1
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
2
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Yan Y, Yu W, Guo M, Zhu N, Chen X, Li N, Zhong C, Wang G. Autophagy regulates apoptosis of colorectal cancer cells based on signaling pathways. Discov Oncol 2024; 15:367. [PMID: 39182013 PMCID: PMC11344751 DOI: 10.1007/s12672-024-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. Its morbidity and mortality rank among the highest in the world. Cancer development is associated with aberrant signaling pathways. Autophagy is a process of cell self-digestion that maintains the intracellular environment and has a bidirectional regulatory role in cancer. Apoptosis is one of the important death programs in cancer cells and is able to inhibit cancer development. Studies have shown that a variety of substances can regulate autophagy and apoptosis in colorectal cancer cells through signaling pathways, and participate in the regulation of autophagy on apoptosis. In this paper, we focus on the relevant research on autophagy in colorectal cancer cells based on the involvement of related signaling pathways in the regulation of apoptosis in order to provide new research ideas and therapeutic directions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuwei Yan
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenyan Yu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Min Guo
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Naicheng Zhu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiudan Chen
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Nanxin Li
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chen Zhong
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guojuan Wang
- Oncology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
4
|
Yu JM, Sun CQ, Xu HH, Jiang YL, Jiang XY, Ni SQ, Zhao TY, Liu LX. Navigating the labyrinth of long non-coding RNAs in colorectal cancer: From chemoresistance to autophagy. World J Gastrointest Oncol 2024; 16:3376-3381. [PMID: 39171173 PMCID: PMC11334040 DOI: 10.4251/wjgo.v16.i8.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 08/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance. Moreover, it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance. Two recent studies titled "Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506" and "Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription" revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC, respectively. In this editorial, we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
Collapse
Affiliation(s)
- Jia-Mei Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chong-Qi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huan-Huan Xu
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Research Laboratory, Jiangsu Province Geriatric Hospital, Nanjing 210009, Jiangsu Province, China
| | - Ya-Li Jiang
- Central Laboratory, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uyghur Autonomous Region, China
| | - Xing-Yu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Si-Qi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ting-Yu Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ling-Xiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
5
|
Cao J, Yang Y, Duan B, Zhang H, Xu Q, Han J, Lu B. LncRNA PCED1B-AS1 mediates miR-3681-3p/MAP2K7 axis to promote metastasis, invasion and EMT in gastric cancer. Biol Direct 2024; 19:34. [PMID: 38698487 PMCID: PMC11064384 DOI: 10.1186/s13062-024-00468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jia Cao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicheng Yang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinwei Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyi Han
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Bing Lu
- Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
6
|
Han Z, Luo W, Shen J, Xie F, Luo J, Yang X, Pang T, Lv Y, Li Y, Tang X, He J. Non-coding RNAs are involved in tumor cell death and affect tumorigenesis, progression, and treatment: a systematic review. Front Cell Dev Biol 2024; 12:1284934. [PMID: 38481525 PMCID: PMC10936223 DOI: 10.3389/fcell.2024.1284934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 11/02/2024] Open
Abstract
Cell death is ubiquitous during development and throughout life and is a genetically determined active and ordered process that plays a crucial role in regulating homeostasis. Cell death includes regulated cell death and non-programmed cell death, and the common types of regulatory cell death are necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. Apoptosis, Necrosis and necroptosis are more common than autophagy, ferroptosis and pyroptosis among cell death. Non-coding RNAs are regulatory RNA molecules that do not encode proteins and include mainly microRNAs, long non-coding RNAs, and circular RNAs. Non-coding RNAs can act as oncogenes and tumor suppressor genes, with significant effects on tumor occurrence and development, and they can also regulate tumor cell autophagy, ferroptosis, and pyroptosis at the transcriptional or post-transcriptional level. This paper reviews the recent research progress on the effects of the non-coding RNAs involved in autophagy, ferroptosis, and pyroptosis on tumorigenesis, tumor development, and treatment, and looks forward to the future direction of this field, which will help to elucidate the molecular mechanisms of tumorigenesis and tumor development, as well as provide a new vision for the treatment of tumors.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinggen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiang Yang
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ting Pang
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yubing Lv
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguang Li
- He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| |
Collapse
|
7
|
Moslehian MS, Shabkhizan R, Asadi MR, Bazmani A, Mahdipour M, Haiaty S, Rahbarghazi R, Sakhinia E. Interaction of lncRNAs with mTOR in colorectal cancer: a systematic review. BMC Cancer 2023; 23:512. [PMID: 37280524 DOI: 10.1186/s12885-023-11008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.
