1
|
Azzeh FS, Kamfar WW, Ghaith MM, Alsafi RT, Shamlan G, Ghabashi MA, Farrash WF, Alyamani RA, Alazzeh AY, Alkholy SO, Bakr ESH, Qadhi AH, Arbaeen AF. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine (Baltimore) 2024; 103:e39657. [PMID: 39312371 PMCID: PMC11419438 DOI: 10.1097/md.0000000000039657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Melatonin (MLT) is crucial in controlling human sleep-wake patterns. While it has long been recognized for regulating circadian rhythms, its demonstrated efficacy in managing various diseases has recently gained considerable attention. This review discusses MLT's potential preventative and therapeutic effects on various diseases. Several studies have focused on examining the molecular mechanisms through which MLT brings about its protective or therapeutic effects on various diseases, including cancer, obesity, coronavirus, and cardiovascular diseases. Numerous preventative and therapeutic applications of MLT have been proposed, resulting from its ability to function as an antioxidant, anti-cancer, anti-inflammatory, and immune-regulating agent. There is a need for further research to determine MLT's long-term effects on antioxidant defense systems, its preventative and therapeutic benefits, and its molecular basis.
Collapse
Affiliation(s)
- Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Radi T. Alsafi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mai A. Ghabashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Reema A. Alyamani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awfa Y. Alazzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sarah O. Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Sayed H. Bakr
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad F. Arbaeen
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Asoka AS, Kolikkandy A, Nair B, Kamath AJ, Sethi G, Nath LR. Role of Culinary Indian Spices in the Regulation of TGF-β Signaling Pathway in Inflammation-Induced Liver Cancer. Mol Nutr Food Res 2024; 68:e2300793. [PMID: 38766929 DOI: 10.1002/mnfr.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Indexed: 05/22/2024]
Abstract
SCOPE Hepatocellular carcinoma (HCC) results from various etiologies, such as Hepatitis B and C, Alcoholic and Non-alcoholic fatty liver disorders, fibrosis, and cirrhosis. About 80 to 90% of HCC cases possess cirrhosis, which is brought on by persistent liver inflammation. TGF-β is a multifunctional polypeptide molecule that acts as a pro-fibrogenic marker, inflammatory cytokine, immunosuppressive agent, and pro-carcinogenic growth factor during the progression of HCC. The preclinical and clinical evidence illustrates that TGF-β can induce epithelial-to-mesenchymal transition, promoting progression and hepatocyte immune evasion. Therefore, targeting the TGF-β pathway can be a promising therapeutic option against HCC. METHODS AND RESULTS We carry out a systemic analysis of eight potentially selected culinary Indian spices: Turmeric, Black pepper, Ginger, Garlic, Fenugreek, Red pepper, Clove, Cinnamon, and their bioactives in regulation of the TGF-β pathway against liver cancer. CONCLUSION Turmeric and its active constituent, curcumin, possess the highest therapeutic potential in treating inflammation-induced HCC and they also have the maximum number of ongoing in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Ajay Sarija Asoka
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anusha Kolikkandy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Adithya J Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| |
Collapse
|
3
|
Soares JM, Detanac D, Sengul I, Dugalic S, Sengul D, Detanac D. Melatonin, menopause, and thyroid function in gynecologic endocrinology: what is the role? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e701EDIT. [PMID: 38511761 PMCID: PMC10941877 DOI: 10.1590/1806-9282.701edit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 03/22/2024]
Affiliation(s)
- José Maria Soares
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Laboratório de Ginecologia Estrutural e Molecular, São Paulo (SP), Brazil
| | - Dzemail Detanac
- General Hospital Novi Pazar, Department of Surgery – Novi Pazar, Serbia
| | - Ilker Sengul
- Giresun University, Faculty of Medicine, Division of Endocrine Surgery – Giresun, Turkey
- Giresun University, Faculty of Medicine, Department of General Surgery – Giresun, Turkey
| | - Stefan Dugalic
- University Clinical Center of Serbia, Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics – Belgrade, Serbia
| | - Demet Sengul
- Giresun University, Faculty of Medicine, Department of Pathology – Giresun, Turkey
| | - Dzenana Detanac
- General Hospital Novi Pazar, Department of Ophthalmology – Novi Pazar, Serbia
| |
Collapse
|
4
|
Gao J, Hou Y, Yang X, Liu J, Zhang Y. Melatonin enhances the sensitivity of colorectal cancer cells to 5-fluorouracil through the regulation of the miR-532-3p/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:367-376. [PMID: 37755321 DOI: 10.1002/tox.23978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
This research aimed to investigate whether melatonin affected sensitivity to 5-fluorouracil (5-FU) in colorectal cancer (CRC) as well as to show the underlying molecular mechanism. Melatonin and 5-FU were added to CRC cells at varying doses. The effect of melatonin on sensitivity to 5-FU was investigated by measuring cell activity and apoptosis, and the potential underlying mechanism was further explored by detecting miR-532-3p expression and the associated pathway proteins. Melatonin could suppress cell malignancy in SW480 and HCT116 cells. Melatonin also significantly promoted sensitivity to 5-FU in CRC cells. miR-532-3p expression was downregulated in CRC and was also markedly enhanced when treated with 1 mmol/L melatonin. The inhibitory ability of the co-cultured melatonin, 5-FU, and miR-532-3p inhibitor on SW480 and HCT116 cells was markedly diminished, and the IC50 value was significantly enhanced. Relative to the melatonin group, melatonin+miR-532-3p inhibitor markedly declined apoptosis rate. Bioinformatics analysis predicted the target of miR-532-3p. β-catenin level presented obvious downregulation in the melatonin group, while it was notably upregulated in the co-culture group in relative to with that in the melatonin group. Overall, melatonin promotes sensitivity to 5-FU in CRC cells by regulating the miR-532-3p/β-catenin pathway.
