1
|
Wang H, She X, Xu Q, Zhou X, Tang Q, Wei H, Huang T, Liang F. Linagliptin's impact on lymphatic barrier and lymphangiogenesis in oral cancer with high glucose. Oral Dis 2024; 30:4195-4208. [PMID: 38376102 DOI: 10.1111/odi.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Uncertainties remain regarding the effect of elevated glucose levels on lymphatic metastasis of cancer cells. Our study elucidated the mechanisms linking high glucose to lymphangiogenesis and lymphatic barrier-related factors and investigated the protective role of linagliptin against lymphatic barrier dysfunction. MATERIALS AND METHODS A CAL-27-LEC co-culture system was established. Sodium fluorescein permeability assay observed lymphatic endothelial cell permeability. Western blotting and RT-qPCR detected protein and mRNA expression under different conditions, respectively. CCK-8, scratch wound healing, and transwell assays revealed cell migration and proliferation. Tube formation experiment tested capacity for endothelial tube formation. Immunohistochemical staining analyzed tissue sections from 43 oral cancer individuals with/without diabetes. RESULTS In high-glucose co-culture system, we observed increased lymphatic barrier permeability and decreased expression of ZO-1 and occludin, two tight-junction proteins; conversely, the expression of PAR2, a high permeability-related protein, was increased. Following linagliptin treatment, the expression levels of VEGF-C, VEGFR-3, and PAR2 decreased, while those of ZO-1 and occludin increased. Considerably higher levels of LYVE-1 expression in individuals with diabetes than in those without diabetes. CONCLUSIONS By ameliorating the high glucose-induced disruption of the lymphatic endothelial barrier, linagliptin may reduce lymphangiogenesis and exhibit an inhibitory effect on lymphatic metastasis in oral cancer patients with diabetes.
Collapse
Affiliation(s)
- Hongyu Wang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao She
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongdong Xu
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingyu Zhou
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qinchao Tang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Huakun Wei
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Tianjing Huang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Feixin Liang
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
3
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|