Collapse
Affiliation(s)
- Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
9
|
Zhang C, Deng Y, Zhang Y, Ba T, Niu S, Chen Y, Gao Y, Dai H. CXCR3 Inhibition Blocks the NF-κB Signaling Pathway by Elevating Autophagy to Ameliorate Lipopolysaccharide-Induced Intestinal Dysfunction in Mice. Cells 2023; 12:cells12010182. [PMID: 36611975 PMCID: PMC9818741 DOI: 10.3390/cells12010182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a cellular catabolic process in the evolutionarily conservative turnover of intracellular substances in eukaryotes, which is involved in both immune homeostasis and injury repairment. CXCR3 is an interferon-induced chemokine receptor that participates in immune regulation and inflammatory responses. However, CXCR3 regulating intestine injury via autophagy along with the precise underlying mechanism have yet to be elucidated. In the current study, we employed an LPS-induced inflammatory mouse model and confirmed that CXCR3 knockout significantly attenuates intestinal mucosal structural damage and increases tight junction protein expression. CXCR3 knockout alleviated the LPS-induced increase in the expression of inflammatory factors including TNF-α, IL-6, p-65, and JNK-1 and enhanced autophagy by elevating LC3II, ATG12, and PINK1/Parkin expression. Mechanistically, the function of CXCR3 regarding autophagy and immunity was investigated in IPEC-J2 cells. CXCR3 inhibition by AMG487 enhanced autophagy and reduced the inflammatory response, as well as blocked the NF-κB signaling pathway and elevated the expression of the tight junction protein marker Claudin-1. Correspondingly, these effects were abolished by autophagy inhibition with the selective blocker, 3-MA. Moreover, the immunofluorescence assay results further demonstrated that CXCR3 inhibition-mediated autophagy blocked p65 nuclear translocation, and the majority of Claudin-1 was located at the tight junctions. In conclusion, CXCR3 inhibition reversed LPS-induced intestinal barrier damage and alleviated the NF-κB signaling pathway via enhancing autophagy. These data provided a theoretical basis for elucidating the immunoregulatory mechanism by targeting CXCR3 to prevent intestinal dysfunction.
Collapse
|
10
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
11
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Manzoor S, Muhammad JS, Maghazachi AA, Hamid Q. Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Front Oncol 2022; 12:924290. [PMID: 35912261 PMCID: PMC9329589 DOI: 10.3389/fonc.2022.924290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.
Collapse
Affiliation(s)
- Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Qutayba Hamid,
| |
Collapse
|
13
|
Zhang F, Luo H, Peng W, Wang L, Wang T, Xie Z, Zhang J, Dong W, Zheng X, Liu G, Zhu X, Kang Q, Tian X. Hypoxic condition induced H3K27me3 modification of the LncRNA Tmem235 promoter thus supporting apoptosis of BMSCs. Apoptosis 2022; 27:762-777. [PMID: 35779185 PMCID: PMC9482900 DOI: 10.1007/s10495-022-01747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong regenerative potential and show good application prospects for treating clinical diseases. However, in the process of BMSC transplantation for treating ischemic and hypoxic diseases, BMSCs have high rates of apoptosis in the hypoxic microenvironment of transplantation, which significantly affects the transplantation efficacy. Our previous studies have confirmed the key role of long non-coding RNA Tmem235 (LncRNA Tmem235) in the process of hypoxia-induced BMSC apoptosis and its downstream regulatory mechanism, but the upstream mechanism by which hypoxia regulates LncRNA Tmem235 expression to induce BMSC apoptosis is still unclear. Under hypoxic conditions, we found that the level of LncRNA Tmem235 promoter histone H3 lysine 27 trimethylation modification (H3K27me3) was significantly increased by CHIP-qPCR. Moreover, H3K27me3 cooperated with LncRNA Tmem235 promoter DNA methylation to inhibit the expression of LncRNA Tmem235 and promote apoptosis of BMSCs. To study the mechanism of hypoxia-induced modification of LncRNA Tmem235 promoter H3K27me3 in the hypoxia model of BMSCs, we detected the expression of H3K27 methylase and histone demethylase and found that only histone methylase enhancer of zeste homolog 2 (EZH2) expression was significantly upregulated. Knockdown of EZH2 significantly decreased the level of H3K27me3 modification in the LncRNA Tmem235 promoter. The EZH2 promoter region contains a hypoxia-responsive element (HRE) that interacts with hypoxia-inducible factor-1alpha (HIF-1α), which is overexpressed under hypoxic conditions, thereby promoting its overexpression. In summary, hypoxia promotes the modification of the LncRNA Tmem235 promoter H3K27me3 through the HIF-1α/EZH2 signaling axis, inhibits the expression of LncRNA Tmem235, and leads to hypoxic apoptosis of BMSCs. Our findings improve the regulatory mechanism of LncRNA Tmem235 during hypoxic apoptosis of BMSCs and provide a more complete theoretical pathway for targeting LncRNA to inhibit hypoxic apoptosis of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohan Zheng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gang Liu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qinglin Kang
