1
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pan X, Shi X, Zhang H, Chen Y, Zhou J, Shen F, Wang J, Jiang R. Exosomal miR-4516 derived from ovarian cancer stem cells enhanced cisplatin tolerance in ovarian cancer by inhibiting GAS7. Gene 2024; 927:148738. [PMID: 38955306 DOI: 10.1016/j.gene.2024.148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian cancer (OC) is a devastating disease for women, with chemotherapy resistance taking the lead. Cisplatin has been the first-line therapy for OC for a long time. However, the resistance of OC to cisplatin is an important impediment to its efficacy. Mounting studies showed that ovarian cancer stem cells (OCSCs) affected chemotherapy resistance by secreting exosomes. MicroRNAs (miRNAs) play important roles in exosomes secreted by OCSCs. Here, through the analysis of GEO database (GSE107155) combined with RT-qPCR of OC-related cells/clinical tissues, it was found that hsa-miR-4516 (miR-4516) was significantly up-regulated in OCSCs. Then, OCSCs-derived exosomes were isolated and identified, and it was observed the influence of exosomes on the chemoresistance in SKOV3/cisplatin (SKOV3/DDP) cells. These results manifested that OCSCs-mediated exosomes facilitated the chemoresistance of SKOV3/DDP cells by delivering miR-4516 into them. Growth arrest-specific 7 (GAS7), a downstream target of miR-4516, was determined by bioinformatics prediction combined with molecular biological detection. Next, we up-regulated GAS7 expression and discovered that the promotion of chemoresistance in SKOV3/DDP cells by OCSCs-derived exosomes was significantly impaired. Finally, the mice tumor model of SKOV3/DDP cells was built to estimate the effect of GAS7 over-expression on OC growth. The results showed that GAS7 inhibited the chemoresistance of OC in vivo. In conclusion, our experiments suggested that OCSCs-derived exosomes enhanced OC cisplatin resistance by suppressing GAS7 through the delivery of miR-4516. This study provides a possible target for the treatment of OC DDP resistance.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Xiu Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Hong Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - YouGuo Chen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - JinHua Zhou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - FangRong Shen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Juan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Rong Jiang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China.
| |
Collapse
|
3
|
Xiao L, Li H, Jin Y. Automated early ovarian cancer detection system based on bioinformatics. Sci Rep 2024; 14:22887. [PMID: 39358410 PMCID: PMC11447045 DOI: 10.1038/s41598-024-71863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Ovarian cancer is a common gynecological tumor, with a high mortality rate and difficult clinical treatment. Early detection of ovarian cancer has significant diagnostic value. In response to the problem of poor diagnostic performance of traditional early diagnosis methods, this article designed an automated early ovarian cancer detection system to improve the detection of early ovarian cancer. The conventional early diagnosis methods include serum CA125 (carbohydrate antigen 125) detection and positron emission tomography/computed tomography (PET/CT) imaging. This article combined serum CA125 detection and PET/CT imaging to detect the CA125 level and maximum standardized uptake value (SUV) in patient's serum. When the CA125 level exceeded 35U/ml and the maximum SUV value exceeded 2.5, the test was considered positive. This article selected 200 patients from Jingzhou Hospital for the experiment and compared the three detection methods. The average specificity of single serum CA125 detection, single PET/CT imaging, and automated detection in patients under 50 were 61.24%, 79.57%, and 97.79%, respectively. The automated early ovarian cancer detection system designed in this article can significantly improve the specificity of early ovarian cancer detection and has excellent application value for early ovarian cancer detection.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, Jingzhou Hospital, Yangtze University, Jingzhou, 434020, China
| | - Hui Li
- Department of Obstetrics and Gynecology, Jingzhou Hospital, Yangtze University, Jingzhou, 434020, China
| | - Yanyang Jin
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
4
|
Xie Y, Chen J, Liu K, Huang J, Zeng Y, Gao M, Qian Y, Liu L, Tan Y, Nie X. Differential expression of follicular fluid exosomal microRNA in women with diminished ovarian reserve. J Assist Reprod Genet 2024; 41:1087-1096. [PMID: 38321265 PMCID: PMC11052957 DOI: 10.1007/s10815-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.
Collapse
Affiliation(s)
- Ying Xie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Chen
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kailu Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingyu Huang
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yaqiong Zeng
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mengya Gao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu Qian
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Tan
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Xiaowei Nie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
5
|
Jiang B, Xiao S, Zhang S, Xiao F. The miR-1290/OGN axis in ovarian cancer-associated fibroblasts modulates cancer cell proliferation and invasion. J Ovarian Res 2024; 17:52. [PMID: 38402185 PMCID: PMC10893657 DOI: 10.1186/s13048-024-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
Despite receiving first-line treatment, ovarian cancer patients continue to experience a high rate of recurrence; nearly all women with ovarian cancer develop chemoresistance and succumb to the disease. In this study, cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated from tumor-containing and normal omenta, respectively, and the downregulation of osteoglycin (OGN) in CAFs was observed. OGN overexpression in CAFs significantly inhibited ovarian cancer cell viability, DNA synthesis, and cell invasion. OGN overexpression also changed epithelial-mesenchymal transition (EMT) markers and promoted mTOR and Akt phosphorylation in ovarian cancer cells. miR-1290 targeted OGN and inhibited OGN expression. miR-1290 overexpression in CAFs significantly promoted ovarian cancer cell viability, DNA synthesis, and cell invasion. Moreover, miR-1290 overexpression in CAFs also changed EMT markers and promoted mTOR and Akt phosphorylation within ovarian carcinoma cells. Finally, when ovarian cancer cells in a conditioned medium derived from CAFs co-transduced with miR-1290 mimics and OGN-OE were cultured, the effects of miR-1290 overexpression were partially reversed by OGN overexpression. In nude mouse xenograft tumor models, OGN overexpression in CAFs suppressed tumor growth, whereas miR-1290 overexpression in CAFs increased tumor growth. In conclusion, a miRNA/mRNA axis in ovarian cancer CAFs modulating the proliferative and invasive abilities of ovarian cancer cells, possibly via the Akt/mTOR pathway, was demonstrated.
Collapse
Affiliation(s)
- Biyao Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Shan Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Fang Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
6
|
Qu B, Sun L, Xiao P, Shen H, Ren Y, Zhang J. CircCDK17 promotes the proliferation and metastasis of ovarian cancer cells by sponging miR-22-3p to regulate CD147 expression. Carcinogenesis 2024; 45:83-94. [PMID: 37952105 DOI: 10.1093/carcin/bgad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Ovarian cancer (OC) is a common malignancy in women of reproductive age. Circular RNAs (circRNAs) are emerging players in OC progression. We investigated the function and mechanism of circular RNA hsa_circ_0027803 (circCDK17) in OC pathogenesis. Real‑time PCR (RT-qPCR) and western blot were utilized for gene and protein expression analysis, respectively. Cell counting kit‑8 (CCK-8), EdU and Transwell assays investigated OC cell proliferation, migration and invasion. The associations between circCDK17, miR-22-3p and CD147 were examined by dual-luciferase reporter and RNA-protein immunoprecipitation (RIP) assays. The in vivo model of OC nude mice was constructed to explore the role of circCDK17. CircCDK17 was increased in OC tissue and cells, and patients with higher expression of circCDK17 had a shorter survival. CircCDK17 downregulation inhibited OC cell proliferation, migration and invasion, and reduced epithelial-mesenchymal transition (EMT)-related markers. In vivo experiments showed that circCDK17 silencing inhibited OC tumor growth and metastasis. CircCDK17 depletion reduced CD147 level via sponging miR-22-3p. MiR-22-3p knockdown overturned effect of circCDK17 depletion on OC cell proliferation, migration and invasion. Meanwhile, overexpressed CD147 restored functions of circCDK17 downregulation on OC development. CircCDK17 is an important molecule that regulates OC pathogenic process through miR-22-3p/CD147.