Collapse
Affiliation(s)
- Jun Gao
- Department of Pharmacy, The People's Hospital of Henan University of Chinese Medicine (the People's Hospital of Zhengzhou), Zhengzhou, China
| | - Yi Hou
- Department of Pharmacy, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xiaorui Yang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
7
|
Potapovich AI, Kostyuk TV, Ishutina OV, Shutava TG, Kostyuk VA. Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1923-1930. [PMID: 36864349 DOI: 10.1007/s00210-023-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS)4 or (CH/DexS)4 shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols. DNA damage, cell viability, and integrity were evaluated by comet assay, using PrestoBlueTM reagent and lactate dehydrogenase (LDH) leakage test. The data obtained indicate that both native and particulate polyphenols added immediately after UV-C exposure increased cell viability in a dose-dependent manner; however, the efficiency of particulate quercetin was more pronounced than that of the native compound; also quercetin coated with a (CH/DexS)4 shell more effectively than the native compound reduced the number of DNA lesions in the nuclei of keratinocytes exposed to UV-C radiation; native and particulate resveratrol were ineffective against DNA damage. Quercetin reduces cell death caused by UV-C radiation and increases DNA repair capacity. Coating quercetin with (CH/DexS)4 shell markedly enhanced its impact on DNA repair.
Collapse
Affiliation(s)
- Alla I Potapovich
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatyana V Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Olga V Ishutina
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, 220141, Minsk, Belarus
| | - Vladimir A Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus.
| |
Collapse
|
8
|
Basirat U, Bin Tariq U, Moeen N, Jawhar ZH, Shoja SJ, Kareem AK, Ramírez-Coronel AA, Romero-Parra RM, Zabibah RS, Gupta J, Mustafa YF, Farhood B. A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy. Curr Pharm Des 2023; 29:1218-1229. [PMID: 37138418 DOI: 10.2174/1381612829666230503145707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.
Collapse
Affiliation(s)
| | | | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Sarah Jawad Shoja
- College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Cruz EMS, Concato VM, de Morais JMB, Silva TF, Inoue FSR, de Souza Cremer M, Bidóia DL, Machado RRB, de Almeida Chuffa LG, Mantovani MS, Panis C, Pavanelli WR, Seiva FRF. Melatonin modulates the Warburg effect and alters the morphology of hepatocellular carcinoma cell line resulting in reduced viability and migratory potential. Life Sci 2023; 319:121530. [PMID: 36863486 DOI: 10.1016/j.lfs.2023.121530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
AIMS Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.
Collapse
Affiliation(s)
- Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Virginia Marcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | | | | | | - Milena de Souza Cremer
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil; Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
| | - Danielle Lazarin Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Rayanne Regina Beltrame Machado
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá (UEM), Brazil
| | | | | | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | |
Collapse
|
10
|
Areshidze DA, Kozlova MA, Mnikhovich MV, Bezuglova TV, Chernikov VP, Gioeva ZV, Borisov AV. Influence of Various Light Regimes on Morphofunctional Condition of Transplantable Melanoma B16. Biomedicines 2023; 11:biomedicines11041135. [PMID: 37189753 DOI: 10.3390/biomedicines11041135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
A study of the morphofunctional condition of mice with transplantable melanoma B16 under the influence of a normal daylight regime, constant lighting and constant darkness was conducted. It was shown that exposure to constant lighting leads to intensification of the proliferation of melanoma cells, more significant growth and spread of the tumor, the development of more pronounced secondary changes, the presence of perivascular growth and an increase in perineural invasion. At the same time, keeping of animals in constant darkness significantly reduced the intensity of the proliferative process in the tumor and lead to tumor regression in the absence of signs of lympho-, intravascular and intraneural invasion. Intergroup differences in tumor cell status were confirmed by the results of micromorphometric studies. It was also shown that the expression of clock genes was suppressed by an exposure to constant light, while an influence of constant darkness, on contrary, led to its intensification.
Collapse
Affiliation(s)
- David A Areshidze
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maria A Kozlova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maxim V Mnikhovich
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Tatyana V Bezuglova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Valery P Chernikov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Zarina V Gioeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Aleksey V Borisov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| |
Collapse
|
11
|
Mogavero MP, Lanza G, Bruni O, DelRosso LM, Ferri R, Ferini-Strambi L. Sleep counts! Role and impact of sleep in the multimodal management of multiple sclerosis. J Neurol 2023:10.1007/s00415-023-11655-9. [PMID: 36905413 DOI: 10.1007/s00415-023-11655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND In the last years, research on pharmacotherapy and non-pharmacological approaches to Multiple Sclerosis (MS) has significantly increased, along with a greater attention to sleep as a clinical outcome measure. This review aims to update the state of the art on the effects of MS treatments on sleep, but above all to evaluate the role of sleep and its management within the current and future therapeutic perspectives for MS patients. METHOD A comprehensive MEDLINE (PubMed)-based bibliographic search was conducted. This review includes the 34 papers that met the selection criteria. RESULTS First-line disease modifying therapies (especially the interferon-beta) seem to have a negative impact on sleep, assessed subjectively or objectively, while second-line treatments (in particular, natalizumab) do not seem to lead to the onset of daytime sleepiness (also evaluated objectively) and, in some cases, an improvement in sleep quality has been observed as well. Management of sleep is considered a major factor in modifying disease progression in pediatric MS; however, probably because only fingolimod has recently been approved in children, information is still scarce in this group of patients. CONCLUSIONS Studies on the effect of drugs and non-pharmacological treatments for MS on sleep are still insufficient and there is a lack of investigations on the most recent therapies. However, there is preliminary evidence that melatonin, chronotherapy, cognitive-behavioral therapy, and non-invasive brain stimulation techniques might be further assessed as adjuvant therapies, thus representing a promising field of research.
