1
|
Che Y, Zhao M, Gao Y, Zhang Z, Zhang X. Application of machine learning for mass spectrometry-based multi-omics in thyroid diseases. Front Mol Biosci 2024; 11:1483326. [PMID: 39741929 PMCID: PMC11685090 DOI: 10.3389/fmolb.2024.1483326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Thyroid diseases, including functional and neoplastic diseases, bring a huge burden to people's health. Therefore, a timely and accurate diagnosis is necessary. Mass spectrometry (MS) based multi-omics has become an effective strategy to reveal the complex biological mechanisms of thyroid diseases. The exponential growth of biomedical data has promoted the applications of machine learning (ML) techniques to address new challenges in biology and clinical research. In this review, we presented the detailed review of applications of ML for MS-based multi-omics in thyroid disease. It is primarily divided into two sections. In the first section, MS-based multi-omics, primarily proteomics and metabolomics, and their applications in clinical diseases are briefly discussed. In the second section, several commonly used unsupervised learning and supervised algorithms, such as principal component analysis, hierarchical clustering, random forest, and support vector machines are addressed, and the integration of ML techniques with MS-based multi-omics data and its application in thyroid disease diagnosis is explored.
Collapse
Affiliation(s)
- Yanan Che
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Meng Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Cocco A, Paniziutti S, Olla C, Corpino R, Maria Carbonaro C, Carlo Ricci P, Melis N, Caria P, Sanna G, Zysman-Colman E, Secci F. Design, Synthesis, and Photophysical Characterization of Biocompatible Thermally Activated Delayed Fluorescent Carbazole-Coumarins for Sensing Applications. Chemistry 2024; 30:e202401263. [PMID: 38949777 DOI: 10.1002/chem.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
A series of fluorescent carbazole-coumarins exhibiting good photoluminescence quantum yields and thermally activated delayed fluorescence (TADF) properties have been designed and synthetized using computer-aided density functional theory calculations. The TADF characteristics of the carbazole-coumarins were systematically explored both in solution and in the solid state, utilizing poly(methyl methacrylate) (PMMA) as a matrix. The study revealed that the introduction of carbazole units onto the coumarin benzene ring led to compounds with thermally induced reverse intersystem crossing and delayed fluorescence. The study further demonstrated the potential utility of these compounds in practical applications by incorporating them into a Cmr-PMMA-based sensor for molecular oxygen detection. The resulting sensor exhibited promising performance, highlighting the adaptability and efficacy of the synthesized TADF-carbazole-coumarin compounds for reversible molecular oxygen sensing.
Collapse
Affiliation(s)
- Andrea Cocco
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Sara Paniziutti
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Chiara Olla
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Riccardo Corpino
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Pier Carlo Ricci
- Department of Physics, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Materials Engineering, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK
| | - Francesco Secci
- Dept. of Chemical and Geological Sciences, Università degli Studi di Cagliari, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
3
|
Knecht H, Johnson N, Bienz MN, Brousset P, Memeo L, Shifrin Y, Alikhah A, Louis SF, Mai S. Analysis by TeloView ® Technology Predicts the Response of Hodgkin's Lymphoma to First-Line ABVD Therapy. Cancers (Basel) 2024; 16:2816. [PMID: 39199588 PMCID: PMC11352807 DOI: 10.3390/cancers16162816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Classic Hodgkin's lymphoma (cHL) is a curable cancer with a disease-free survival rate of over 10 years. Over 80% of diagnosed patients respond favorably to first-line chemotherapy, but few biomarkers exist that can predict the 15-20% of patients who experience refractory or early relapsed disease. To date, the identification of patients who will not respond to first-line therapy based on disease staging and traditional clinical risk factor analysis is still not possible. Three-dimensional (3D) telomere analysis using the TeloView® software platform has been shown to be a reliable tool to quantify genomic instability and to inform on disease progression and patients' response to therapy in several cancers. It also demonstrated telomere dysfunction in cHL elucidating biological mechanisms related to disease progression. Here, we report 3D telomere analysis on a multicenter cohort of 156 cHL patients. We used the cohort data as a training data set and identified significant 3D telomere parameters suitable to predict individual patient outcomes at the point of diagnosis. Multivariate analysis using logistic regression procedures allowed for developing a predictive scoring model using four 3D telomere parameters as predictors, including the proportion of t-stumps (very short telomeres), which has been a prominent predictor for cHL patient outcome in a previously published study using TeloView® analysis. The percentage of t-stumps was by far the most prominent predictor to identify refractory/relapsing (RR) cHL prior to initiation of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) therapy. The model characteristics include an AUC of 0.83 in ROC analysis and a sensitivity and specificity of 0.82 and 0.78 respectively.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Nathalie Johnson
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Marc N. Bienz
- Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada; (N.J.); (M.N.B.)