Collapse
Affiliation(s)
- Bin Qu
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Lisha Sun
- Department of Blood Transfusion, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Ping Xiao
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Haoming Shen
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Yuxi Ren
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Jing Zhang
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| |
Collapse
|
7
|
Fanale D, Corsini LR, Bono M, Randazzo U, Barraco N, Brando C, Cancelliere D, Contino S, Giurintano A, Magrin L, Pedone E, Perez A, Piraino P, Pivetti A, Giovanni ED, Russo TDB, Prestifilippo O, Gennusa V, Pantuso G, Russo A, Bazan V. Clinical relevance of exosome-derived microRNAs in Ovarian Cancer: Looking for new tumor biological fingerprints. Crit Rev Oncol Hematol 2024; 193:104220. [PMID: 38036154 DOI: 10.1016/j.critrevonc.2023.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Specific tumor-derived extracellular vesicles, called exosomes, are considered as potential key players in cross-talk between immune system and tumor microenvironment in several solid tumors. Different studies highlighted the clinical relevance of exosomes in ovarian cancer (OC) for their role in early diagnosis, prognosis, chemoresistance, targeted therapy. The exosomes are nanosize vesicles carrying lipids, proteins, and nucleic acids. In particular, exosomes shuttle a wide spectrum of microRNAs (miRNAs) able to induce phenotypic reprogramming of target cells, contributing to tumor progression. In this review, we will discuss the promising role of miRNAs shuttled by exosomes, called exosomal miRNAs (exo-miRNAs), as potential biomarkers for early detection, tumour progression and metastasis, prognosis, and response to therapy in OC women, in order to search for new potential biological fingerprints able to better characterize the evolution of this malignancy and provide a clinically relevant non-invasive approach useful for adopting, in future, personalized therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ornella Prestifilippo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Gennusa
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Gianni Pantuso
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Qubi W, Zheng J, Wang Y, Xu G, Li Y, Xiong Y, Wang Y, Liu W, Lin Y. Goat miR-92a-3p Targets APOL6 Gene to Regulate the Differentiation of Intramuscular Precursor Adipocytes. Genes (Basel) 2023; 15:57. [PMID: 38254947 PMCID: PMC10815674 DOI: 10.3390/genes15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The quality of lamb meat is positively correlated with intramuscular fat content. In recent years, a large number of studies have shown that miRNAs play an important role in the proliferation and differentiation of adipocytes. In this study, we aimed to explore the effect of miR-92a-3p on the differentiation of goat intramuscular preadipocytes. The results showed that the expression level of miR-92a-3p was low in the early stage of differentiation, reached the highest level on the third day of differentiation, and then decreased. And miR-92a-3p can inhibit the accumulation of lipid droplets and down-regulate the determinants of adipogenic differentiation. Mechanistically, by predicting target genes, we found that miR-92a-3p affects the differentiation of goat intramuscular preadipocytes and the accumulation of lipid droplets by regulating the expression of goat gene APOL6. This study provides important new information to better understand the relationship between miRNAs and the differentiation of goat intramuscular preadipocytes, thus providing a new reference for goat intramuscular adipogenesis.
Collapse
Affiliation(s)
- Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Jianying Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Guishan Xu
- College of Animal Science and Technology, Tarim University, Alar 843301, China;
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu 610041, China; (W.Q.); (J.Z.); (Y.W.); (Y.L.); (Y.X.); (Y.W.); (W.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
9
|
Tian Q, Mu Q, Liu S, Huang K, Tang Y, Zhang P, Zhao J, Shu C. m6A-modified circASXL1 promotes proliferation and migration of ovarian cancer through the miR-320d/RACGAP1 axis. Carcinogenesis 2023; 44:859-870. [PMID: 37738681 DOI: 10.1093/carcin/bgad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. Circular RNAs (circRNAs) can potentially regulate the development of OC. Therefore, this study investigated the role of circASXL1 in OC progression. Cell functions were assessed by MTT, colony formation, wound healing, and transwell assays. RIP and dual luciferase reporter assays confirmed the relationship between miR-320d and circASXL1 or RACGAP1. MeRIP was utilized to detect m6A levels. Xenograft tumor was established for in vivo experiments. CircASXL1 and RACGAP1 levels were increased in OC tissues and cells, whereas miR-320d expression was decreased. Upregulation of circASXL1 was associated with poor prognosis in OC patients. CircASXL1 silencing suppressed OC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, METTL3/IGF2BP1-mediated m6A modification maintained circASXL1 stability and upregulated its expression. CircASXL1 was a ceRNA that sequestrated miR-320d from RACGAP1, leading to increased RACGAP1 expression. CircASXL1 promoted OC cell proliferation, migration and invasion via the miR-320d/RACGAP1 axis. Therefore, m6A-modified circASXL1 acts as an oncogene in OC by targeting miR-320d and activating RACGAP1/PI3K/Akt pathway, which provides novel promising biomarkers for OC diagnosis.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| | - Qingling Mu
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Qingdao 266000, Shandong Province, P.R. China
| | - Shuang Liu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Kui Huang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Yi Tang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Chuqiang Shu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
10
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
11
|
Guler Kara H, Ozates NP, Asik A, Gunduz C. Cancer stemness kinase inhibitor amcasertib: a promising therapeutic agent in ovarian cancer stem and cancer cell models with different genetic profiles. Med Oncol 2023; 40:342. [PMID: 37891391 DOI: 10.1007/s12032-023-02210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Ovarian cancer, often referred to as the 'silent killer,' is a significant contributor to mortality rates. Emerging evidence implicates Nanog as a potential therapeutic target in ovarian cancer. Amcasertib (BBI-503) is an orally administered primary class stemness kinase inhibitor that effectively targets NANOG and various cancer stem cell pathways by specifically inhibiting serine-threonine stemness kinases. This study aimed to evaluate the antineoplastic effects of Nanog inhibition, a critical transcription factor associated with pluripotency and its role in ovarian cancer tumorigenesis, using the novel therapeutic agent Amcasertib in ovarian cancer cells characterized by distinct genetic profiles. The cytotoxicity of Amcasertib was assessed in both ovarian cancer and cancer stem cell models utilizing the Xelligence-RTCA system. The impact of the determined IC50 dose on apoptosis, invasion, migration, epithelial-mesenchymal transition (EMT), cell cycle progression, colony formation, and spheroid growth was evaluated using appropriate analytical techniques. Our findings revealed that Amcasertib exhibited significant antiproliferative effects and induced apoptosis in ovarian cancer and cancer stem cells. Moreover, Amcasertib caused G1 phase arrest and impeded colony formation in MDAH-2774 cells. Additionally, Amcasertib effectively inhibited spheroid growth in OVCAR-3 and OCSC cells. Notably, it demonstrated the ability to suppress invasion and migration in MDAH-2774 and OCSC cells. Furthermore, the suppression of Nanog-mediated stem cell-like features by Amcasertib was particularly pronounced in ER-negative ovarian cancer and cancer stem cells, highlighting its high anticancer efficacy in this subgroup. These results suggest that Amcasertib holds promise as a potential standalone or combination therapy agent for the treatment of ER-negative ovarian cancer.
Collapse
Affiliation(s)
- Hale Guler Kara
- Department of Medical Biology, Medical Faculty, Harran University, Haliliye, 63050, Gülveren, Sanliurfa, Turkey.
| | - Neslihan Pinar Ozates
- Department of Medical Biology, Medical Faculty, Harran University, Haliliye, 63050, Gülveren, Sanliurfa, Turkey
| | - Aycan Asik
- Department of Medical Biology, Medical Faculty, Mugla Sitki Kocman University, Menteşe, 48000, Muğla, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Medical Faculty, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
12
|
Onyido EK, James D, Garcia-Parra J, Sinfield J, Moberg A, Coombes Z, Worthington J, Williams N, Francis LW, Conlan RS, Gonzalez D. Elucidating Novel Targets for Ovarian Cancer Antibody-Drug Conjugate Development: Integrating In Silico Prediction and Surface Plasmon Resonance to Identify Targets with Enhanced Antibody Internalization Capacity. Antibodies (Basel) 2023; 12:65. [PMID: 37873862 PMCID: PMC10594448 DOI: 10.3390/antib12040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) constitute a rapidly expanding category of biopharmaceuticals that are reshaping the landscape of targeted chemotherapy. The meticulous process of selecting therapeutic targets, aided by specific monoclonal antibodies' high specificity for binding to designated antigenic epitopes, is pivotal in ADC research and development. Despite ADCs' intrinsic ability to differentiate between healthy and cancerous cells, developmental challenges persist. In this study, we present a rationalized pipeline encompassing the initial phases of the ADC development, including target identification and validation. Leveraging an in-house, computationally constructed ADC target database, termed ADC Target Vault, we identified a set of novel ovarian cancer targets. We effectively demonstrate the efficacy of Surface Plasmon Resonance (SPR) technology and in vitro models as predictive tools, expediting the selection and validation of targets as ADC candidates for ovarian cancer therapy. Our analysis reveals three novel robust antibody/target pairs with strong binding and favourable antibody internalization rates in both wild-type and cisplatin-resistant ovarian cancer cell lines. This approach enhances ADC development and offers a comprehensive method for assessing target/antibody combinations and pre-payload conjugation biological activity. Additionally, the strategy establishes a robust platform for high-throughput screening of potential ovarian cancer ADC targets, an approach that is equally applicable to other cancer types.