Collapse
Affiliation(s)
- Maria P Mogavero
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona 20, 20127, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.,Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| | | | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Ramos E, Gil-Martín E, De Los Ríos C, Egea J, López-Muñoz F, Pita R, Juberías A, Torrado JJ, Serrano DR, Reiter RJ, Romero A. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants (Basel) 2023; 12:antiox12020397. [PMID: 36829956 PMCID: PMC9952307 DOI: 10.3390/antiox12020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Cristóbal De Los Ríos
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - René Pita
- Chemical Defense Department, Chemical, Biological, Radiological, and Nuclear Defense School, Hoyo de Manzanares, 28240 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad Ejército del Aire, Cuartel General Ejército del Aire, 28008 Madrid, Spain
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943970
| |
Collapse
|
13
|
Rohilla S, Singh M, Priya S, Almalki WH, Haniffa SM, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Singh SK, Jha NK, Chellappan DK, Negi P, Dua K, Gupta G. Exploring the Mechanical Perspective of a New Anti-Tumor Agent: Melatonin. J Environ Pathol Toxicol Oncol 2023; 42:1-16. [PMID: 36734949 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042088] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a serotonin-derived pineal gland hormone with many biological functions like regulating the sleep-wake cycle, circadian rhythm, menstrual cycle, aging, immunity, and antioxidants. Melatonin synthesis and release are more pronounced during the night, whereas exposure to light decreases it. Evidence is mounting in favor of the therapeutic effects of melatonin in cancer prevention, treatment and delayed onset in various cancer subtypes. Melatonin exerts its anticancer effect through modification of its receptors such as melatonin 1 (MT1), melatonin 2 (MT2), and inhibition of cancer cell proliferation, epigenetic alterations (DNA methylation/demethylation, histone acetylation/deacetylation), metastasis, angiogenesis, altered cellular energetics, and immune evasion. Melatonin performs a significant function in immune modulation and enhances innate and cellular immunity. In addition, melatonin has a remarkable impact on epigenetic modulation of gene expression and alters the transcription of genes. As an adjuvant to cancer therapies, it acts by decreasing the side effects and boosting the therapeutic effects of chemotherapy. Since current treatments produce drug-induced unwanted toxicities and side effects, they require alternate therapies. A recent review article attempts to summarize the mechanistic perspective of melatonin in different cancer subtypes like skin cancer, breast cancer, hepatic cancer, renal cell cancer, non-small cell lung cancer (NSCLC), colon oral, neck, and head cancer. The various studies described in this review will give a firm basis for the future evolution of anticancer drugs.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sakshi Priya
- Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shahril Mohamed Haniffa
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Saujana Putra 42610, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy /Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy/Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Uttar Pradesh, Greater Noida, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
14
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Stępniak J, Krawczyk-Lipiec J, Lewiński A, Karbownik-Lewińska M. Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid. Biomedicines 2022; 10:biomedicines10112890. [PMID: 36428458 PMCID: PMC9687109 DOI: 10.3390/biomedicines10112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The study aims to compare sorafenib- and lenvatinib-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in homogenates of porcine noncancerous tissues of the thyroid, the liver, and the kidney and to check if it can be prevented by antioxidants melatonin and indole-3-propionic acid (IPA). Homogenates of individual tissues were incubated in the presence of sorafenib or lenvatinib (1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM, 1 nM, 100 pM) together with/without melatonin (5.0 mM) or IPA (5.0 mM). The concentration of malondialdehyde + 4-hydroxyalkenals, as the LPO index, was measured spectrophotometrically. The incubation of tissue homogenates with sorafenib resulted in a concentration-dependent increase in LPO (statistically significant for concentrations of 1mM and 100 µM in the thyroid and the liver, and of 1 mM, 100 µM, and 10 µM in the kidney). The incubation of thyroid homogenates with lenvatinib did not change LPO level. In case of the liver and the kidney, lenvatinib increased LPO but only in its highest concentration of 1 mM. Melatonin and IPA reduced completely (to the level of control) sorafenib- and lenvatinib-induced LPO in all examined tissues regardless of the drug concentration. In conclusion, sorafenib comparing to lenvatinib is a stronger damaging agent of membrane lipids in noncancerous tissues of the thyroid, the liver, and the kidney. The antioxidants melatonin and IPA can be considered to be used in co-treatment with sorafenib and lenvatinib to prevent their undesirable toxicity occurring via oxidative stress.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Krawczyk-Lipiec
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
16
|
Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, Duan H, Li X, Yu W, Duan W, Yan X. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res 2022; 73:e12813. [PMID: 35661247 DOI: 10.1111/jpi.12813] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanpeng Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Estaras M, Martinez R, García A, Ortiz-Placin C, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochem Pharmacol 2022; 202:115118. [DOI: 10.1016/j.bcp.2022.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
|
18
|
Moslehi M, Moazamiyanfar R, Dakkali MS, Rezaei S, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, Khodamoradi E, Taeb S, Najafi M. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108:108890. [PMID: 35623297 DOI: 10.1016/j.intimp.2022.108890] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sepideh Rezaei
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Bldg. Rm 112, Houston, TX 77204-5003, USA
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Mouludi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Strøm L, Danielsen JT, Amidi A, Cardenas Egusquiza AL, Wu LM, Zachariae R. Sleep During Oncological Treatment - A Systematic Review and Meta-Analysis of Associations With Treatment Response, Time to Progression and Survival. Front Neurosci 2022; 16:817837. [PMID: 35516799 PMCID: PMC9063131 DOI: 10.3389/fnins.2022.817837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Disrupted sleep and sleep-wake activity are frequently observed in cancer patients undergoing oncological treatment. These disruptions are often associated with aggravated symptom burden and diminished health-related quality of life that in turn may compromise treatment adherence and, thus, effectiveness. In addition, disrupted sleep has been linked to carcinogenic processes, which ultimately could result in worse prognostic outcomes. Aims Our aim was to systematically review and conduct a meta-analysis of studies examining the associations between sleep and sleep-wake activity and prognostic outcomes in cancer patients undergoing oncological treatment. Methods A comprehensive systematic search of English language papers was undertaken in June 2020 using PubMed, The Cochrane Library, and CINAHL. Two reviewers independently screened 4,879 abstracts. A total of 26 papers were included in the narrative review. Thirteen papers reporting hazard ratios reflecting associations between a dichotomized predictor variable (sleep) and prognostic outcomes were subjected to meta-analysis. Results Nineteen of the 26 eligible studies on a total of 7,092 cancer patients reported associations between poorer sleep and poorer response to treatment, shorter time to progression, and/or reduced overall survival, but were highly heterogeneous with respect to the sleep and outcome parameters investigated. Meta-analysis revealed statistically significant associations between poor self-reported sleep and reduced overall survival (HR = 1.33 [95% CI 1.09-1.62], k = 11), and shorter time to progression (HR = 1.40 [95% CI 1.23-1.59], k = 3) and between poor objectively assessed sleep and reduced overall survival (HR = 1.74 [95% CI 1.05-2.88], k = 4). Conclusion The current findings indicate that disturbed sleep during treatment may be a relevant behavioral marker of poor cancer prognosis. The limited number of studies, the common use of single item sleep measures, and potential publication bias highlight the need for further high quality and longitudinal studies.
