1
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
2
|
Miao M, Han Y, Wang Y, Wang J, Zhu R, Yang Y, Fu N, Li N, Sun M, Zhang J. Dysregulation of iron homeostasis and ferroptosis in sevoflurane and isoflurane associated perioperative neurocognitive disorders. CNS Neurosci Ther 2024; 30:e14553. [PMID: 38334231 PMCID: PMC10853900 DOI: 10.1111/cns.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
In recent years, sevoflurane and isoflurane are the most popular anesthetics in general anesthesia for their safe, rapid onset, and well tolerant. Nevertheless, many studies reported their neurotoxicity among pediatric and aged populations. This effect is usually manifested as cognitive impairment such as perioperative neurocognitive disorders. The wide application of sevoflurane and isoflurane during general anesthesia makes their safety a major health concern. Evidence indicates that iron dyshomeostasis and ferroptosis may establish a role in neurotoxicity of sevoflurane and isoflurane. However, the mechanisms of sevoflurane- and isoflurane-induced neuronal injury were not fully understood, which poses a barrier to the treatment of its neurotoxicity. We, therefore, reviewed the current knowledge on mechanisms of iron dyshomeostasis and ferroptosis and aimed to promote a better understanding of their roles in sevoflurane- and isoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mengrong Miao
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yaqian Han
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Jie Wang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yitian Yang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ningning Fu
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ningning Li
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| |
Collapse
|
3
|
Yan P, Li N, Ma M, Liu Z, Yang H, Li J, Wan C, Gao S, Li S, Zheng L, Waddington JL, Xu L, Zhen X. Hypoxia-inducible factor upregulation by roxadustat attenuates drug reward by altering brain iron homoeostasis. Signal Transduct Target Ther 2023; 8:355. [PMID: 37718358 PMCID: PMC10505610 DOI: 10.1038/s41392-023-01578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Substance use disorder remains a major challenge, with an enduring need to identify and evaluate new, translational targets for effective treatment. Here, we report the upregulation of Hypoxia-inducible factor-1α (HIF-1α) expression by roxadustat (Rox), a drug developed for renal anemia that inhibits HIF prolyl hydroxylase to prevent degradation of HIF-1α, administered either systemically or locally into selected brain regions, suppressed morphine (Mor)-induced conditioned place preference (CPP). A similar effect was observed with methamphetamine (METH). Moreover, Rox also inhibited the expression of both established and reinstated Mor-CPP and promoted the extinction of Mor-CPP. Additionally, the elevation of HIF-1α enhanced hepcidin/ferroportin 1 (FPN1)-mediated iron efflux and resulted in cellular iron deficiency, which led to the functional accumulation of the dopamine transporter (DAT) in plasma membranes due to iron deficiency-impaired ubiquitin degradation. Notably, iron-deficient mice generated via a low iron diet mimicked the effect of Rox on the prevention of Mor- or METH-CPP formation, without affecting other types of memory. These data reveal a novel mechanism for HIF-1α and iron involvement in substance use disorder, which may represent a potential novel therapeutic strategy for the treatment of drug abuse. The findings also repurpose Rox by suggesting a potential new indication for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Pengju Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhaoli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinnan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
| | - Chunlei Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuliu Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
González-Domínguez Á, Domínguez-Riscart J, Millán-Martínez M, Mateos-Bernal RM, Lechuga-Sancho AM, González-Domínguez R. Trace elements as potential modulators of puberty-induced amelioration of oxidative stress and inflammation in childhood obesity. Biofactors 2023; 49:820-830. [PMID: 36929162 DOI: 10.1002/biof.1946] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Although puberty is known to influence obesity progression, the molecular mechanisms underlying the role of sexual maturation in obesity-related complications remains largely unexplored. Here, we delve into the impact of puberty on the most relevant pathogenic hallmarks of obesity, namely oxidative stress and inflammation, and their association with trace element blood status. To this end, we studied a well-characterized observational cohort comprising prepubertal (N = 46) and