Collapse
Affiliation(s)
- Emenike Kenechi Onyido
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - David James
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Jezabel Garcia-Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - John Sinfield
- Cytiva, Björkgatan 30, 751 84 Uppsala, Sweden; (J.S.); (A.M.)
| | - Anna Moberg
- Cytiva, Björkgatan 30, 751 84 Uppsala, Sweden; (J.S.); (A.M.)
| | - Zoe Coombes
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Jenny Worthington
- Axis Bioservices Ltd., 189 Castleroe Rd, Coleraine BT51 3RP, UK; (J.W.); (N.W.)
| | - Nicole Williams
- Axis Bioservices Ltd., 189 Castleroe Rd, Coleraine BT51 3RP, UK; (J.W.); (N.W.)
| | - Lewis Webb Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Robert Steven Conlan
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK (D.J.); (J.G.-P.); (Z.C.); (L.W.F.); (R.S.C.)
| |
Collapse
|
13
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
14
|
Liu M, Xiao B, Zhu Y, Chen M, Huang J, Guo H, Wang F. MicroRNA-144-3p protects against chemotherapy-induced apoptosis of ovarian granulosa cells and activation of primordial follicles by targeting MAP3K9. Eur J Med Res 2023; 28:264. [PMID: 37537658 PMCID: PMC10399062 DOI: 10.1186/s40001-023-01231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/15/2023] [Indexed: 08/05/2023] Open
Abstract
Premature ovarian failure (POF) is defined by amenorrhea, ovarian atrophy, hypoestrogenism, elevated gonadotropin level, and infertility under the age of 40. POF is frequently induced by chemotherapeutic agents. However, the underlying mechanisms regarding chemotherapy-mediated damage to ovarian function are unclear. In this study, enhanced apoptosis of granulosa cells (GCs) and aberrant activation of primordial follicles were observed in a POF mouse model induced by cisplatin. We subsequently observed significant downregulation of miR-144-3p and upregulation of mitogen-activated protein kinase kinase kinase 9 (MAP3K9) in primary ovarian GCs from POF mice, as revealed by microarrays. Furthermore, MAP3K9 expression was higher in human ovarian granulosa cells (COV434) treated with cisplatin and was identified as a novel target of miR-144-3p. Functional analysis revealed that miR-144-3p attenuated cisplatin induced apoptosis of GCs via silencing MAP3K9 expression, which suppressed the activity of the downstream p38 mitogen activated protein kinase (MAPK) pathway. Meanwhile, miR-144-3p prevented premature primordial follicle depletion in cisplatin-induced POF mice through targeting Map3k9, which led to a decline in the phosphorylation and activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase b (AKT) pathway. Taken together, this study revealed the protective effects of miR-144-3p on ovarian function and shed light on the epigenetic regulatory mechanism in the development of POF, which might provide new biomarkers for the ovarian reserve.
Collapse
Affiliation(s)
- Meng Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Bang Xiao
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Yiqing Zhu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meiting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Mao M, Zheng X, Sheng Y, Chai J, Ding H. Evodiamine inhibits malignant progression of ovarian cancer cells by regulating lncRNA-NEAT1/miR-152-3p/CDK19 axis. Chem Biol Drug Des 2023; 102:101-114. [PMID: 36892495 DOI: 10.1111/cbdd.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
Evodiamine (EVO) has been demonstrated to promote apoptosis of ovarian cancer cells, and upregulate miR-152-3p level in colorectal cancer. Here, we explore part of the network mechanism of EVO and miR-152-3p in ovarian cancer. The bioinformatics website, dual luciferase reporter assay, and quantitative real-time polymerase chain reaction were applied to analyze the network among EVO, lncRNA, miR-152-3p, and mRNA. The effect and mechanism of EVO on ovarian cancer cells were determined using cell counting kit-8, flow cytometry, TUNEL, Western blot, and rescue experiments. As a result, EVO dose-dependently attenuated cell viability, induced G2/M phase arrest and apoptosis, promoted miR-152-3p level (4.5- or 2-fold changes), and inhibited expressions of NEAT1 (0.225- or 0.367-fold changes), CDK8 (0.625- or 0.571-fold changes), and CDK19 (0.25- or 0.147-fold changes) in OVCAR-3 and SKOV-3 cells. In addition, EVO decreased Bcl-2 expression, but increased the expressions of Bax and c-caspase-3. NEAT1 targeted miR-152-3p which bound to CDK19. The impacts of EVO on cell viability, cycle, apoptosis, and apoptosis-related proteins were partially reversed by miR-152-3p inhibitor, NEAT1 overexpression, or CDK19 overexpression. Furthermore, miR-152-3p mimic offset the effects of NEAT1 or CDK19 overexpression. The role of NEAT1 overexpression in the biological phenotype of ovarian cancer cells was counteracted by shCDK19. In conclusion, EVO attenuates ovarian cancer cell progression via the NEAT1-miR-152-3p-CDK19 axis.
Collapse
Affiliation(s)
- Meiya Mao
- Department of Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xiaojiao Zheng
- Department of Medical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yuehua Sheng
- Department of Civic Education, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jinghan Chai
- Center of Medical Examination, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Huiqing Ding
- Department of Gynecologic, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Wu YH, Huang YF, Wu PY, Chang TH, Huang SC, Chou CY. The downregulation of miR-509-3p expression by collagen type XI alpha 1-regulated hypermethylation facilitates cancer progression and chemoresistance via the DNA methyltransferase 1/Small ubiquitin-like modifier-3 axis in ovarian cancer cells. J Ovarian Res 2023; 16:124. [PMID: 37386587 DOI: 10.1186/s13048-023-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. METHODS The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. RESULTS Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. CONCLUSION The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, 73658, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 110, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan.
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70403, Tainan, Taiwan.
| |
Collapse
|
17
|
Lei J, Xu JY, Hu M, Wu SG, Zhou J. MOB kinase activator 1A acts as an oncogene by targeting PI3K/AKT/mTOR in ovarian cancer. Discov Oncol 2023; 14:100. [PMID: 37314589 DOI: 10.1007/s12672-023-00705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND To illuminate the precise roles of MOB Kinase Activator 1 A (MOB1A) in the development of ovarian cancer (OC). METHODS MOB1A expression and clinical data of OC were obtained from the public database on gene expression and proteomics. Meanwhile, verification of expression was carried out in Gene Expression Omnibus, the Human Protein Atlas, and OC cell lines. The prognosis of MOB1A was explored in the Kaplan-Meier plotter. RNA interference and lentivirus vectors were applied to construct knockdown and overexpressed cell models. Changes in the malignant behaviors of OC cells were detected by cholecystokinin octopeptide cell counting kit, wound healing, colony formation assay, transwell, flow cytometry assays, and in vivo experiments. Changes in proteins in the PI3K and autophagy-related makers were detected by western blot analysis. RESULTS The expression of MOB1A was significantly upregulated and accompanied by an inferior survival rate in OC. Knockdown of MOB1A inhibited the proliferation, invasion, migration, and cell cycle of OC cells, whereas induced cell autophagy. MOB1A upregulation had the opposite effects. In addition, bioinformatics analysis and western blot experiments showed that MOB1A plays an important role in the PI3K/AKT/mTOR pathway. CONCLUSIONS Our findings indicated that MOB1A is highly expressed and related to poor prognosis in OC. MOB1A plays a role in promoting the malignant biological behavior of tumor cells through PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jian Lei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Obstetrics and Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jing-Ying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Min Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - San-Gang Wu
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
18
|
Peng B, Li J, Yan Y, Liu Y, Liang Q, Liu W, Thakur A, Zhang K, Xu Z, Wang J, Zhang F. Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response. Front Pharmacol 2023; 14:1162045. [PMID: 37063265 PMCID: PMC10102359 DOI: 10.3389/fphar.2023.1162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients.
