions paralleled with Klotho repression and TLR4 elevation in both NP cells (H2O2 treatment) and rat intervertebral disc (needle puncture treatment). Overexpression of TLR4 downregulated expression of Klotho, whereas interfering TLR4 expression diminished the inhibitory effects of H2O2 on Klotho in NP cells. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and intervertebral disc protective effects in an Intervertebral Disc Degeneration (IDD) model. Thus, our study indicates that TLR4-NF-κB signaling and Klotho form a negative-feedback loop in NP cells. Also, we demonstrate that the expression of Klotho is regulated by the balance between upregulation and downregulation of TLR4-NF-κB signaling.
Collapse
|
34
|
Xu L, Xu K, Wu Z, Chen Z, He Y, Ma C, Moqbel SAA, Ran J, Zhang C, Wu L, Xiong Y. Pioglitazone attenuates advanced glycation end products-induced apoptosis and calcification by modulating autophagy in tendon-derived stem cells. J Cell Mol Med 2020; 24:2240-2251. [PMID: 31957239 PMCID: PMC7011144 DOI: 10.1111/jcmm.14901] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the prominent risk factors for pathological development and progression of tendinopathy. One feature of DM-related changes in tendinopathy is accumulation of advanced glycation end products (AGEs) in affected tendons. Pioglitazone (Pio), a peroxisome proliferator-activated receptor γ agonist, performs a protective effect against AGEs. The present study aimed to investigate the pathogenetic role of AGEs on tendon-derived stem cells (TDSCs) and to determine the effect of Pio on AGEs-induced TDSC dysfunctions. Results indicated that AGEs induced TDSC apoptosis as well as compensatory activation of autophagy. Pharmacologic activation/inhibition of autophagy leaded to alleviate/exacerbate apoptosis induced by AGEs. We further confirmed the effect of Pio on autophagy, which ameliorated apoptosis and abnormal calcification caused by AGEs both in vitro and in vivo. Thus, we suggest that Pio ameliorates the dysfunctions of TDSCs against AGEs by promoting autophagy, and we also reveal that Pio is a potential pharmacological choice for tendinopathy.
Collapse
Affiliation(s)
- Langhai Xu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Kai Xu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhipeng Wu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhonggai Chen
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuzhe He
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chiyuan Ma
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Safwat A. A. Moqbel
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jisheng Ran
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caihua Zhang
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lidong Wu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yan Xiong
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
35
|
Wan Y, Lv Y, Li L, Yin Z. 15-Lipoxygenase-1 in osteoblasts promotes TGF-β1 expression via inhibiting autophagy in human osteoarthritis. Biomed Pharmacother 2019; 121:109548. [PMID: 31704612 DOI: 10.1016/j.biopha.2019.109548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 15-Lipoxygenase-1 (15-LOX-1) belongs to the lipoxygenase family involved in the inflammatory response and pathological process of various diseases, including osteoarthritis (OA). The overexpression of TGF-β1 in osteoblasts leads to abnormal changes in subchondral bone structure, eventually causing OA. However, the pathogenesis of the disease is poorly defined, and the interaction between 15-LOX-1 and TGF-β1 in osteoblasts has not been evaluated in OA. In this study, the role of 15-LOX-1 in subchondral bone osteoblasts in OA was evaluated. METHOD 15-LOX-1 expression in osteoblasts of the subchondral bone of patients with OA was measured by immunohistochemistry, qRT-PCR, and western blotting. Osteoblasts extracted from the subchondral bone of OA were transfected with 15-LOX-1 siRNA and an overexpression vector. The eff ;ect of 15-LOX-1 on the expression of TGF-β1 in OA osteoblasts was assessed by qRT-PCR and western blotting. The effect of 15-LOX-1 on autophagy via AMPK pathway in OA osteoblasts was evaluated by qRT-PCR, western blotting, and transmission electron microscopy. RESULTS The expression levels of 15-LOX-1 and TGF-β1 were higher in OA subchondral bone osteoblast than that in non-OA subchondral bone. 15-LOX-1, which downregulated autophagy by inhibiting AMPK following the activation of mTORC1, upregulated the osteoblast expression of TGF-β1. Treatment with autophagy inhibitors significantly increased the expression levels of TGF-β1 in osteoblasts. CONCLUSION In the present study, our findings suggested that 15-Lipoxygenase-1 in Osteoblasts Promotes TGF-β1 expression via inhibiting autophagy in human Osteoarthritis. These novel results suggested that 15-Lipoxygenase-1 expressed by subchondral bone osteoblasts might be a promising therapeutic target in human OA.