Collapse
Affiliation(s)
- Louise Strøm
- Unit for Psycho-Oncology and Health Psychology, Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
| | - Josefine T. Danielsen
- Unit for Psycho-Oncology and Health Psychology, Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
| | - Ali Amidi
- Unit for Psycho-Oncology and Health Psychology, Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
| | - Ana Lucia Cardenas Egusquiza
- Department of Psychology and Behavioral Sciences, Center for Autobiographical Memory Research, Aarhus University, Aarhus, Denmark
| | - Lisa Maria Wu
- Unit for Psycho-Oncology and Health Psychology, Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Robert Zachariae
- Unit for Psycho-Oncology and Health Psychology, Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
21
|
Wang R, Pan J, Han J, Gong M, Liu L, Zhang Y, Liu Y, Wang D, Tang Q, Wu N, Wang L, Yan J, Li H, Yuan Y. Melatonin Attenuates Dasatinib-Aggravated Hypoxic Pulmonary Hypertension via Inhibiting Pulmonary Vascular Remodeling. Front Cardiovasc Med 2022; 9:790921. [PMID: 35402542 PMCID: PMC8987569 DOI: 10.3389/fcvm.2022.790921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dasatinib treatment is approved as first-line therapy for chronic myeloid leukemia. However, pulmonary hypertension (PH) is a highly morbid and often fatal side-effect of dasatinib, characterized by progressive pulmonary vascular remodeling. Melatonin exerts strong antioxidant capacity against the progression of cardiovascular system diseases. The present work aimed to investigate the effect of melatonin on dasatinib-aggravated hypoxic PH and explore its possible mechanisms. Dasatinib-aggravated rat experimental model of hypoxic PH was established by utilizing dasatinib under hypoxia. The results indicated that melatonin could attenuate dasatinib-aggravated pulmonary pressure and vascular remodeling in rats under hypoxia. Additionally, melatonin attenuated the activity of XO, the content of MDA, the expression of NOX4, and elevated the activity of CAT, GPx, and SOD, the expression of SOD2, which were caused by dasatinib under hypoxia. In vitro, dasatinib led to decreased LDH activity and production of NO in human pulmonary microvascular endothelial cells (HPMECs), moreover increased generation of ROS, and expression of NOX4 both in HPMECs and primary rat pulmonary arterial smooth muscle cells (PASMCs) under hypoxia. Dasatinib up-regulated the expression of cleaved caspase-3 and the ratio of apoptotic cells in HPMECs, and also elevated the percentage of S phase and the expression of Cyclin D1 in primary PASMCs under hypoxia. Melatonin ameliorated dasatinib-aggravated oxidative damage and apoptosis in HPMECs, meanwhile reduced oxidative stress level, proliferation, and repressed the stability of HIF1-α protein in PASMCs under hypoxia. In conclusion, melatonin significantly attenuates dasatinib-aggravated hypoxic PH by inhibiting pulmonary vascular remodeling in rats. The possible mechanisms involved protecting endothelial cells and inhibiting abnormal proliferation of smooth muscle cells. Our findings may suggest that melatonin has potential clinical value as a therapeutic approach to alleviate dasatinib-aggravated hypoxic PH.
Collapse
Affiliation(s)
- Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinzhen Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunlong Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Liu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
- Jinsong Yan,
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian, China
- Hua Li,
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yuhui Yuan,
| |
Collapse
|
22
|
Zheng P, Qin X, Feng R, Li Q, Huang F, Li Y, Zhao Q, Huang H. Alleviative effect of melatonin on the decrease of uterine receptivity caused by blood ammonia through ROS/NF-κB pathway in dairy cow. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113166. [PMID: 35030520 DOI: 10.1016/j.ecoenv.2022.113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
High concentration of blood ammonia can affect the uterus receptivity and decrease fecundity in dairy cow. Melatonin can reduce reactive oxygen species (ROS) level and has antioxidant and anti-inflammatory effects. However, it is not clear whether melatonin can alleviate ammonia-induced apoptosis of endometrial epithelial cell (EEC) and reduced uterus receptivity. The bovine EEC were treated with ammonium chloride and/or melatonin. Cell viability, apoptosis, oxidative stress and mitochondrial membrane potential were measured and the expression of apoptosis-related genes (p53, Cyt-c, Bax, Bcl-2, caspase-8, caspase-9 and caspase-3), uterus receptivity related genes (VEGF, LIF and EGF) and inflammatory factors (TLR-4, IL-6 and NF-κB) were detected. In addition, the expression of VEGF was detected after adding NF-κB inhibitor (40 μM) and IL-6 (1 ng/mL and 50 ng/mL). The results showed that ammonia significantly increased intracellular ROS level, mRNA and protein expression of Bax, p53, Cyt-c, caspase-9, caspase-8, caspase-3, TLR-4, NF-κB and IL-6, promoted cell apoptosis, while decreased mitochondrial membrane potential, the mRNA and protein expression of VEGF and EGF. Interestingly, melatonin significantly mitigated ammonia-induced changes. However, melatonin could not alleviate ammonia-induced changes of IL-6 and VEGF when NF-κB signal pathway was inhibited. The addition of IL-6 significantly reduced mRNA and protein expression of VEGF. In conclusion, ammonia induced EEC apoptosis through ROS production and activation of mitochondrial apoptosis pathway, and induced inflammatory response through TLR4/NF-κB/IL-6 pathway. Melatonin alleviated EEC apoptosis by inhibiting ROS pathway, and reduced IL-6 expression by inhibiting TLR-4/NF-κB signal pathway, which eventually improved VEGF expression and uterus receptivity in dairy cows.