Collapse
Affiliation(s)
- Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Fan Zhang,
| |
Collapse
|
19
|
Wu YH, Huang YF, Wu PY, Chang TH, Huang SC, Chou CY. The Downregulation of miR-509-3p Expression by Collagen Type XI Alpha 1-Regulated Hypermethylation Facilitates Cancer Progression and Chemoresistance via the DNA Methyltransferase 1/Small Ubiquitin-like Modifier-3 Axis in Ovarian Cancer Cells. RESEARCH SQUARE 2023:rs.3.rs-2592453. [PMID: 36865240 PMCID: PMC9980191 DOI: 10.21203/rs.3.rs-2592453/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. Methods The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. Results Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) phosphorylation and stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. Conclusion The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Collapse
Affiliation(s)
| | - Yu-Fang Huang
- National Cheng Kung University Hospital, National Cheng Kung University
| | - Pei-Ying Wu
- National Cheng Kung University Hospital, National Cheng Kung University
| | | | | | - Cheng-Yang Chou
- National Cheng Kung University Hospital, National Cheng Kung University
| |
Collapse
|
20
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
21
|
Ivanov YD, Kapustina SI, Malsagova KA, Goldaeva KV, Pleshakova TO, Galiullin RA, Shumov ID, Kozlov AF, Glukhov AV, Grabezhova VK, Popov VP, Petrov OF, Ziborov VS, Kushlinskii NE, Alferov AA, Konev VA, Kovalev OB, Uchaikin VF, Archakov AI. "Silicon-On-Insulator"-Based Biosensor for the Detection of MicroRNA Markers of Ovarian Cancer. MICROMACHINES 2022; 14:70. [PMID: 36677130 PMCID: PMC9861449 DOI: 10.3390/mi14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients' survival. This study demonstrates the detection of microRNAs (miRNAs), which were reported to be associated with ovarian cancer tumorigenesis, with a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). The advantages of the method proposed for miRNA detection using the SOI-NW biosensor are as follows: (1) no need for additional labeling or amplification reaction during sample preparation, and (2) real-time detection of target biomolecules. The detecting component of the biosensor is a chip with an array of 3 µm wide, 10 µm long silicon nanowires on its surface. The SOI-NW chip was fabricated using the "top-down" method, which is compatible with large-scale CMOS technology. Oligonucleotide probes (oDNA probes) carrying sequences complementary to the target miRNAs were covalently immobilized on the nanowire surface to ensure high-sensitivity biospecific sensing of the target biomolecules. The study involved two experimental series. Detection of model DNA oligonucleotides being synthetic analogs of the target miRNAs was carried out to assess the method's sensitivity. The lowest concentration of the target oligonucleotides detectable in buffer solution was 1.1 × 10-16 M. In the second experimental series, detection of miRNAs (miRNA-21, miRNA-141, and miRNA-200a) isolated from blood plasma samples collected from patients having a verified diagnosis of ovarian cancer was performed. The results of our present study represent a step towards the development of novel highly sensitive diagnostic systems for the early revelation of ovarian cancer in women.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | - Svetlana I. Kapustina
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Department of Cybernetics of Chemical and Technological Processes, Mendeleev University of Chemical Technology of Russia (MUCTR), 125047 Moscow, Russia
| | | | | | | | | | - Ivan D. Shumov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Alexander V. Glukhov
- JSC “Novosibirsk Plant of Semiconductor Devices with OKB”, 630082 Novosibirsk, Russia
| | - Victoria K. Grabezhova
- JSC “Design Center for Biomicroelectronic Technologies “Vega””, 630082 Novosibirsk, Russia
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Oleg F. Petrov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | | | - Alexander A. Alferov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Vladimir A. Konev
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Oleg B. Kovalev
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Vasiliy F. Uchaikin
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | | |
Collapse
|
22
|
Abstract
The type of primary tumour of the ovary ranks first among all organs in the body. Although the incidence of malignant ovarian tumour ranks third among gynaecological malignancies, it is the most fatal type. A lack of effective diagnostic methods for early ovarian cancer remains, and the efficacy of advanced ovarian cancer is often unsatisfactory; the five-year survival rate of stage III-IV is less than 30%. Non-coding RNA is RNA that does not have protein-coding potential and was once considered as 'junk DNA'. However, increasing number of studies have shown that the disorder of non-coding RNA is related to a variety of diseases, including the occurrence and development of tumours. We summarised the dysregulated non-coding RNAs (miRNAs, circRNAs, and lncRNAs) reported currently in ovarian cancer and their functional mechanisms, and the clinical value of different types of ncRNAs as diagnostic or predictive markers for ovarian cancer, providing further evidence for non-coding RNAs to be considered as biomarkers of ovarian cancer.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Wu X, Zhang N, Li J, Zhang Z, Guo Y, Li D, Zhang Y, Gong Y, Jiang R, Li H, Li G, Liu X, Kang X, Tian Y. gga-miR-449b-5p Regulates Steroid Hormone Synthesis in Laying Hen Ovarian Granulosa Cells by Targeting the IGF2BP3 Gene. Animals (Basel) 2022; 12:2710. [PMID: 36230451 PMCID: PMC9559480 DOI: 10.3390/ani12192710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
MiRNAs have been found to be involved in the regulation of ovarian function as important post-transcriptional regulators, including regulators of follicular development, steroidogenesis, cell atresia, and even the development of ovarian cancer. In this study, we evaluated the regulatory role of gga-miR-449b-5p in follicular growth and steroid synthesis in ovarian granulosa cells (GCs) of laying hens through qRT-PCR, ELISAs, western blotting and dual-luciferase reporter assays, which have been described in our previous study. We demonstrated that gga-miR-449b-5p was widely expressed in granulosa and theca layers of the different-sized follicles, especially in the granulosa layer. The gga-miR-449b-5p had no significant effect on the proliferation of GCs, but could significantly regulate the expression of key steroidogenesis-related genes (StAR and CYP19A1) (p < 0.01) and the secretion of P4 and E2 (p < 0.01 and p < 0.05). Further research showed that gga-miR-449b-5p could target IGF2BP3 and downregulate the mRNA and protein expression of IGF2BP3 (p < 0.05). Therefore, this study suggests that gga-miR-449b-5p is a potent regulator of the synthesis of steroid hormones in GCs by targeting the expression of IGF2BP3 and may contribute to a better understanding of the role of functional miRNAs in laying hen ovarian development.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
24
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
25
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
26
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
27
|
Li W, Lin J, Huang J, Chen Z, Sheng Q, Yang F, Yang X, Cui X. MicroRNA-409-5p inhibits cell proliferation, and induces G 2/M phase arrest and apoptosis by targeting DLGAP5 in ovarian cancer cells. Oncol Lett 2022; 24:261. [PMID: 35765271 PMCID: PMC9219020 DOI: 10.3892/ol.2022.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
MicroRNA (miRNA/miR)-409-5p has been reported to be implicated in prostate and breast cancers; however, its functional role in ovarian cancer (OC) remains unclear. Therefore the aim of the present study was to investigate the clinical significance and biological function of miR-409-5p in OC. Here, reverse transcription-quantitative PCR analysis was performed to detect miR-409-5p expression in OC tissues and cell lines. The association between miR-409-5p expression and the clinicopathological characteristics of patients with OC was assessed using the Fisher's exact test. Furthermore, the Cell Counting Kit-8 assay was performed to assess cell proliferation. Cell cycle distribution and apoptosis were evaluated via flow cytometric analysis, and the target gene of miR-409-5p was validated via the dual-luciferase reporter assay. The results demonstrated that miR-409-5p expression was significantly downregulated in OC tissues and cell lines compared with adjacent normal tissues and epithelial cells, respectively. In addition, low miR-409-5p expression was significantly associated with tumor size (P=0.044) and the International Federation of Gynecology and Obstetrics staging system (P=0.005). Notably, overexpression of miR-409-5p suppressed cell proliferation, and induced G2/M phase arrest and apoptosis of OC cells. Mechanistically, discs large-associated protein 5 (DLGAP5) was identified as a novel target of miR-409-5p, which was negatively regulated by miR-409-5p. DLGAP5 expression was significantly upregulated in OC tissues and cell lines compared with adjacent normal tissues and epithelial cells, respectively. Furthermore, overexpression of DLGAP5 reversed the effects of miR-409-5p on SKOV-3 cell proliferation, and G2/M phase and apoptosis. Taken together, these results suggest that miR-409-5p acts as a tumor suppressor in OC by modulating DLGAP5 expression.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Ji Lin
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Jianfen Huang
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Zhuoying Chen