| | - Pierre Brousset
- Toulouse Cancer Center, Université de Toulouse, 31000 Toulouse, France;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Yulia Shifrin
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Asieh Alikhah
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sherif F. Louis
- Telo Genomics Corp., Toronto ON M5G 1L7, Canada; (Y.S.); (A.A.); (S.F.L.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N, Canada;
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
4
|
Analysis of the Mechanism of Maslinic Acid on Papillary Thyroid Carcinoma Based on RNA-Seq Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7000531. [PMID: 36118079 PMCID: PMC9473874 DOI: 10.1155/2022/7000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Objective This study analyzed gene sequence changes in the thyroid papillary carcinoma (PTC) cell line TPC-1 treated with the natural compound maslinic acid (MA) through RNA-sequencing (RNA-seq) and identified the necessary genes to provide a basis for the study of the molecular mechanism of action of MA in PTC treatment. Methods RNA-seq technology was used to detect genetic differences between the normal cell group (Nthy-ori 3-1) and the TPC-1 cell group (N vs T). Then, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Venn diagram analysis of shared genes, and protein–protein interaction (PPI) network analysis were used to analyze the therapeutic effect of the MA on TPC-1 cells. Real-time quantitative PCR (qRT-PCR) was used to verify six key genes. Results GO and KEGG analyses showed that four crucial signaling pathways are related to TPC development: cytoplasmic molecule (cell adhesion molecules), neuroactive ligand–receptor interaction, tumor transcriptional disorder, and cytokine–cytokine interaction. The Venn diagram revealed 434 genes were shared between the MA vs T-group and 387 genes were shared between the MATH vs T and N vs T groups. PPI and ClueGO showed that NLRP3, SERPINE1, CD74, EDN1, HMOX1, and CXCL1 genes were significantly associated with PTC, while CXCL1, HMOX1, and other factors were mainly involved in the cytokine–cytokine interaction. The qRT-PCR results showed that the expression of NLRP3, EDN1, HMOX1, and CXCL1 genes was significantly upregulated in the TPC-1 group but significantly downregulated after MA treatment (p < 0.01). SERPINE1 and CD74 genes were not expressed in TPC-1 cells, whereas they were significantly upregulated after MA treatment (p < 0.01). Conclusions This present study proves for the first time that MA can treat PTC, and the preliminary identification of key genes and rich signal transduction pathways provides potential biomarkers. It also provides potential biomarkers for the treatment of PTC with the natural compound MA and preliminarily discusses the therapeutic mechanism of action of MA against PTC, which is helpful for the further diagnosis and treatment of PTC patients.