- Department of Orthopedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
14
|
Li H, Pang B, Nie B, Qu S, Zhang K, Xu J, Yang M, Liu J, Li S. Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis. Immunopharmacol Immunotoxicol 2022; 44:238-246. [PMID: 35174751 DOI: 10.1080/08923973.2022.2037632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dioscin is reported to alleviate the dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice. Autophagy plays an anti-inflammatory role in UC. We herein aimed to explore the biological functions of dioscin in autophagy in UC. METHODS To explore the effects of dioscin on UC progression, a DSS-induced mouse model of UC was established. Body weight, disease activity index and macroscopic damage index scores were recorded for seven days. Hematoxylin & Eosin (HE) staining was used to stain colon sections and an BX53 microscope was prepared to observe pathological changes. The activities of glutathione, superoxidative dismutase, and malondialdehyde were determined by commercially available kits. Western blotting was performed to measure the protein levels of p-AMPK/AMPK, p-mTOR/mTOR and autophagy-related genes. RESULTS The DSS-induced colitis and oxidative stress in mice were ameliorated after dioscin treatment. Dioscin promoted the phosphorylation of AMPK to inhibit mTOR activation and facilitated autophagy in DSS-induced mice model of UC. CONCLUSION Dioscin promotes autophagy by promoting the phosphorylation of AMPK to inhibit mTOR activation in ulcerative colitis.
Collapse
Affiliation(s)
- Han Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bo Pang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bin Nie
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Kuanxin Zhang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jinxiu Xu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ming Yang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shasha Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
15
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Zhang RN, Wu DM, Wu LP, Gao GW. LncRNA LINC00337 sponges mir-1285-3p to promote proliferation and metastasis of lung adenocarcinoma cells by upregulating YTHDF1. Cancer Cell Int 2021; 21:550. [PMID: 34663343 PMCID: PMC8524958 DOI: 10.1186/s12935-021-02253-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Emerging studies have shown that long noncoding RNAs (lncRNAs) predominantly function in the carcinogenesis of multiple developing human tumors. The current study aimed to investigate the underlying mechanisms of LINC00337 in lung adenocarcinoma. METHODS We analyzed TCGA and GTEx datasets and chose LINC00337 as the research object. Cell proliferation, cell apoptosis, cell cycle, migration, and invasion were detected in the gain and loss experiments of LINC00337 both in vitro and in vivo. Moreover, RNA pull-down, luciferase reporter assays, western blotting analysis, and rescue experiments were performed to investigate the underlying molecular mechanisms of LINC00337 function. RESULTS LINC00337 expression was remarkably upregulated in lung adenocarcinoma. In addition, LINC00337 knockdown was shown to repress cell migration, invasion, and proliferation, as well as the cell cycle, and gear up apoptosis in lung adenocarcinoma in vitro and in vivo. With respect to the mechanism, LINC00337 knockdown boosted miR-1285-3p expression and then restrained YTHDF1 expression post-transcriptionally. Crucially, both miR-1285-3p decrement and YTHDF1 overexpression successfully reversed the influence on cell proliferation, migration, invasion, and apoptosis caused by LINC00337 shRNA. CONCLUSIONS These results suggest that LINC00337 acts as an oncogenic lncRNA, targeting miR-1285-3p and regulating YTHDF1 expression, to promote the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ru-Nan Zhang
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China.