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Qunying Sheng
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| | - Fang Yang
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| | - Xue Yang
- Department of Clinical Medicine, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojie Cui
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
28
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
29
|
Cammarata G, Barraco N, Giusti I, Gristina V, Dolo V, Taverna S. Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code. Cancers (Basel) 2022; 14:cancers14143404. [PMID: 35884464 PMCID: PMC9324482 DOI: 10.3390/cancers14143404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Patients with ovarian cancer have a very poor chance of long-term survival, usually due to advanced disease at the time of diagnosis. Emerging evidence suggests that extracellular vesicles contain noncoding RNAs such as microRNAs, piwiRNAs, circular RNAs, and long noncoding RNAs, with regulatory effects on ovarian cancer. In this review, we focus on ovarian cancer-associated circular RNA shuttled by extracellular vesicles as mediators of cancer progression and novel biomarkers in liquid biopsy. We propose a circular-RNA–microRNA-mRNA code that can reveal the regulatory network created by extracellular vesicles, noncoding RNAs, and mRNAs in ovarian cancer. Future research in this field will help to identify novel diagnostic biomarkers and druggable therapeutic targets, which will ultimately benefit patients. Abstract Ovarian cancer (OC) is one of the most lethal gynecologic malignancies in females worldwide. OC is frequently diagnosed at an advanced stage due to a lack of specific symptoms and effective screening tests, resulting in a poor prognosis for patients. Age, genetic alterations, and family history are the major risk factors for OC pathogenesis. Understanding the molecular mechanisms underlying OC progression, identifying new biomarkers for early detection, and discovering potential targets for new drugs are urgent needs. Liquid biopsy (LB), used for cancer detection and management, consists of a minimally invasive approach and practical alternative source to investigate tumor alterations by testing extracellular vesicles (EVs), circulating tumor cells, tumor-educated platelets, and cell-free nucleic acids. EVs are nanosize vesicles shuttling proteins, lipids, and nucleic acids, such as DNA, RNA, and non-coding RNAs (ncRNAs), that can induce phenotypic reprogramming of target cells. EVs are natural intercellular shuttles for ncRNAs, such as microRNAs (miRNAs) and circular-RNAs (circRNAs), known to have regulatory effects in OC. Here we focus on the involvement of circRNAs and miRNAs in OC cancer progression. The circRNA-microRNA-mRNA axis has been investigated with Circbank and miRwalk analysis, unraveling the intricate and detailed regulatory network created by EVs, ncRNAs, and mRNAs in OC.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| |
Collapse
|
30
|
Yuan D, Guo T, Qian H, Ge H, Zhao Y, Huang A, Wang X, Cao X, Zhu D, He C, Yu H. Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Dev Res 2022; 83:1383-1393. [PMID: 35808943 DOI: 10.1002/ddr.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Ovarian cancer is one of the three major gynecological malignancies. It has been reported that Icariside II was able to block the occurrence and development of ovarian cancer. However, the detailed mechanism by which Icariside II regulates the development of ovarian cancer is widely unknown. EdU staining and transwell assays were applied to detect the proliferation, migration, and invasion of ovarian cancer cells. Next, the relationship between miR-144-3p and IGF2R was verified by the dual-luciferase reporter assay. Moreover, in vivo animal model was constructed to verify the effect of Icariside II on the development of ovarian cancer. Icariside II notably inhibited the proliferation, migration, and invasion and induced the apoptosis of ovarian cancer cells. Additionally, Icariside II markedly increased the level of miR-144-3p in ovarian cancer cells. Moreover, IGF2R was targeted by miR-144-3p directly. Icariside II significantly decreased the expression of IGF2R and the phosphorylation level of AKT and mTOR in ovarian cancer cells, which were partially reversed by miR-144-3p inhibitor. Meanwhile, Icariside II remarkably promoted the autophagy of ovarian cancer cells, as confirmed by the increased expression of Beclin-1 and ATG-5 and decreased expression of p62; however, co-treatment with miR-144-3p inhibitor notably decreased autophagy. Furthermore, the result of animal study suggested Icariside II notably inhibited ovarian tumor growth as well. Collectively, Icariside II could suppress the tumorigenesis and development of ovarian cancer by promoting autophagy via miR-144-3p/IGF2R axis. These results may be beneficial for future studies on the use of Icariside II to treat ovarian cancer.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Center for Molecular Medicine, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Aihua Huang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiaosu Wang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiuhong Cao
- Department of Operation, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - DanDan Zhu
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - CuiQin He
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
31
|
Targeting cyclin-dependent kinase 9 in cancer therapy. Acta Pharmacol Sin 2022; 43:1633-1645. [PMID: 34811514 PMCID: PMC9253122 DOI: 10.1038/s41401-021-00796-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p-TEFb) complex responsible for transcriptional regulation. It has been shown that CDK9 modulates the expression and activity of oncogenes, such as MYC and murine double minute 4 (MDM4), and it also plays an important role in development and/or maintenance of the malignant cell phenotype. Malfunction of CDK9 is frequently observed in numerous cancers. Recent studies have highlighted the function of CDK9 through a variety of mechanisms in cancers, including the formation of new complexes and epigenetic alterations. Due to the importance of CDK9 activation in cancer cells, CDK9 inhibitors have emerged as promising candidates for cancer therapy. Natural product-derived and chemically synthesized CDK9 inhibitors are being examined in preclinical and clinical research. In this review, we summarize the current knowledge on the role of CDK9 in transcriptional regulation, epigenetic regulation, and different cellular factor interactions, focusing on new advances. We show the importance of CDK9 in mediating tumorigenesis and tumor progression. Then, we provide an overview of some CDK9 inhibitors supported by multiple oncologic preclinical and clinical investigations. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
|
32
|
Wang S, Wang C, Liu O, Hu Y, Li X, Lin B. miRNA-651-3p regulates EMT in ovarian cancer cells by targeting ZNF703 and via the MEK/ERK pathway. Biochem Biophys Res Commun 2022; 619:76-83. [PMID: 35749939 DOI: 10.1016/j.bbrc.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
miRNAs are non-coding single-stranded RNA molecules with many functions. Several miRNAs have been found to be dysregulated in ovarian cancer; however, the role of miR-651-3p in ovarian cancer remains unknown. Here, the expression level of miR-651-3p in ovarian tissue samples was determined via qRT-PCR, and then miR-651-3p was overexpressed and downregulated to study the functional changes in ovarian cancer cells. Based on previous research and database predictions, we analyzed the binding and regulatory effects of miR-651-3p on zinc finger protein 703 (ZNF703). We additionally evaluated the effect of miR-651-3p on epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways in ovarian cancer cells. We found that miR-651-3p was downregulated in ovarian cancer tissues. miR-651-3p expression was associated with inhibited proliferation, invasion, and migration of ovarian cancer cells and promoted cell cycle arrest. Additionally, miR-651-3p was found to target ZNF703 and affect EMT in ovarian cancer by activating the MEK/ERK signaling pathway. MiR-651-3p was downregulated in ovarian cancer, and suppressed the malignant biological behavior of ovarian cancer by inhibiting ZNF703 and the MEK/ERK pathway. Our findings on miR-651-3p provided new insights for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
33
|
Chen Q, Zhou H, Rong W. Circular RNA_0078767 upregulates Kruppel-like factor 9 expression by targeting microRNA-889, thereby inhibiting the progression of osteosarcoma. Bioengineered 2022; 13:14313-14328. [PMID: 35758280 PMCID: PMC9342251 DOI: 10.1080/21655979.2022.2084257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among kids and juveniles, osteosarcoma (OS) is a common bone malignancy. Circular RNAs (circs, circRNAs) play important roles in multiple malignancies including OS, yet circ_0078767ʹs biological functions in OS are far from well elucidated. This study is targeted at understanding circ_0078767ʹs biological functions in OS and its molecular mechanisms. This study confirmed that circ_0078767 expression was reduced in OS cell lines and tissues. Circ_0078767 overexpression remarkably inhibited OS cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis, whereas circ_0078767 knockdown resulted in the opposite effects. MicroRNA-889 (miR-889) was targeted and regulated by circ_0078767, and miR-889 could negatively modulate Kruppel-like factor 9 (KLF9) expression. Besides, circ_0078767 positively regulated KLF9 expression in OS cells via repressing miR-889. In conclusion, circ_0078767 enhances KLF9 expression by targeting miR-889 to inhibit OS progression.