Collapse
|
5
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
6
|
Buffet C, Allard L, Guillerm E, Ghander C, Mathy E, Lussey-Lepoutre C, Julien N, Touma E, Quilhot P, Godiris-Petit G, Lacorte JM, Leenhardt L, Denis JA. Detection of BRAFV600E by digital PCR on fine-needle aspirate enables rapid initiation of dabrafenib and trametinib in unresectable anaplastic thyroid carcinoma. Eur J Endocrinol 2022; 187:K33-K38. [PMID: 35900324 DOI: 10.1530/eje-22-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Recently, targeted therapies using BRAFV600E and MEK inhibitors (dabrafenib and trametinib, respectively) have been recommended in BRAF-mutated anaplastic thyroid carcinoma (ATC). Considering the fast development of ATC, droplet digital PCR (ddPCR) performed on fine-needle aspirate (FNA), which is a rapid, reliable, and low-cost method, appears interesting for the detection of BRAFV600E mutation in these patients and allows early initiation of targeted therapies. RESULTS In our two patients, both presenting extensive cervical masses inaccessible to surgery, ddPCR results were available in less than 24 h. Therefore, dabrafenib and trametinib were started only a few days after first contact. CONCLUSIONS We suggest that ddPCR on FNA be used in non-resectable cervical masses for rapid BRAFV600E mutation detection in the hope that starting targeted therapies early might improve outcomes.
Collapse
Affiliation(s)
- Camille Buffet
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lucie Allard
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Erell Guillerm
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, UF d'Onco-angiogénétique et Génomique des Tumeurs Solides, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Ghander
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elise Mathy
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Lussey-Lepoutre
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Unité Fonctionnelle de Radiothérapie Interne Vectorisée, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Julien
- Service d'ORL, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Eliane Touma
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pauline Quilhot
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service d'Anatomo-Pathologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gaelle Godiris-Petit
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service de Chirurgie Générale et Endocrinienne, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Marc Lacorte
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service de Biochimie Endocrinienne et Oncologique, UF Oncobiologie Cellulaire et Moléculaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurence Leenhardt
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jérôme Alexandre Denis
- Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, Service de Biochimie Endocrinienne et Oncologique, UF Oncobiologie Cellulaire et Moléculaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Methylation of Subtelomeric Chromatin Modifies the Expression of the lncRNA TERRA, Disturbing Telomere Homeostasis. Int J Mol Sci 2022; 23:ijms23063271. [PMID: 35328692 PMCID: PMC8955364 DOI: 10.3390/ijms23063271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.
Collapse
|
8
|
Vitamin C Cytotoxicity and Its Effects in Redox Homeostasis and Energetic Metabolism in Papillary Thyroid Carcinoma Cell Lines. Antioxidants (Basel) 2021; 10:antiox10050809. [PMID: 34065197 PMCID: PMC8161084 DOI: 10.3390/antiox10050809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
High-dose of vitamin C (L-ascorbic acid, ascorbate) exhibits anti-tumoral effects, primarily mediated by pro-oxidant mechanisms. This cytotoxic effect is thought to affect the reciprocal crosstalk between redox balance and cell metabolism in different cancer types. Vitamin C also inhibits the growth of papillary thyroid carcinoma (PTC) cells, although the metabolic and redox effects remain to be fully understood. To shed light on these aspects, PTC-derived cell lines harboring the most common genetic alterations characterizing this tumor were used. Cell viability, apoptosis, and the metabolome were explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, and UHPLC/MS. Changes were observed in redox homeostasis, with increased reactive oxygen species (ROS) level and perturbation in antioxidants and electron carriers, leading to cell death by both apoptosis and necrosis. The oxidative stress contributed to the metabolic alterations in both glycolysis and TCA cycle. Our results confirm the pro-oxidant effect of vitamin C as relevant in triggering the cytotoxicity in PTC cells and suggest that inhibition of glycolysis and alteration of TCA cycle via NAD+ depletion can play an important role in this mechanism of PTC cancer cell death.