Collapse
Affiliation(s)
- Yunpeng Wan
- The First Affiliated Hospital of Anhui Medical University, Department of Orthopedics, Jixi Road 218, Hefei, 230022, PR China
| | - Yunxiang Lv
- Department of Pulmonary Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, PR China
| | - Lei Li
- The First Affiliated Hospital of Anhui Medical University, Department of Orthopedics, Jixi Road 218, Hefei, 230022, PR China
| | - Zongsheng Yin
- The First Affiliated Hospital of Anhui Medical University, Department of Orthopedics, Jixi Road 218, Hefei, 230022, PR China.
| |
Collapse
|
36
|
Amini-Khoei H, Saghaei E, Mobini GR, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T. Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 2019; 77:101942. [PMID: 31272684 DOI: 10.1016/j.npep.2019.101942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
Short-term cerebral ischemia led to memory dysfunction. There is a pressing need to introduce effective agents to reduce complications of the ischemia. Involvement of PI3K/AKT/mTOR signaling pathway has been determined in the neuroprotective effect of various agents. Selegiline (deprenyl) possessed neuroprotective properties. In this study global ischemia/reperfusion was established in rats. Selegiline (5 mg/kg for 7 consecutive days) administrated via intraperitoneal route. Possible involvement of PI3K/AKT/mTOR signaling pathway was evaluated using qRT-PCR, immunohistochemistry and histophatologic evaluations in the hippocampus. Spatial memory was evaluated by morris water maze (MWM). Results showed that ischemia impaired the memory and ischemic rats spent more time to find hidden platform in the MWM. Ischemia significantly decreased levels of PI3K, AKT and mTOR in the hippocampus. Histopathologic assessment revealed that the percent of dark neurons significantly increased in the CA1 area of the hippocampus of ischemic rats. Selegiline improved the memory as ischemic rats spent fewer time to find hidden platform in the MWM. Findings showed that selegiline increased the level and expression of PI3K, AKT and mTOR as well as decreased the proportion of dark neurons in the CA1 area of the pyramidal layer of the hippocampus. We concluded that selegiline, partially at least, through increases the expression of PI3K, AKT and mTOR as well as decreases the percent of dark neurons in the hippocampus could improve the memory impairment following the ischemia in rats.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Sabzevary-Ghahfarokhi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tahmineh Mokhtari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
37
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
38
|
Zhang J, Wang L, Cao H, Chen N, Yan B, Ao X, Zhao H, Chu J, Huang M, Zhang Z. Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J Cell Mol Med 2019; 23:2595-2609. [PMID: 30672120 PMCID: PMC6433730 DOI: 10.1111/jcmm.14150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the fact that extensive studies have focused on heterotopic ossification (HO), its molecular mechanism remains unclear. The endothelial-mesenchymal transition (EndMT), which may be partially modulated by neuroendocrine cytokines is thought to play a major role in HO. Neurotrophin-3 (NT-3), which has neuroendocrine characteristics is believed to promote skeletal remodeling. Herein, we suggest that that NT-3 may promote HO formation through regulation of EndMT. Here, we used an in vivo model of HO and an in vitro model of EndMT induction to elucidate the effect and underlying mechanism of NT-3 on EndMT in HO. Our results showed that heterotopic bone and cartilage arose from EndMT and NT-3 promoted HO formation in vivo. Our in vitro results showed that NT-3 up-regulated mesenchymal markers (FSP-1, α-SMA and N-cadherin) and mesenchymal stem cell (MSC) markers (STRO-1, CD44 and CD90) and down-regulated endothelial markers (Tie-1, VE-cadherin and CD31). Moreover, NT-3 enhanced a chondrogenesis marker (Sox9) and osteogenesis markers (OCN and Runx2) via activation of EndMT. However, both EndMT specific inhibitor and tropomyosin-related kinase C (TrkC) specific inhibitor rescued NT-3-induced HO formation and EndMT induction in vivo and in vitro. In conclusion, our findings demonstrate that NT-3 promotes HO formation via modulation of EndMT both in vivo and in vitro, which offers a new potential target for the prevention and therapy of HO.