Collapse
Affiliation(s)
- Qiu Chen
- Medical College, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Haishen Zhou
- Medical College, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Department of Orthopedics, Lishui Hospital of Chinese Medicine Affiliated to Yangzhou University Medical College, Nanjing211299, Jiangsu, China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu, China
| |
Collapse
|
34
|
The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Doxorubicin and Topotecan Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23105846. [PMID: 35628654 PMCID: PMC9144982 DOI: 10.3390/ijms23105846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA.
Collapse
|
35
|
Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y, Liang Z. microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 2022; 13:12030-12044. [PMID: 35549643 PMCID: PMC9276006 DOI: 10.1080/21655979.2022.2056314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological cancers, which progresses owing to dysregulated microRNAs (miRNAs) expression. Our study attempts to reveal the mechanism by which decreased miR-324-3p expression suppresses OC proliferation. Quantitative real-time PCR, western blotting, in situ hybridization, and immunohistochemistry were performed to estimate miR-324-3p and WNK2 expression levels in OC cells and tissues. Cell Counting Kit-8, colony formation, EdU, and transwell assays were performed to analyze the influence of miR-324-3p and WNK2 on the proliferation and invasion ability of OC cells. Subsequently, xenograft models were established to examine the effects of WNK2 on OC cell proliferation in vivo, and databases and luciferase reporter assays were used to test the relationship between miR-324-3p and WNK2 expression. Then, we showed that miR-324-3p expression is decreased in OC cells and tissues, indicating its inhibitory effect on OC cell proliferation. Quantitative real-time PCR and luciferase reporter assays demonstrated that miR-324-3p inhibited WNK2 expression by directly binding to its 3’ untranslated region. WNK2, an upregulated kinase, promotes the proliferation and invasion of OC cells by activating the RAS pathway. Moreover, WNK2 can partly reverse the inhibitory effects of miR-324-3p on OC cell proliferation. Hence, we demonstrate that miR-324-3p suppressed ovarian cancer progression by targeting the WNK2/RAS pathway. Our study provides theoretical evidence for the clinical application potential of miR-324-3p.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Panyang Zhang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| |
Collapse
|
36
|
Mitra A, Ghosh S, Porey S, Mal C. GBP5 and ACSS3: two potential biomarkers of high-grade ovarian cancer identified through downstream analysis of microarray data. J Biomol Struct Dyn 2022:1-13. [PMID: 35502666 DOI: 10.1080/07391102.2022.2069866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among all malignancies of the reproductive organs, ovarian cancer is the sixth leading cause of death for women. Several factors contribute to the uncontrolled expression of certain genes in cancer thus making them act as oncogenes or tumour suppressors. In this study, we have examined four microarray datasets of high-grade ovarian cancer cells to identify differentially expressed genes (DEGs). 362 and 94 common DEGs were identified as up-regulated and down-regulated, respectively from 119 disease and 31 control samples. The DEGs were further analysed for their gene ontologies (GO), pathway, protein-protein interactions and co-expression. Most of the biological processes were associated with cellular processes, biological regulation, metabolic processes, and developmental processes. Further, regulatory networks were constructed by the DEGs which are also co-expressed and the hub genes were identified. The hub genes targeted by a large number of microRNAs (miRNAs) were further analyzed to reveal their role in the overall survival of cancer patients. Finally, GBP5 and ACSS3 were highlighted as potential biomarkers for ovarian cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayooshi Mitra
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Shrayana Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Sayam Porey
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Chittabrata Mal
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology), Nadia, India
| |
Collapse
|
37
|
Zheng Y, Zhu K, Wang G. miR-106a-5p carried by tumor-derived extracellular vesicles promotes the invasion and metastasis of ovarian cancer by targeting KLF6. Clin Exp Metastasis 2022; 39:603-621. [PMID: 35449340 DOI: 10.1007/s10585-022-10165-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 01/16/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) promote ovarian cancer (OC) metastasis by carrying microRNAs (miRs). This study investigated the mechanism of miR-106a-5p carried by OC cell-derived EVs in OC. miR-106a-5p expression in OC tissues and cells was measured. EVs were extracted from SKOV3 cells and normal cells. The internalization of EVs in OC cells was observed. OC cells were treated with SKOV3-EVs or SKOV3-EVs overexpressing miR-106a-5p to detect the proliferation, migration, and invasion. The expression levels of miR-106a-5p, KLF6, and PTTG1 were detected and their binding relationships were identified. Combined experiments were designed to detect the effects of KLF6 and PTTG1 on OC cells. A xenograft tumor experiment was performed to verify the mechanism of EVs-miR-106a-5p and KLF6 in OC metastasis. Consequently, miR-106a-5p was enhanced in OC and correlated with OC metastasis. SKOV3-EVs promoted the proliferation, migration, and invasion of OC cells. Mechanistically, EVs carried miR-106a-5p into other OC cells, inhibited KLF6, reduced the binding of KLF6 to the PTTG1 promoter, and upregulated PTTG1 transcription. Overexpression of KLF6 or silencing of PTTG1 attenuated the promoting effect of EVs-miR-106a-5p on OC cells. EVs-miR-106a-5p facilitated OC metastasis via the KLF6/PTTG1 axis. To conclude, OC cell-derived EVs facilitated the progression and metastasis of OC via the miR-106a-5p/KLF6/PTTG1 axis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFM (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Kang Zhu
- Department of Obstetrics and Gynecology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China
| | - Guihu Wang
- Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
38
|
Liu Z, Huang J, Jiang Q, Li X, Tang X, Chen S, Jiang L, Fu G, Liu S. miR-125a attenuates the malignant biological behaviors of cervical squamous cell carcinoma cells through Rad51. Bioengineered 2022; 13:8503-8514. [PMID: 35332852 PMCID: PMC9161904 DOI: 10.1080/21655979.2022.2051827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022] Open
Abstract
Cervical squamous cell carcinoma (CSCC), the most common cervical malignancy, is more likely to invade and metastasize than other cervical cancers. miR-125a, a tumor suppressor gene, has been confirmed to be associated with cancer metastasis. However, the role of miR-125a in CSCC and the underlying mechanism are unknown. miR-125a expression was confirmed by real-time quantitative PCR (RT-qPCR), and the Rad51 expression level was measured by western blotting analysis. CSCC cell proliferation, migration and invasion were assessed with functional assays, including CCK-8, colony formation, wound healing and Transwell assays. Our data confirmed that miR-125a is expressed at low levels in CSCC tissues and cells. Functionally, the overexpression of miR-125a greatly prevented the proliferation, migration and invasion of CSCC cells, and the inhibition of miR-125a expression strongly enhanced these behaviors in CSCC cells. Moreover, the expression of Rad51, a miR-125a target gene, greatly reversed the miR-125-mediated inhibition of CSCC cell proliferation, migration and invasion. In addition, we discovered that miR-125a downregulated the levels of phosphorylated PI3K, AKT and mTOR through Rad51 in CSCC cells. miR-125a, a tumor suppressor, can attenuate the malignant behaviors of CSCC cells by targeting Rad51. Therefore, the miR-125a/Rad51 axis might be a target for CSCC therapy.