| | - Dong-Mei Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Li-Ping Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Guo-Wei Gao
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| |
Collapse
|
17
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
18
|
Islam Khan MZ, Law HKW. Cancer Susceptibility Candidate 9 (CASC9) Promotes Colorectal Cancer Carcinogenesis via mTOR-Dependent Autophagy and Epithelial-Mesenchymal Transition Pathways. Front Mol Biosci 2021; 8:627022. [PMID: 34017854 PMCID: PMC8129023 DOI: 10.3389/fmolb.2021.627022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Many recent studies have demonstrated that different long non-coding RNAs (lncRNAs) are involved in the initiation, advancement, and metastasis of many cancers including CRC. Cancer susceptibility candidate 9 (CASC9) is an lncRNA that has been reported in many cancers, but its role in CRC is poorly understood. In this study, we aimed to examine the expression of CASC9 in CRC cell lines and to determine the mechanism of action of CASC9 in CRC carcinogenesis. METHODS The expression of CASC9 in CRC tissues was compared with normal samples from publicly available datasets in The Cancer Genome Atlas (TCGA) and The Encyclopedia of RNA Interactomes (ENCORI). CASC9 expression was further verified in four CRC cell lines (DLD1, HT-29, SW480, and HCT-116) and normal colorectal cell line (CCD-112CoN) by real-time quantitative polymerase chain reaction (RT-qPCR). After gene silencing in HCT-116 and SW480, Cell Counting Kit-8 assay, clonogenic assay, and wound healing assay were performed to evaluate cell proliferation, viability, and migration index of cells. Western blotting was used to explore the key pathways involved. RESULTS CASC9 was significantly upregulated as analyzed from both public datasets TCGA and ENCORI where its overexpression was associated with poor survival of CRC patients. Similarly, CASC9 was significantly overexpressed in the CRC cell lines compared with normal cells studied. The silencing of CASC9 in HCT-116 and SW480 attenuated cell proliferation and migration significantly. Furthermore, pathways investigations showed that silencing of CASC9 significantly induced autophagy, promoted AMP-activated protein kinase (AMPK) phosphorylation, inhibited mTOR and AKT signaling pathways, and altered epithelial-mesenchymal transition (EMT) marker protein expression. CONCLUSION We demonstrated that silencing of CASC9 contributes to the reduced CRC cell proliferation and migration by regulating autophagy and AKT/mTOR/EMT signaling. Therefore, CASC9 plays an important role in carcinogenesis, and its expression may act as a prognostic biomarker and a potential therapeutic target of CRC management.
Collapse
Affiliation(s)
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
19
|
Yang Y, Yan X, Li X, Ma Y, Goel A. Long non-coding RNAs in colorectal cancer: Novel oncogenic mechanisms and promising clinical applications. Cancer Lett 2021; 504:67-80. [PMID: 33577977 PMCID: PMC9715275 DOI: 10.1016/j.canlet.2021.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy and ranks as the second leading cause of cancer-related deaths worldwide. Despite the improvements in CRC diagnosis and treatment approaches, a considerable proportion of CRC patients still suffers from poor prognosis due to late disease detections and lack of personalized disease managements. Recent evidences have not only provided important molecular insights into their mechanistic behaviors but also indicated that identification of cancer-specific long non-coding RNAs (LncRNAs) could benefit earlier disease detections and improve treatment outcomes in patients suffering from CRC. LncRNAs have raised extensive attentions as they participate in various hallmarks of CRC. The mechanistic evidence gleaned in the recent decade clearly reveals that lncRNAs exert their oncogenic roles by regulating autophagy, epigenetic modifications, enhancing stem phenotype and modifying tumor microenvironment. In view of their pleiotropic functional roles in malignant progression, and their frequently dysregulated expression in CRC patients, they have great potential to be reliable diagnostic and prognostic biomarkers, as well as therapeutic targets for CRC. In the present review, we will focus on the oncogenic roles of lncRNAs and related mechanisms in CRC as well as discuss their clinical potential in the early diagnosis, prognostic prediction and therapeutic translation in patients with this malignancy.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
20
|