pubertal (N = 48) children with obesity. From all participants, plasma and erythrocyte samples were collected and subjected to metallomics analysis and determination of classical biomarkers of oxidative stress and inflammation. Besides the expected raise of sexual hormones, pubertal children displayed better inflammatory and oxidative control, as reflected by lower levels of C-reactive protein and oxidative damage markers, as well as improved antioxidant defense. This was in turn accompanied by a healthier multielemental profile, with increased levels of essential elements involved in the antioxidant system and metabolic control (metalloproteins containing zinc, molybdenum, selenium, and manganese) and decreased content of potentially deleterious species (total copper, labile free iron). Therefore, our findings suggest that children with obesity have an exacerbated inflammatory and oxidative damage at early ages, which could be ameliorated during pubertal development by the action of trace element-mediated buffering mechanisms.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Jesús Domínguez-Riscart
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Millán-Martínez
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, Huelva, Spain
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Rosa María Mateos-Bernal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Alfonso María Lechuga-Sancho
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento Materno Infantil y Radiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
7
|
Jiao L, Li X, Luo Y, Wei J, Ding X, Xiong H, Liu X, Lei P. Iron metabolism mediates microglia susceptibility in ferroptosis. Front Cell Neurosci 2022; 16:995084. [PMID: 36111246 PMCID: PMC9469838 DOI: 10.3389/fncel.2022.995084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis is implicated in a range of brain disorders, but it is unknown whether neurons or glia in the brain are particularly effected. Here, we report that primary cortical astrocytes (PA), microglia (PM), and neurons (PN) varied in their sensitivities to ferroptosis. Specifically, PM were the most sensitive to ferroptosis, while PN were relatively insensitive. In contrast, PN and PM were equally susceptible to apoptosis, with PA being less affected, whereas all three cell types were similarly susceptible to autophagic cell death. In the tri-culture system containing PA, PM, and PN, the cells were more resistant to ferroptosis than that in the monoculture. These results demonstrated that brain cells exhibit different sensitivities under ferroptosis stress and the difference may be explained by the differentially regulated iron metabolism and the ability to handle iron. Continued elucidation of the cell death patterns of neurons and glia will provide a theoretical basis for related strategies to inhibit the death of brain cells.
Collapse
Affiliation(s)
- Lingling Jiao
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiang Luo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junfen Wei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Xiong
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuesong Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xuesong Liu,
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Peng Lei,
| |
Collapse
|
8
|
Qu Y, Li N, Xu M, Zhang D, Xie J, Wang J. Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells. Neurochem Res 2022; 47:3659-3669. [PMID: 35829942 DOI: 10.1007/s11064-022-03658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Estrogen is a steroid hormone produced mainly by the ovaries. It has been found that estrogen could regulate iron metabolism in neurons and astrocytes in different ways. The role of estrogen on iron metabolism in microglia is currently unknown. In this study, we investigated the effect and mechanism of 17β-estrogen (E2) on iron transport proteins. We found that following E2 treatment for 24h in BV2 microglial cell lines, the iron importer divalent metal transporter 1 (DMT1) and iron exporter ferroportin 1 (FPN1) were up-regulated , iron storage protein ferritin (FT) was increased. The protein levels of iron regulatory proteins (IRPs) and hepcidin remained unchanged, but hypoxia inducible factor 1 alpha (HIF-1α) was up-regulated. Two kinds of estrogen receptor β (ERβ) antagonist G15 and G protein estrogen receptor (GPER) antagonist PHTPPcould block the effects of E2 in BV2 microglial cell lines. These results suggest that estrogen could increase the protein expressions of DMT1, FPN1, FT-L and FT-H in BV2 microglia cells, which were not related to the regulation of IRP1 and hepcidin, but to the upregulation of HIF-1α. In addition, estrogen might regulate the expressions of iron-related proteins through both ER β and GPER in BV2 microglia cells.