Collapse
Affiliation(s)
- Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
23
|
Xu H, Bao X, Kong H, Yang J, Li Y, Sun Z. Melatonin Protects Against Cyclophosphamide-induced Premature Ovarian Failure in Rats. Hum Exp Toxicol 2022; 41:9603271221127430. [PMID: 36154502 DOI: 10.1177/09603271221127430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to understand the efficacy and molecular cues of melatonin in cyclophosphamide(CTX)-induced premature ovarian failure (POF) in rats. Female SD rats were used to evaluate the potential effects of melatonin on the ovarian hormonal status, follicular development, and granulosa cells in CTX-treated rats. Here, we found that pretreatment with melatonin before CTX administration preserved the normal sex hormone levels, improved follicular morphology, and granulosa cell proliferation, and reduced apoptosis, as compared to the CTX treatment alone. Additionally, melatonin also up-regulated CYR6 and CTGF at the mRNA and protein levels. A potential mechanism is that melatonin inhibits LATS1, Mps1-One binder (MOB1), and YAP phosphorylation, thereby activating the Hippo signal pathway to promote its downstream targets, CYR61 and CTGF. In conclusion, pretreatment with melatonin effectively protected the ovaries against CTX-induced damage by activating the Hippo pathway. This study lay the foundation for the clinical application of melatonin for cancer patients with CTX treatment.
Collapse
Affiliation(s)
- Hongxia Xu
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Reproductive Medical Centre, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiuming Bao
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hanxin Kong
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junya Yang
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Li
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiwei Sun
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| |
Collapse
|
24
|
Fatemi I, Dehdashtian E, Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210526140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which is responsible for more deaths
than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy,
immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the
clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance
development during treatment courses, the efficacy of mentioned therapies can be reduced.
In addition to resistance, these treatments have serious side effects for melanoma patients. According
to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials,
has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation-
induced adverse events and can sensitize cancer cells to therapy. The present review discusses
the therapeutic application of melatonin in the treatment of melanoma. This review was carried
out in PubMed, Web of Science, and Scopus databases comprising the date of publication period
from January 1976 to March 2021.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | - Ehsan Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
25
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Ye D, Xu H, Tang Q, Xia H, Zhang C, Bi F. The role of 5-HT metabolism in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188618. [PMID: 34428515 DOI: 10.1016/j.bbcan.2021.188618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) metabolism has long been linked to tumorigenesis and tumor progression. Numerous studies have shown the functions of 5-HT and its metabolites in the regulation of tumor biological processes like cell proliferation, invasion, metastasis, tumor angiogenesis and immunomodulatory through multi-step complex mechanisms. Reprogramming of 5-HT metabolism has been revealed in various tumors paving way for development of drugs that target enzymes, metabolites or receptors involved in 5-HT metabolic pathway. However, information on the role of 5-HT metabolism in cancer is scanty. This review briefly describes the main metabolic routes of 5-HT, the role of 5-HT metabolism in cancer and systematically summarizes the most recent advances in 5-HT metabolism-targeted cancer therapy.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
27
|
Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021; 26:4969. [PMID: 34443561 PMCID: PMC8398122 DOI: 10.3390/molecules26164969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.
Collapse
Affiliation(s)
- Shadab Faramarzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
- Department of Plant Production and Genetics, Razi University, Kermanshah 67149-67346, Iran
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| | - Lorenzo Manti
- Department of Physics E. Pancini, University of Naples “Federico II”, and Istituto Nazionale di Fisica Nucleare, (INFN), Naples Section, Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| |
Collapse
|
28
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
29
|
Melatonin and neuroblastoma: a novel therapeutic approach. Mol Biol Rep 2021; 48:4659-4665. [PMID: 34061325 DOI: 10.1007/s11033-021-06439-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.
Collapse
|
30
|
Ghorbani-Anarkooli M, Dabirian S, Zendedel A, Moladoust H, Bahadori MH. Effects of melatonin on the toxicity and proliferation of human anaplastic thyroid cancer cell line. Acta Histochem 2021; 123:151700. [PMID: 33667778 DOI: 10.1016/j.acthis.2021.151700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Thyroid carcinoma is the most common endocrine malignancy and anaplastic thyroid carcinoma (ATC) is a rare but most aggressive cancer. Melatonin has enhanced or induced apoptosis in many different cancer cells, however, there has not been any study on the effects of melatonin in the treatment of ATC. In this study, we examined the effect of melatonin on cytotoxicity in the human ATC cell line. MATERIALS AND METHODS Cultured ATC cells were treated at melatonin concentrations 0.6, 1, 4, 16, 28 mM for 24 h. The MTT assay was performed to examine cell viability. Cytotoxicity was assayed with the determination of lactic dehydrogenase (LDH) activity. Apoptosis was detected by acridine orange/ethidium bromide and Hoechst 33342 staining. Giemsa staining is considered for evaluating the morphological changes of ATC cells. The reproductive ability of cells to form a colony was evaluated by the clonogenic assay. RESULTS Results showed that melatonin could significantly decrease cell viability and the lowest cell viability was observed at 28 mM, 10.26 % ± 0.858 versus control. Similar results were obtained when analyzing LDH activity. The highest LDH levels were observed at 16 and 28 mM (546.08 ± 4.66, 577.82 ± 3.14 munit/mL versus control) that confirmed the occurrence of late apoptosis. The clonogenic assay showed that cells at the high concentration of melatonin (16 and 28 mM) don't enable to form the colony that approved the occurrence of reproductive death. CONCLUSION Our results showed a dose-dependent cytotoxic effect of melatonin on ATC cells that significantly decreased cell viability and induced cell reproductive death at the concentration greater than 1 mM and findings suggested that MLT might be useful as an adjuvant in ATC therapy.