Collapse
|
9
|
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, Cerutti JM. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel) 2020; 12:E3146. [PMID: 33120984 PMCID: PMC7693829 DOI: 10.3390/cancers12113146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Maria Isabel V. Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Fernanda Vaisman
- Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| |
Collapse
|
10
|
Vinayagamurthy S, Ganguly A, Chowdhury S. Extra-telomeric impact of telomeres: Emerging molecular connections in pluripotency or stemness. J Biol Chem 2020; 295:10245-10254. [PMID: 32444498 PMCID: PMC7383370 DOI: 10.1074/jbc.rev119.009710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Telomeres comprise specialized nucleic acid-protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length-dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat-binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
11
|
Wark L, Quon H, Ong A, Drachenberg D, Rangel-Pozzo A, Mai S. Long-Term Dynamics of Three Dimensional Telomere Profiles in Circulating Tumor Cells in High-Risk Prostate Cancer Patients Undergoing Androgen-Deprivation and Radiation Therapy. Cancers (Basel) 2019; 11:cancers11081165. [PMID: 31416141 PMCID: PMC6721586 DOI: 10.3390/cancers11081165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Patient-specific assessment, disease monitoring, and the development of an accurate early surrogate of the therapeutic efficacy of locally advanced prostate cancer still remain a clinical challenge. Contrary to prostate biopsies, circulating tumor cell (CTC) collection from blood is a less-invasive method and has potential as a real-time liquid biopsy and as a surrogate marker for treatment efficacy. In this study, we used size-based filtration to isolate CTCs from the blood of 100 prostate cancer patients with high-risk localized disease. CTCs from five time points: +0, +2, +6, +12 and +24 months were analyzed. Consenting treatment-naïve patients with cT3, Gleason 8-10, or prostate-specific antigen > 20 ng/mL and non-metastatic prostate cancer were included. For all time points, we performed 3D telomere-specific quantitative fluorescence in situ hybridization on a minimum of thirty isolated CTCs. The patients were divided into five groups based on the changes of number of telomeres vs. telomere lengths over time and into three clusters based on all telomere parameters found on diagnosis. Group 2 was classified as non-respondent to treatment and the Cluster 3 presented more aggressive phenotype. Additionally, we compared our telomere results with the PSA levels for each patient at 6 months of ADT, at 6 months of completed RT, and at 36 months post-initial therapy. CTCs of patients with PSA levels above or equal to 0.1 ng/mL presented significant increases of nuclear volume, number of telomeres, and telomere aggregates. The 3D telomere analysis of CTCs identified disease heterogeneity among a clinically homogeneous group of patients, which suggests differences in therapeutic responses. Our finding suggests a new opportunity for better treatment monitoring of patients with localized high-risk prostate cancer.
Collapse
Affiliation(s)
- Landon Wark
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Harvey Quon
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Aldrich Ong
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Darrel Drachenberg
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
12
|
Drachenberg D, Awe JA, Rangel Pozzo A, Saranchuk J, Mai S. Advancing Risk Assessment of Intermediate Risk Prostate Cancer Patients. Cancers (Basel) 2019; 11:cancers11060855. [PMID: 31226731 PMCID: PMC6627662 DOI: 10.3390/cancers11060855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
The individual risk to progression is unclear for intermediate risk prostate cancer patients. To assess their risk to progression, we examined the level of genomic instability in circulating tumor cells (CTCs) using quantitative three-dimensional (3D) telomere analysis. Data of CTCs from 65 treatment-naïve patients with biopsy-confirmed D’Amico-defined intermediate risk prostate cancer were compared to radical prostatectomy pathology results, which provided a clinical endpoint to the study and confirmed pre-operative pathology or demonstrated upgrading. Hierarchical centroid cluster analysis of 3D pre-operative CTC telomere profiling placed the patients into three subgroups with different potential risk of aggressive disease. Logistic regression modeling of the risk of progression estimated odds ratios with 95% confidence interval (CI) and separated patients into “stable” vs. “risk of aggressive” disease. The receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 0.77, while prostate specific antigen (PSA) (AUC of 0.59) and Gleason 3 + 4 = 7 vs. 4 + 3 = 7 (p > 0.6) were unable to predict progressive or stable disease. The data suggest that quantitative 3D telomere profiling of CTCs may be a potential tool for assessing a patient’s prostate cancer pre-treatment risk.