Collapse
Affiliation(s)
- Zeping Liu
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Jinchang Huang
- Department of Pathology, Ganzhou People’s Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qiuju Jiang
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Xiaoling Li
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Xiaohui Tang
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Shasha Chen
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Liling Jiang
- Department of Gynaecology and Obstetrics, The Second Hospital of Longyan, Longyan, China
| | - Genghua Fu
- Department of Gynaecology and Obstetrics, The Second Hospital of Longyan, Longyan, China
| | - Sijun Liu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| |
Collapse
|
39
|
Hossain KR, Escobar Bermeo JD, Warton K, Valenzuela SM. New Approaches and Biomarker Candidates for the Early Detection of Ovarian Cancer. Front Bioeng Biotechnol 2022; 10:819183. [PMID: 35223789 PMCID: PMC8867026 DOI: 10.3389/fbioe.2022.819183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- K R Hossain
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - J D Escobar Bermeo
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - K Warton
- School of Women's and Children's Health, Faculty of Medicine and Health, University of New South Wales, South Wales, NSW, Australia
| | - S M Valenzuela
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Cheng Q, Li L, Yu M. Construction and validation of a transcription factors-based prognostic signature for ovarian cancer. J Ovarian Res 2022; 15:29. [PMID: 35227285 PMCID: PMC8886838 DOI: 10.1186/s13048-021-00938-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common and lethal malignant tumors worldwide and the prognosis of OC remains unsatisfactory. Transcription factors (TFs) are demonstrated to be associated with the clinical outcome of many types of cancers, yet their roles in the prognostic prediction and gene regulatory network in patients with OC need to be further investigated. METHODS TFs from GEO datasets were collected and analyzed. Differential expression analysis, WGCNA and Cox-LASSO regression model were used to identify the hub-TFs and a prognostic signature based on these TFs was constructed and validated. Moreover, tumor-infiltrating immune cells were analyzed, and a nomogram containing age, histology, FIGO_stage and TFs-based signature were established. Potential biological functions, pathways and the gene regulatory network of TFs in signature was also explored. RESULTS In this study, 6 TFs significantly associated with the prognosis of OC were identified. These TFs were used to build up a TFs-based signature for predicting the survival of patients with OC. Patients with OC in training and testing datasets were divided into high-risk and low-risk groups, according to the median value of risk scores determined by the signature. The two groups were further used to validate the performance of the signature, and the results showed the TFs-based signature had effective prediction ability. Immune infiltrating analysis was conducted and abundance of B cells naïve, T cells CD4 memory resting, Macrophages M2 and Mast cells activated were significantly higher in high-risk group. A nomogram based on the signature was established and illustrated good predictive efficiencies for 1, 2, and 3-year overall survival. Furthermore, the construction of the TFs-target gene regulatory network revealed the potential mechanisms of TFs in OC. CONCLUSIONS To our best knowledge, it is for the first time to develop a prognostic signature based on TFs in OC. The TFs-based signature is proven to be effective in predicting the survival of patients with OC. Our study may facilitate the clinical decision-making for patients with OC and help to elucidate the underlying mechanism of TFs in OC.
Collapse
Affiliation(s)
- Qingyuan Cheng
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liman Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Chen J, Kang S, Wu J, Zhao J, Si W, Sun H, Li Y. CTLA-4 polymorphism contributes to the genetic susceptibility of epithelial ovarian cancer. J Obstet Gynaecol Res 2022; 48:1240-1247. [PMID: 35150042 DOI: 10.1111/jog.15186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/30/2021] [Accepted: 01/30/2022] [Indexed: 12/29/2022]
Abstract
AIM Cytotoxic T-lymphocyte antigen-4 (CTLA-4), an inhibitory molecule on T-cells, plays a key role in tumorigenesis and progression. In the present study, we investigated the effects of three polymorphisms in the CTLA-4 gene on the risk of epithelial ovarian cancer and the clinical outcomes of patients. METHODS A case-control study was performed in 527 epithelial ovarian cancer patients and 532 controls. Genotypes of three polymorphisms were determined by polymerase chain reaction/ligase detection reaction. A survival analysis was performed in 346 patients who were followed up for more than 3 years and 208 patients who were followed up for more than 5 years. RESULTS There were significant differences in the genotype and allele distribution frequencies of the rs5742909 C/T polymorphism in CTLA-4 between patients and controls (p = 0.009 and p = 0.04, respectively). Compared with the CC genotype, the CT + TT genotype may significantly decrease the risk of developing epithelial ovarian cancer (OR = 0.69, 95% CI = 0.52-0.91). However, no significant association between the rs231775 G/A and rs3087243 G/A polymorphisms and epithelial ovarian cancer risk was observed. The survival analysis showed that three polymorphisms may not be related to the clinical outcomes of patients. CONCLUSION Our results suggested that the rs5742909 C/T polymorphism of CTLA-4 may decrease the genetic susceptibility to epithelial ovarian cancer among northern Chinese women.
Collapse
Affiliation(s)
- Juan Chen
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Jianlei Wu
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Jian Zhao
- Department of Gynaecology, the First Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Wengang Si
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Haiyan Sun
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| |
Collapse
|
42
|
Hannan NJ, Cohen PA, Beard S, Bilic S, Zhang B, Tong S, Whitehead C, Hui L. Transcriptomic analysis of patient plasma reveals circulating miR200c as a potential biomarker for high-grade serous ovarian cancer. Gynecol Oncol Rep 2022; 39:100894. [PMID: 35005155 PMCID: PMC8717717 DOI: 10.1016/j.gore.2021.100894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background High-grade serous tubo-ovarian cancer (HGSC) is the most common histological subtype of epithelial ovarian cancer, and highly lethal. Currently there is no effective screening test and prognosis is poor as the majority of cases are diagnosed at the advanced stage. Cell free RNAs including microRNAs (miRNAs) are dysregulated in ovarian cancer tissue and are detectable in the circulation. This study aimed to determine whether circulating cell free miRNAs may be potential biomarkers for the detection of HGSC. Methods Plasma was collected from women with HGSC (Grade 3, n = 24), and benign ovarian masses (n = 24). RNA was extracted from patient plasma and subjected to miRNA targeted next generation sequencing (NGS). A subsequent validation cohort was assessed using plasma collected from women with HGSC (n = 14) and controls (with a benign ovarian mass; n = 15). RNA was extracted and assessed using quantitative RT-PCR. Results Differential gene expression (DGE) of the NGS data revealed a significant increase in the miRNA, miR200c, in the circulation of women with HGSC (p less than 0.05) compared to controls. In the validation cohort miR200c expression by qPCR was found to also be increased in the circulation of women with HGSC compared to controls (p = 0.0023). Conclusions Circulating miR200c may be a promising candidate biomarker for the detection of HGSC. Further larger cohort studies exploring earlier stages are needed to determine whether circulating miR200c may be a sensitive and specific biomarker of tubo-ovarian cancer.
Collapse
Affiliation(s)
- Natalie J Hannan
- Therapeutics Discovery and Vascular Function Group, University of Melbourne, Heidelberg, Victoria, Australia.,Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Paul A Cohen
- Division of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function Group, University of Melbourne, Heidelberg, Victoria, Australia.,Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia
| | - Sanela Bilic
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Bonnie Zhang
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Stephen Tong
- Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Clare Whitehead
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia
| | - Lisa Hui
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, Victoria Australia
| |
Collapse
|
43
|
Zhao L, Liang X, Wang L, Zhang X. The Role of miRNA in Ovarian Cancer: an Overview. Reprod Sci 2022; 29:2760-2767. [PMID: 34973152 PMCID: PMC9537199 DOI: 10.1007/s43032-021-00717-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
Ovarian cancer (OC) is a highly malignant disease that seriously threatens women’s health and poses challenges for clinicians. MicroRNAs (miRNAs) have recently been intensively studied in the field of oncology due to their regulatory roles in gene expressions through RNA degradation and/or translation inhibition. This review summarizes the current studies on miRNAs in OC and introduces the latest updates of miRNAs in the early screening, treatment, and prognostic prediction of OC, thereby demonstrating the clinical significance of miRNAs in OC. Further exploration on potential targets of miRNAs in OC may provide new insights on optimizing the diagnosis and treatment of OC. MiRNAs are important driving factors for the progression of OC and the dysregulation of miRNAs can serve as biomarkers in the diagnosis, treatment and prognosis of OC. Therefore, miRNAs are potential biological targets for early screening, targeted therapy, drug resistance monitoring, and prognosis improvement in malignancies such as OC.