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - He Cao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Nan Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Xiang Ao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Huiyu Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Jun Chu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| |
Collapse
|
39
|
Lin X, Huang M, Yin G, Zhang J, Zhang Z, Lai P, Yan B, Chen Y, Jin D, Wang L. Characterization of a Novel Calcific Achilles Tendinopathy Model in Mice: Contralateral Tendinopathy Induced by Unilateral Tenotomy. Calcif Tissue Int 2018; 103:698-707. [PMID: 30132146 DOI: 10.1007/s00223-018-0465-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023]
Abstract
Achilles tendinopathy is a significant clinical disease characterized by activity-related pain, focal movement limitation, and intratendinous imaging changes. However, treatment of Achilles tendinopathy has been based mainly on theoretical rationale and clinical experience because of its unclear underlying pathogenesis and mechanism. The purpose of the study was to develop a simple but reproducible overuse-induced animal model of Achilles tendinopathy in mice to better understand the underlying mechanism and prevent calcific Achilles tendinopathy. A total of 80 C57/B6 mice (8 or 9 weeks old) were employed and randomly divided into control and experimental groups. Unilateral Achilles tenotomy was performed on the right hind limbs in the experiment group. 12 weeks after unilateral Achilles tenotomy, the onset of Achilles tendinopathy in the contralateral Achilles tendon was determined by radiological assessment, histologic analysis, electron microscopy observation, and biomechanical test. The onset of calcific Achilles tendinopathy in contralateral Achilles tendon was confirmed after 12 weeks of unilateral tenotomy. The contralateral Achilles tendon in the experimental group was characterized as hypercellularity, neovascularization, and fused collagen fiber disarrangement, compared with the control group. Importantly, intra-tendon endochondral ossification and calcaneus deformity were featured in contralateral Achilles tendon. In addition, poor biomechanical properties in the contralateral Achilles tendon revealed the incidence of Achilles tendinopathy. We hereby introduce a novel, simple, but reproducible spontaneous contralateral calcific Achilles tendinopathy model in mice, which represents overuse conditions during tendinopathy development in humans. It should be a useful tool to further study the underlying pathogenesis of calcific Achilles tendinopathy.
Collapse
Affiliation(s)
- Xuemei Lin
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Minjun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Ganghui Yin
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Jie Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Zhongmin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Pinglin Lai
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Bo Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Yuhui Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China
| | - Dadi Jin
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China.
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China.
| | - Liang Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510665, Guangdong, People's Republic of China.
- Academy of Orthopaedics, Guangdong Province, Guangzhou, 510665, Guangdong, People's Republic of China.