Collapse
Affiliation(s)
- Yan Qu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Na Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
10
|
Cui J, Yuan Y, Wang J, Song N, Xie J. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes. Mol Neurobiol 2022; 59:2052-2067. [PMID: 35040039 DOI: 10.1007/s12035-021-02687-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Lipocalin-2 (LCN2) is an important regulator of both neuroinflammation and iron homeostasis. Upregulated LCN2 was observed in reactive astrocytes in the Parkinson's disease (PD) models. In the present study, we reported iron chelator deferoxamine (DFO) abolished lipopolysaccharide (LPS)-induced LCN2 upregulation in primary astrocytes, although iron overload had no effects. The suppressive effects of DFO were consistent with autophagy inducer rapamycin or carfilzomib, blocked by autophagy inhibitor 3-methyladenine rather than chloroquine or bafilomycin A1, meanwhile, while were not dependent on proteasome system and NF-κB pathway. DFO was not able to ameliorate LCN2 upregulation in α-synuclein-treated astrocytes, because DFO failed to induce autophagy in these cells. We further demonstrated that DFO could not enhance autophagy lysosomal degradation, however promoted secretory autophagy in primary astrocytes with LPS insults. These data suggest that DFO could serve as an autophagy activator, capable of ameliorating the upregulation of LCN2 in astrocytes by acting on the formation of autophagosomes and secretory autophagy. This provides better understandings of DFO-mediated neuroprotection against neuroinflammation and provides new insights that autophagy activation could be beneficial approaches in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021; 10:39. [PMID: 34657636 PMCID: PMC8522040 DOI: 10.1186/s40035-021-00265-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that primarily affects the elderly. While the etiology of PD is likely multifactorial with the involvement of genetic, environmental, aging and other factors, α-synuclein (α-syn) pathology is a pivotal mechanism underlying the development of PD. In recent years, astrocytes have attracted considerable attention in the field. Although astrocytes perform a variety of physiological functions in the brain, they are pivotal mediators of α-syn toxicity since they internalize α-syn released from damaged neurons, and this triggers an inflammatory response, protein degradation dysfunction, mitochondrial dysfunction and endoplasmic reticulum stress. Astrocytes are indispensable coordinators in the background of several genetic mutations, including PARK7, GBA1, LRRK2, ATP13A2, PINK1, PRKN and PLA2G6. As the most abundant glial cells in the brain, functional astrocytes can be replenished and even converted to functional neurons. In this review, we discuss astrocyte dysfunction in PD with an emphasis on α-syn toxicity and genetic modulation and conclude that astrocyte replenishment is a valuable therapeutic approach in PD.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tongtong Yang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
13
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Yan N, Zhang J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Front Neurosci 2020; 13:1443. [PMID: 32063824 PMCID: PMC7000453 DOI: 10.3389/fnins.2019.01443] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential transition metal for numerous biologic processes in mammals. Iron metabolism is regulated via several coordination mechanisms including absorption, utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron retention, thereby damaging cells, tissues, and organs through free oxygen radical generation. Numerous studies have shown that brain iron overload is involved in the pathological mechanism of neurodegenerative disease including Alzheimer’s disease (AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis, a newly defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint. Here, we set out to summarize the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and ferroptosis to AD.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Qian ZM, Ke Y. Brain iron transport. Biol Rev Camb Philos Soc 2019; 94:1672-1684. [PMID: 31190441 DOI: 10.1111/brv.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Brain iron is a crucial participant and regulator of normal physiological activity. However, excess iron is involved in the formation of free radicals, and has been associated with oxidative damage to neuronal and other brain cells. Abnormally high brain iron levels have been observed in various neurodegenerative diseases, including neurodegeneration with brain iron accumulation, Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the key question of why iron levels increase in the relevant regions of the brain remains to be answered. A full understanding of the homeostatic mechanisms involved in brain iron transport and metabolism is therefore critical not only for elucidating the pathophysiological mechanisms responsible for excess iron accumulation in the brain but also for developing pharmacological interventions to disrupt the chain of pathological events occurring in these neurodegenerative diseases. Numerous studies have been conducted, but to date no effort to synthesize these studies and ideas into a systematic and coherent summary has been made, especially concerning iron transport across the luminal (apical) membrane of the capillary endothelium and the membranes of different brain cell types. Herein, we review key findings on brain iron transport, highlighting the mechanisms involved in iron transport across the luminal (apical) as well as the abluminal (basal) membrane of the blood-brain barrier, the blood-cerebrospinal fluid barrier, and iron uptake and release in neurons, oligodendrocytes, astrocytes and microglia within the brain. We offer suggestions for addressing the many important gaps in our understanding of this important topic, and provide new insights into the potential causes of abnormally increased iron levels in regions of the brain in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, 226019, China.,Laboratory of Neuropharmacology, School of Pharmacy, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|