Collapse
Affiliation(s)
- Darrel Drachenberg
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Julius A Awe
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Aline Rangel Pozzo
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Jeff Saranchuk
- Manitoba Prostate Center, Cancer Care Manitoba, Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Sabine Mai
- University of Manitoba, Cell Biology, Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
13
|
Starenki D, Sosonkina N, Hong SK, Lloyd RV, Park JI. Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20092069. [PMID: 31027376 PMCID: PMC6540051 DOI: 10.3390/ijms20092069] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023] Open
Abstract
We previously reported that upregulation of mortalin (HSPA9/GRP75), the mitochondrial HSP70 chaperone, facilitates tumor cell proliferation and survival in human medullary thyroid carcinoma (MTC), proposing mortalin as a novel therapeutic target for MTC. In this report, we show that mortalin is also upregulated in other thyroid tumor types, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC), and that mortalin depletion can effectively induce growth arrest and cell death in human PTC (TPC-1), FTC (FTC133), and ATC (8505C and C643) cells in culture. Intriguingly, mortalin depletion induced varied effects on cell cycle arrest (G0/G1 phase arrest in TPC-1 and C643, G2/M phase arrest in 8505C, and mild G2/M phase arrest with increased sub-G0/G1 population in FTC133) and on the levels of TP53, E2F-1, p21CIP1, p27KIP1, and poly (ADP-ribose) polymerase cleavage in these cells, suggesting that thyroid tumor cells respond to mortalin depletion in a cell type-specific manner. In these cells, we also determined the efficacy of triphenyl-phosphonium-carboxy-proxyl (Mito-CP) because this mitochondria-targeted metabolism interfering agent exhibited similar tumor suppressive effects as mortalin depletion in MTC cells. Indeed, Mito-CP also induced robust caspase-dependent apoptosis in PTC and ATC cell lines in vitro, exhibiting IC50 lower than PLX4032 in 8505C cells and IC50 lower than vandetanib and cabozantinib in TPC-1 cells. Intriguingly, Mito-CP-induced cell death was partially rescued by mortalin overexpression, suggesting that Mito-CP may inactivate a mechanism that requires mortalin function. These findings support the significance of mortalin and mitochondrial activity in a broad spectrum of thyroid cancer.
Collapse
Affiliation(s)
- Dmytro Starenki
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Nadiya Sosonkina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA.
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
14
|
Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. Int J Mol Sci 2018; 19:ijms19102948. [PMID: 30262749 PMCID: PMC6213810 DOI: 10.3390/ijms19102948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), is characterized by a heterogeneous group of cells, including cancer stem cells (CSCs), crucially involved in tumor initiation, progression and recurrence. CSCs appear to have a distinct metabolic phenotype, compared to non-stem cancer cells. How they adapt their metabolism to the cancer process is still unclear, and no data are yet available for PTC. We recently isolated thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from PTC of the BRAF-like expression profile class, and stem-like cells from Nthy-ori3-1 normal thyreocyte-derived cell line. In the present study, gas chromatography/mass spectrometry metabolomic profiles of cancer thyrospheres were compared to cancer parental adherent cells and to non cancer thyrospheres profiles. A statistically significant decrease of glycolytic pathway metabolites and variations in Krebs cycle metabolites was found in thyrospheres versus parental cells. Moreover, cancer stem-like cells showed statistically significant differences in Krebs cycle intermediates, amino acids, cholesterol, and fatty acids content, compared to non-cancer stem-like cells. For the first time, data are reported on the metabolic profile of PTC cancer stem-like cells and confirm that changes in metabolic pathways can be explored as new biomarkers and targets for therapy in this tumor.
Collapse
|