| |
Collapse
|
40
|
Łęgosz P, Drela K, Pulik Ł, Sarzyńska S, Małdyk P. Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clin Exp Pharmacol Physiol 2018; 45:1229-1235. [DOI: 10.1111/1440-1681.13025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Katarzyna Drela
- NeuroRepair Department; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Paweł Małdyk
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
41
|
Feng B, Cao S, Zhai J, Ren Y, Hu J, Tian Y, Weng X. Roles and mechanisms of leptin in osteogenic stimulation in cervical ossification of the posterior longitudinal ligament. J Orthop Surg Res 2018; 13:165. [PMID: 29970120 PMCID: PMC6029428 DOI: 10.1186/s13018-018-0864-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Hyperleptinemia is a common feature of obese people, and leptin, an adipocyte-derived cytokine, is believed to be an important factor in the pathogenesis of cervical ossification of the posterior longitudinal ligament(C-OPLL). So this research was to identify the relation between the serum leptin and bone metabolic markers and how the leptin induced osteogenic effect in C-OPLL. Methods Sixty-four samples were selected to determine the concentration of leptin, insulin, and alkaline phosphatase. And the association of leptin with these factors was also examined. We also evaluate the effect of leptin on the development of C-OPLL and further explored the possible underlying mechanism in vitro. Results We found that serum leptin concentrations were higher in females than in males. Serum leptin and ALP concentrations were increased significantly in C-OPLL females compared to non-OPLL females. In OPLL subjects, the serum leptin concentration corrected for body mass index correlated negatively with the ALP concentrations. In C-OPLL cells, leptin treatment led to a significant increase in mRNA expressions of ALP and OCN and formation of mineralized nodule. Our experiments reported here that osteogenic effect of leptin in C-OPLL cells could be mediated via ERK1/2, p38 MAPK, and/or JNK signaling pathways. Conclusions From this research, we got that leptin treatment led to a significant increase in mRNA expressions of ALP and OCN and formation of mineralized nodule. And the osteogenic effect of leptin in C-OPLL cells could be mediated via ERK1/2, p38 MAPK, and/or JNK signaling pathways.
Collapse
Affiliation(s)
- Bin Feng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Shiliang Cao
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiliang Zhai
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Ren
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianhua Hu
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ye Tian
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
42
|
Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, Zernicke RF, Hart DA. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front Physiol 2018; 9:112. [PMID: 29527173 PMCID: PMC5829464 DOI: 10.3389/fphys.2018.00112] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Inflammation can arise in response to a variety of stimuli, including infectious agents, tissue injury, autoimmune diseases, and obesity. Some of these responses are acute and resolve, while others become chronic and exert a sustained impact on the host, systemically, or locally. Obesity is now recognized as a chronic low-grade, systemic inflammatory state that predisposes to other chronic conditions including metabolic syndrome (MetS). Although obesity has received considerable attention regarding its pathophysiological link to chronic cardiovascular conditions and type 2 diabetes, the musculoskeletal (MSK) complications (i.e., muscle, bone, tendon, and joints) that result from obesity-associated metabolic disturbances are less frequently interrogated. As musculoskeletal diseases can lead to the worsening of MetS, this underscores the imminent need to understand the cause and effect relations between the two, and the convergence between inflammatory pathways that contribute to MSK damage. Muscle mass is a key predictor of longevity in older adults, and obesity-induced sarcopenia is a significant risk factor for adverse health outcomes. Muscle is highly plastic, undergoes regular remodeling, and is responsible for the majority of total body glucose utilization, which when impaired leads to insulin resistance. Furthermore, impaired muscle integrity, defined as persistent muscle loss, intramuscular lipid accumulation, or connective tissue deposition, is a hallmark of metabolic dysfunction. In fact, many common inflammatory pathways have been implicated in the pathogenesis of the interrelated tissues of the musculoskeletal system (e.g., tendinopathy, osteoporosis, and osteoarthritis). Despite these similarities, these diseases are rarely evaluated in a comprehensive manner. The aim of this review is to summarize the common pathways that lead to musculoskeletal damage and disease that result from and contribute to MetS. We propose the overarching hypothesis that there is a central role for muscle damage with chronic exposure to an obesity-inducing diet. The inflammatory consequence of diet and muscle dysregulation can result in dysregulated tissue repair and an imbalance toward negative adaptation, resulting in regulatory failure and other musculoskeletal tissue damage. The commonalities support the conclusion that musculoskeletal pathology with MetS should be evaluated in a comprehensive and integrated manner to understand risk for other MSK-related conditions. Implications for conservative management strategies to regulate MetS are discussed, as are future research opportunities.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Graham Z. MacDonald
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Raylene A. Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline L. Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- CAPES Foundation, Brasilia, Brazil
| | - Ian C. Smith
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ronald F. Zernicke
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Orthopaedic Surgery and Biomedical Engineering, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Family Practice, The Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
- Alberta Health Services Bone and Joint Health Strategic Clinical Network, Calgary, AB, Canada
| |
Collapse
|