Collapse
|
31
|
Lang L, Xiong Y, Prieto-Dominguez N, Loveless R, Jensen C, Shay C, Teng Y. FGF19/FGFR4 signaling axis confines and switches the role of melatonin in head and neck cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:93. [PMID: 33691750 PMCID: PMC7945659 DOI: 10.1186/s13046-021-01888-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. METHODS Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. RESULTS The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. CONCLUSIONS Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuanping Xiong
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Present address: Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nestor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. .,Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, USA.
| |
Collapse
|
32
|
Dai XJ, Liu Y, Xue LP, Xiong XP, Zhou Y, Zheng YC, Liu HM. Reversible Lysine Specific Demethylase 1 (LSD1) Inhibitors: A Promising Wrench to Impair LSD1. J Med Chem 2021; 64:2466-2488. [PMID: 33871995 DOI: 10.1021/acs.jmedchem.0c02176] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a flavin adenine dinucleotide (FAD)-dependent monoamine oxidase, lysine specific demethylase 1 (LSD1/KDM1A) functions as a transcription coactivator or corepressor to regulate the methylation of histone 3 lysine 4 and 9 (H3K4/9), and it has emerged as a promising epigenetic target for anticancer treatment. To date, numerous inhibitors targeting LSD1 have been developed, some of which are undergoing clinical trials for cancer therapy. Although only two reversible LSD1 inhibitors CC-90011 and SP-2577 are in the clinical stage, the past decade has seen remarkable advances in the development of reversible LSD1 inhibitors. Herein, we provide a comprehensive review about structures, biological evaluation, and structure-activity relationship (SAR) of reversible LSD1 inhibitors.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei-Peng Xue
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Peng Xiong
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Zhou
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|
33
|
Shen J, Zhu Z, Zhang Z, Guo C, Zhang J, Ren G, Chen L, Li S, Zhao H. Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119141. [PMID: 33188973 DOI: 10.1016/j.saa.2020.119141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Melatonin (MLT), as a neurotransmitter and an endogenous neurohormone, plays an important role in physiological functions through interactions with specific receptors. The conformations of MLT are closely related to its biological activities and functions. However, the internal relationship between the structure and interaction of MLT and its allosteric transition remains unclear. In this work, we obtain the broadband fingerprint terahertz (THz) spectrum of MLT in the range of 0.5-18 THz using the air-plasma terahertz time-domain spectroscopy (THz-TDS) system. DFT calculations are employed to analyze the vibration characteristics of MLT. The result shows that the low-frequency vibrations mainly come from the strong coupling between inter- and intramolecular vibrations, and the contribution of intramolecular vibrations gradually dominates with increasing frequency. Meanwhile, the local vibrations of the different functional groups distribute widely in the THz low-frequency band, relating to the diversity of conformational changes in the molecule. The intermolecular hydrogen bonds (HBs) have distinct resonant responses and play critical roles in the THz low-frequency vibrations. The study reveals the complex characteristics of the resonant coupling of MLT with THz electromagnetic waves. The results will help to understand the conformational preferences of MLT in neural signal transmission processes.
Collapse
Affiliation(s)
- Jianxiong Shen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Zhongjie Zhu
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Zongchang Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Cong Guo
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Jianbing Zhang
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Guanhua Ren
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Ligang Chen
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China
| | - Shaoping Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongwei Zhao
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China.
| |
Collapse
|
34
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
36
|
Mogavero MP, DelRosso LM, Fanfulla F, Bruni O, Ferri R. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med Rev 2020; 56:101409. [PMID: 33333427 DOI: 10.1016/j.smrv.2020.101409] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
A bidirectional connection between sleep and cancer exists; however, the specific associations between individual sleep disorders and particular tumors are not very clear. An accurate assessment of sleep disorders in cancer patients is necessary to improve patient health, survival, response to therapy, quality of life, reduction of comorbidities/complications. Indeed, recent scientific evidence shows that knowledge and management of sleep disorders offer interesting therapeutic perspectives for the treatment of cancer. In light of this need, the objective of this review is to assess the evidence highlighted in the research of the last ten years on the correlation between each specific category of sleep disorder according to the International Classification of Sleep Disorders 3rd Ed. and several types of tumor based on their anatomical location (head-neck, including the brain and thyroid; lung; breast; ovary; endometrium; testes; prostate; bladder; kidney; gastrointestinal tract, subdivided into: stomach, liver, colon, pancreas; skin; bone tumors; hematological malignancies: leukemia, lymphoma, multiple myeloma, polycythemia), in order to evaluate what is currently known about: 1) sleep disorders as cancer risk factor; 2) tumors associated with the onset of sleep disorders; 3) targeted therapies of sleep disorders in cancer patients and new oncological perspectives following the evaluation of sleep.