Collapse
Affiliation(s)
- Lihui Zhao
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, First Affiliated Hospital, Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou City, Gansu, 730000, People's Republic of China
| | - Xiaolei Liang
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, First Affiliated Hospital, Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou City, Gansu, 730000, People's Republic of China
| | - Liyan Wang
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, First Affiliated Hospital, Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou City, Gansu, 730000, People's Republic of China
| | - Xuehong Zhang
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, First Affiliated Hospital, Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou City, Gansu, 730000, People's Republic of China.
| |
Collapse
|
44
|
Ning X, Shi G, Ren S, Liu S, Ding J, Zhang R, Li L, Xie Q, Xu W, Meng F, Ma R. OUP accepted manuscript. Oncologist 2022; 27:e64-e75. [PMID: 35305106 PMCID: PMC8842331 DOI: 10.1093/oncolo/oyab015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background The glioblastoma-amplified sequence (GBAS) is a newly identified gene that is amplified in approximately 40% of glioblastomas. This article probes into the expression, prognostic significance, and possible pathways of GBAS in ovarian cancer (OC). Method Immunohistochemical methods were used to evaluate the expression level of GBAS in OC and its relationship with clinicopathological characteristics and prognosis. Glioblastoma-amplified sequence shRNA was designed to transfect into OC cell lines to silence GBAS expression, then detect the proliferation, apoptosis, and migration ability of the cell. Furthermore, an in vitro tumor formation experiment in mice was constructed to prove the effect of GBAS expression on the growth of OC in vivo. To further study the regulation mechanism of GBAS, we performed co-immunoprecipitation (Co-IP) and shotgun LC-MS mass spectrometry identification. Results Immunohistochemistry indicated that GBAS was markedly overexpressed in OC compared with normal ovarian tissue and was associated with lymph node metastasis. Inhibition of GBAS expression can significantly reduce OC cell proliferation, colony formation, promote cell apoptosis, and reduce the ability of cell migration and invasion. In vivo tumor formation experiments showed that the size and weight of tumors in mice after GBAS expression knockdown was significantly smaller. Glioblastoma-amplified sequence may be combined with elongation factor 1 alpha 1 (eEF1A1) to achieve its regulation in OC. Bioinformatics analysis data indicate that GBAS may be a key regulator of mitochondria-associated pathways, therefore controlling cancer progression. MicroRNA-27b, MicroRNA-23a, and MicroRNA-590 may directly targeting GBAS affects the biological behavior of OC cells. Conclusion The glioblastoma-amplified sequence may regulate the proliferation and metastasis of OC cells by combining with eEF1A1.
Collapse
Affiliation(s)
- Xin Ning
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Guangyue Shi
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Sujing Ren
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shuang Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jing Ding
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Ruichun Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Lianwei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Qin Xie
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wei Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Fanling Meng
- Corresponding author: Fanling Meng, Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, China. Tel: +86 451 85718069;
| | - Rong Ma
- Corresponding author: Rong Ma, Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, China. Tel: +86 451 85718058;
| |
Collapse
|
45
|
Yao S, Yuan C, Shi Y, Qi Y, Sridha R, Dai M, Cai H. Alternative Splicing: A New Therapeutic Target for Ovarian Cancer. Technol Cancer Res Treat 2022; 21:15330338211067911. [PMID: 35343831 PMCID: PMC8966091 DOI: 10.1177/15330338211067911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Increasing evidences have shown that abnormal alternative splicing (AS) events are closely related to the prognosis of various tumors. However, the role of AS in ovarian cancer (OV) is poorly understood. This study aims to explore the correlation between AS and the prognosis of OV and establish a prognostic model for OV. Methods: We downloaded the RNA-seq data of OV from The Cancer Genome Atlas databases and assessed cancer-specific AS through the SpliceSeq software. Then systemically investigated the overall survival (OS)-related AS and splicing factors (SFs) by bioinformatics analysis. The nomogram was established based on the clinical information, and the clinical practicability of the nomogram was verified through the calibration curve. Finally, a splicing correlation network was constructed to reveal the relationship between OS-related AS and SFs. Results: A total of 48,049 AS events were detected from 10,582 genes, of which 1523 were significantly associated with OS. The area under the curve of the final prediction model was 0.785, 0.681, and 0.781 in 1, 3, and 5 years, respectively. Moreover, the nomogram showed high calibration and discrimination in OV patients. Spearman correlation analysis was used to determine 8 SFs significantly related to survival, including major facilitator superfamily domain containing 11, synaptotagmin binding cytoplasmic RNA interacting protein, DEAH-box helicase 35, CWC15, integrator complex subunit 1, LUC7 like 2, cell cycle and apoptosis regulator 1, and heterogeneous nuclear ribonucleoprotein A2/B1. Conclusion: This study provides a prognostic model related to AS in OV, and constructs an AS-clinicopathological nomogram, which provides the possibility to predict the long-term prognosis of OV patients. We have explored the wealth of RNA splicing networks and regulation patterns related to the prognosis of OV, which provides a large number of biomarkers and potential targets for the treatment of OV. Put forward the potential possibility of interfering with the AS of OV in the comprehensive treatment of OV.
Collapse
Affiliation(s)
- Shijie Yao
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Cheng Yuan
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yuying Shi
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yuwen Qi
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Radhakrishnan Sridha
- Cancer Science Institute of Singapore, 37580National University of Singapore, Singapore, Singapore
| | - Mengyuan Dai
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hongbing Cai
- 89674Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
46
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
48
|
Sui M, Yang H, Guo M, Li W, Gong Z, Jiang J, Li P. Cajanol Sensitizes A2780/Taxol Cells to Paclitaxel by Inhibiting the PI3K/Akt/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:783317. [PMID: 34955854 PMCID: PMC8694871 DOI: 10.3389/fphar.2021.783317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy, and one of the most deadly. The bottleneck restricting the treatment of ovarian cancer is its multi-drug resistance to chemotherapy. Cajanol is an isoflavone from pigeon pea (Cajanus cajan) that has been reported to have anti-tumor activity. In this work, we evaluate the effect of cajanol in reversing paclitaxel resistance of the A2780/Taxol ovarian cancer cell line in vitro and in vivo, and we discuss its mechanism of action. We found that 8 μM cajanol significantly restored the sensitivity of A2780/Taxol cells to paclitaxel, and in vivo experiments demonstrated that the combination of 0.5 mM/kg paclitaxel and 2 mM/kg cajanol significantly inhibited the growth of A2780/Taxol metastatic tumors in mice. Flow cytometry, fluorescence quantitative PCR, western blotting and immunohistochemical staining methods were used to study the mechanism of reversing paclitaxel resistance with cajanol. First, we determined that cajanol inhibits paclitaxel efflux in A2780/Taxol cells by down-regulating permeability glycoprotein (P-gp) expression, and further found that cajanol can inhibit P-gp transcription and translation through the PI3K/Akt/NF-κB pathway. The results of this work are expected to provide a new candidate compound for the development of paclitaxel sensitizers.
Collapse
Affiliation(s)
- Ming Sui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hairong Yang
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Mingqi Guo
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Wenle Li
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Zheng Gong
- Department of Obstetrics and Gynecology, First Hospital of Qiqihar, Qiqihar, China
| | - Jing Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Zhao Z, Wang Z, Wang P, Liu S, Li Y, Yang X. EPDR1, Which Is Negatively Regulated by miR-429, Suppresses Epithelial Ovarian Cancer Progression via PI3K/AKT Signaling Pathway. Front Oncol 2021; 11:751567. [PMID: 35004274 PMCID: PMC8733570 DOI: 10.3389/fonc.2021.751567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.
Collapse
Affiliation(s)
- Zhendan Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Pengling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shujie Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Zibo Spring Hospital Co., Ltd., Zibo, China
| | - Yingwei Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xingsheng Yang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
50
|
Vera DB, Fredes AN, Garrido MP, Romero C. Role of Mitochondria in Interplay between NGF/TRKA, miR-145 and Possible Therapeutic Strategies for Epithelial Ovarian Cancer. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010008. [PMID: 35054401 PMCID: PMC8779980 DOI: 10.3390/life12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most lethal gynecological neoplasm, and epithelial ovarian cancer (EOC) accounts for 90% of ovarian malignancies. The 5-year survival is less than 45%, and, unlike other types of cancer, the proportion of women who die from this disease has not improved in recent decades. Nerve growth factor (NGF) and tropomyosin kinase A (TRKA), its high-affinity receptor, play a crucial role in pathogenesis through cell proliferation, angiogenesis, invasion, and migration. NGF/TRKA increase their expression during the progression of EOC by upregulation of oncogenic proteins as vascular endothelial growth factor (VEGF) and c-Myc. Otherwise, the expression of most oncoproteins is regulated by microRNAs (miRs). Our laboratory group reported that the tumoral effect of NGF/TRKA depends on the regulation of miR-145 levels in EOC. Currently, mitochondria have been proposed as new therapeutic targets to activate the apoptotic pathway in the cancer cell. The mitochondria are involved in a myriad of functions as energy production, redox control, homeostasis of Ca+2, and cell death. We demonstrated that NGF stimulation produces an augment in the Bcl-2/BAX ratio, which supports the anti-apoptotic effects of NGF in EOC cells. The review aimed to discuss the role of mitochondria in the interplay between NGF/TRKA and miR-145 and possible therapeutic strategies that may decrease mortality due to EOC.
Collapse
Affiliation(s)
- Daniela B. Vera
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Allison N. Fredes
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| |
Collapse
|