Collapse
Affiliation(s)
- Maria Paola Mogavero
- Sleep Medicine Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia 27100, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of Washington, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Francesco Fanfulla
- Sleep Medicine Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia 27100, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome 00185, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Research Institute, IRCCS, Troina 94018, Italy.
| |
Collapse
|
37
|
Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem 2020; 8:829. [PMID: 33195038 PMCID: PMC7593821 DOI: 10.3389/fchem.2020.00829] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
39
|
Shih YH, Chiu KC, Wang TH, Lan WC, Tsai BH, Wu LJ, Hsia SM, Shieh TM. Effects of melatonin to arecoline-induced reactive oxygen species production and DNA damage in oral squamous cell carcinoma. J Formos Med Assoc 2020; 120:668-678. [PMID: 32800657 DOI: 10.1016/j.jfma.2020.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Arecoline, the major alkaloid of areca nut, is known to induce reactive oxygen species (ROS) and DNA damage during oral cancer progression. This study aim to evaluate whether melatonin, an antioxidant, supported or repressed the arecoline-induced carcinogenesis phenotypes in oral squamous cell carcinoma (OSCC). METHODS The cytotoxicity of arecoline or melatonin treatment alone and their co-treatment in the OSCC cell line OEC-M1 were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle, cell death, and total ROS production were analyzed using flow cytometer. The protein expression was determined using western blot analysis. The genotoxicity and mutation rate were determined using micronucleus assay and hypoxanthine phosphoribosyl transferase (HPRT) forward mutation assay, respectively, in CHO-K1 cells. The ataxia telangiectasia mutated (ATM) promoter activity and DNA repair ability were determined through reporter assay. RESULTS The result showed that both the arecoline and melatonin induced ROS production and antioxidant enzymes expression. Melatonin treatment enhanced arecoline-induced ROS production, cytotoxicity, G2/M phase arrest, and cell apoptosis in OSCC cells. On the other hand, melatonin treatment activated DNA repair activity to reverse arecoline-induced DNA damage and mutation. CONCLUSION These results indicated that melatonin is a potential chemopreventive agent for betel quid chewers to prevent OSCC initiation and progression.
Collapse
Affiliation(s)
- Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, School of Dentistry, National Defense Medical Center, Taipei, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bi-He Tsai
- Department of Oral Hygiene, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Li-Jia Wu
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food and Safety, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan.
| |
Collapse
|
40
|
Yang M, Li L, Chen S, Li S, Wang B, Zhang C, Chen Y, Yang L, Xin H, Chen C, Xu X, Zhang Q, He Y, Ye J. Melatonin protects against apoptosis of megakaryocytic cells via its receptors and the AKT/mitochondrial/caspase pathway. Aging (Albany NY) 2020; 12:13633-13646. [PMID: 32651992 PMCID: PMC7377846 DOI: 10.18632/aging.103483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 04/19/2023]
Abstract
Clinical studies have shown that melatonin lowers the frequency of thrombocytopenia in patients with cancer undergoing radiotherapy or chemotherapy. Here, we investigated the mechanisms by which melatonin promotes platelet formation and survival. Our results show that melatonin exerted protective effects on serum-free induced apoptosis of CHRF megakaryocytes (MKs). Melatonin promoted the formation of MK colony forming units (CFUs) in a dose-dependent manner. Using doxorubicin-treated CHRF cells, we found that melatonin rescued G2/M cell cycle arrest and cell apoptosis induced by doxorubicin. The expression of p-AKT was increased by melatonin treatment, an effect that was abolished by melatonin receptor blocker. In addition, we demonstrated that melatonin enhanced the recovery of platelets in an irradiated mouse model. Megakaryopoiesis was largely preserved in melatonin-treated mice. We obtained the same results in vivo from bone marrow histology and CFU-MK formation assays. Melatonin may exert these protective effects by directly stimulating megakaryopoiesis and inhibiting megakaryocyte apoptosis through activation of its receptors and AKT signaling.
Collapse
Affiliation(s)
- Mo Yang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Lianjiang People’s Hospital, Lianjiang, Guangdong, China
| | - Liang Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Shichao Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyi Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Wang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Youpeng Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Liuming Yang
- Lianjiang People’s Hospital, Lianjiang, Guangdong, China
| | - Hongwu Xin
- Lianjiang People’s Hospital, Lianjiang, Guangdong, China
| | - Chun Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiaojun Xu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulong He
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jieyu Ye
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M, Nouruzi F, Shabeeb D, Musa AE. Protective Effect of Selenium-L-methionine on Radiation-induced Acute Pneumonitis and Lung Fibrosis in Rat. ACTA ACUST UNITED AC 2020; 14:157-164. [PMID: 30556505 PMCID: PMC7040518 DOI: 10.2174/1574884714666181214101917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In this study, we aimed to detect the changes in the level of interleukin (IL)-4 and IL-13 cytokines and their downstream genes including interleukin-13 receptor subunit alpha-2 (IL13Ra2), interleukin-4 receptor subunit alpha-1 (IL4Ra1), dual oxidase 1 (DUOX1) and dual oxidase 2 (DUOX2). The protective effects of Selenium-L-methionine on radiation-induced histopathological damages and changes in the level of these cytokines and genes were detected. METHODS Four groups of 20 rats (5 rats in each) namely, control; Selenium-L-methionine, radiation and radiation plus Selenium-L-methionine were used in this study. 4 mg/kg of Selenium-Lmethionine was administered 1 day before irradiation and five consecutive days after irradiation. Irradiation was done using a dose of 15 Gy 60Co gamma rays at 109 cGy/min. All rats were sacrificed 10 weeks after irradiation for detecting changes in IL-4 and IL-13 cytokines, the expressions of IL13Ra2, IL4Ra1, Duox1 and Duox2 and histopathological changes. RESULTS The level of IL-4 but not IL-13 increased after irradiation. This was associated with increased expression of IL4Ra1, Duox1 and Duox2, in addition to changes in morphological properties. Selenium-L-methionine could attenuate all injury markers following lung irradiation. CONCLUSION Selenium-L-methionine can protect lung tissues against toxic effects of ionizing radiation. It is possible that the modulation of immune responses and redox interactions are involved in the radioprotective effect of this agent.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Kolivand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Department of Clinical and Anatomical Pathologist, Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
42
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
43
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
44
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res 2020; 34:1745-1760. [PMID: 32157749 DOI: 10.1002/ptr.6642] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham G Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
45
|
Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. J Pineal Res 2020; 68:e12630. [PMID: 31876313 PMCID: PMC7027535 DOI: 10.1111/jpi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/β-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jingshan Ren
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James Hillier
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Margaret Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Weixian Lu
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
46
|
Zhang Z, Gu Y, Wang Z, Wang H, Zhao Y, Chu X, Zhang C, Yan M. Synthesis and biological evaluation of novel indoleamide derivatives as antioxidative and antitumor agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Zhang
- School of PharmacyJining Medical University Shandong China
| | - Ying‐Lin Gu
- School of PharmacyJining Medical University Shandong China
| | | | - Huan‐Nan Wang
- School of PharmacyJining Medical University Shandong China
| | - Yan Zhao
- Oncology Department, Rizhao Central Hospital Shandong China
| | - Xue‐Mei Chu
- School of PharmacyJining Medical University Shandong China
| | - Chun‐Yan Zhang
- School of PharmacyJining Medical University Shandong China
| | - Mao‐Cai Yan
- School of PharmacyJining Medical University Shandong China
| |
Collapse
|
47
|
Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J, Zheng Z. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 2020; 8:10. [PMID: 32133213 PMCID: PMC7028926 DOI: 10.1038/s41413-020-0087-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response is induced by the overexpression of inflammatory cytokines, mainly interleukin (IL)-1β, and is one of the main causes of intervertebral disc degeneration (IVDD). NLR pyrin domain containing 3 (NLRP3) inflammasome activation is an important source of IL-1β. As an anti-inflammatory neuroendocrine hormone, melatonin plays various roles in different pathophysiological conditions. However, its roles in IVDD are still not well understood and require more examination. First, we demonstrated that melatonin delayed the progression of IVDD and relieved IVDD-related low back pain in a rat needle puncture IVDD model; moreover, NLRP3 inflammasome activation (NLRP3, p20, and IL-1β levels) was significantly upregulated in severely degenerated human discs and a rat IVDD model. Subsequently, an IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop was found in nucleus pulposus (NP) cells that were treated with IL-1β. In these cells, expression of NLRP3 and p20 was significantly increased, NF-κB signaling was involved in this regulation, and mitochondrial reactive oxygen species (mtROS) production increased. Furthermore, we found that melatonin disrupted the IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop in vitro and in vivo. Melatonin treatment decreased NLRP3, p20, and IL-1β levels by inhibiting NF-κB signaling and downregulating mtROS production. Finally, we showed that melatonin mediated the disruption of the positive feedback loop of IL-1β in vivo. In this study, we showed for the first time that IL-1β promotes its own expression by upregulating NLRP3 inflammasome activation. Furthermore, melatonin disrupts the IL-1β positive feedback loop and may be a potential therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Fan Chen
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Guowei Jiang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hui Liu
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zemin Li
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuxin Pei
- 2Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hua Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hehai Pan
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Haowen Cui
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jun Long
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jianru Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhaomin Zheng
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- 3Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|
48
|
Ashrafizadeh M, Mohammadinejad R, Samarghandian S, Yaribeygi H, Johnston TP, Sahebkar A. Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anticancer Agents Med Chem 2020; 20:918-931. [PMID: 32108003 DOI: 10.2174/1871520620666200228110704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Cancer management and/or treatment require a comprehensive understanding of the molecular and signaling pathways involved. Recently, much attention has been directed to these molecular and signaling pathways, and it has been suggested that a number of biomolecules/players involved in such pathways, such as PI3K/Akt, NF-kB, STAT, and Nrf2 contribute to the progression, invasion, proliferation, and metastasis of malignant cells. Synthetic anti-tumor agents and chemotherapeutic drugs have been a mainstay in cancer therapy and are widely used to suppress the progression and, hopefully, halt the proliferation of malignant cells. However, these agents have some undesirable side-effects and, therefore, naturally-occurring compounds with high potency and fewer side-effects are now of great interest. Osthole is a plant-derived chemical compound that can inhibit the proliferation of malignant cells and provide potent anti-cancer effects in various tissues. Therefore, in this review, we presented the main findings concerning the potential anti-tumor effects of osthole and its derivatives and described possible molecular mechanisms by which osthole may suppress malignant cell proliferation in different tissues.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, United States
| | | |
Collapse
|
49
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
50
|
Shafabakhsh R, Mirzaei H, Asemi Z. Melatonin: A promising agent targeting leukemia. J Cell Biochem 2019; 121:2730-2738. [PMID: 31713261 DOI: 10.1002/jcb.29495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
Leukemia or cancer of blood is a well-known cancer, which affects a range of people from newborns to the very old. It is a public health problem throughout the world. By way of treatment, due to the lack of specific anticancer therapies, common treatments of leukemia lead to severe side effects. Nonspecific anticancer drugs result in inhibition of normal cell growth and thereby their necrosis. Moreover, drug resistance is an additional problem, which stands in the way of leukemia treatment. Thus, finding new treatments for leukemia is essential. Melatonin, as a natural product, has been shown to be effective in a wide variety of diseases such as coronary heart disease, schizophrenia, chronic pain, and Alzheimer's disease. In addition, melatonin levels have been observed to be altered in different cancers, such as breast cancer, colorectal cancer endometrial cancer, and hematopoetical cancers. Anticancer features of melatonin such as pro-oxidation, apoptosis induction, antiangiogenesis property and metastasis and invasion inhibition suggest that this natural compound can be used as a potential agent in novel therapeutic strategies for cancers. Also, it has been reported that melatonin has positive and protective effects on different physiological reactions and in normal bone marrow cells suggesting effectiveness in leukemia therapy. Thus, the aim of our paper was to depict and summarize the main molecular targets of melatonin on leukemia models.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|