Mao J, Gao W, Xue L, Wang J, Zhao L. The lncRNA SLCO4A1-AS1/miR-876-3p/RBBP6 axis regulates cell proliferation and apoptosis in acute lymphocytic leukemia via the JNK signaling pathway. Int J Lab Hematol 2021; 43:1050-1061. [PMID: 33683013 DOI: 10.1111/ijlh.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acute lymphocytic leukemia (ALL) is a hematologic malignancy caused by the clonal proliferation of immature lymphocytes. Long noncoding RNAs (lncRNAs) have been reported as critical regulators in several cancers, including ALL. LncRNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been revealed to be implicated in tumorigenesis of several cancers. Our study focused on the role of SLCO4A1-AS1 in ALL. METHODS RT-qPCR, Western blot analysis, CCK-8, EdU, and Flow cytometry analysis were used to explore the biological function of SLCO4A1-AS1 in ALL cellular processes. Luciferase reporter and RNA pull-down assays were applied to explore the mechanism of SLCO4A1-AS1 in ALL cells. RESULTS SLCO4A1-AS1 was upregulated in ALL tissues and cell lines. We found that suppression of SLCO4A1-AS1 suppressed ALL cell proliferation and facilitated cell apoptosis. Our result confirmed that SLCO4A1-AS1 acted as a ceRNA by sponging microRNA 876-3p (miR-876-3p) to upregulate retinoblastoma binding protein 6 (RBBP6) expression in ALL cells. Moreover, SLCO4A1-AS1 activated the JNK signaling pathway by upregulating RBBP6. Rescue assays revealed that the activation of the JNK signaling or overexpression of RBBP6 revered the suppressive effect of SLCO4A1-AS1 knockdown on growth of ALL cells. CONCLUSION SLCO4A1-AS1 promoted cell growth of ALL by the miR-876-3p/RBBP6 axis to activate the JNK signaling pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Wenliang Gao
- Department of Internal Medicine, The Second Children & Women's Healthcare of Jinan City, Jinan, China
| | - Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
21
|
Xie Q, Liu Y, Li X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 2020; 13:100871. [PMID: 32950931 PMCID: PMC7509232 DOI: 10.1016/j.tranon.2020.100871] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy and apoptosis play crucial roles in tumorigenesis. Recent studies have shown that autophagy and apoptosis have a cross-talk relationship in anti-tumor therapy. It is well established that apoptosis is one of the main pathways of tumor cell death. While autophagy can occurs in tumors with opposite function: protective autophagy and lethal autophagy. Protective autophagy can inhibit tumor apoptosis induced by anticancer drugs, while lethal autophagy can induce tumor cell apoptosis in cooperation with anticancer drugs. Hence, autophagy and apoptosis have synergistic and antagonistic effects in tumor. Colorectal cancer is a common malignant tumor with high morbidity and mortality. In recent years, colorectal carcinoma has achieved improved clinical efficacy with drug treatment. Nonetheless, increasing drug-resistance limit the treatment efficacy, highlighting the urgency of exploring the molecular events that drive drug resistance. Researchers have found that autophagy is one of the major factors leading to drug resistance in colon cancer. Therefore, elucidating the interaction between autophagy and apoptosis is helpful to improve the efficacy of anticancer drugs in clinical treatment of colorectal cancer. This review attaches great importance to the relationship between autophagy and apoptosis and related factors in colorectal cancer.
Collapse
Affiliation(s)
- Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, PR China,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China,Corresponding author at: The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
22
|
Li H, He Y, Zhang C, Ba T, Guo Z, Zhuo Y, He L, Dai H. NOX1 down-regulation attenuated the autophagy and oxidative damage in pig intestinal epithelial cell following transcriptome analysis of transport stress. Gene 2020; 763:145071. [PMID: 32827682 DOI: 10.1016/j.gene.2020.145071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The previous study indicated that transport stress resulted in oxidative damage and autophagy/mitophagy elevation, companied by NOX1 over- expression in the jejunal tissues of pigs. However, the transportation-related gene expression profile and NOX1 function in intestine remain to be explicated. In the current study, differentially expressed genes involved in PI3K-Akt and NF-κB pathways, oxidative stress and autophagy process have been identified in pig jejunal tissues after transcriptome analysis following transportation. The physiological functions of NOX1 down-regulation were explored against oxidative damage and excessive autophagy in porcine intestinal epithelial cells (IPEC-1) following NOX1 inhibitor ML171 and H2O2 treatments. NOX1 down-regulation could decrease the content of Malondialdehyde (MDA), Lactic dehydrogenase (LDH) activity and reactive oxygen species (ROS) level, and up-regulate superoxide dismutase (SOD) activity. Furthermore, mitochondrial membrane potential and content were restored, and the expressions of tight junction proteins (Claudin-1 and ZO-1) were also increased. Additionally, NOX1 inhibitior could down-regulate the expression of autophagy-associated proteins (ATG5, LC3, p62), accompanied by activating SIRT1/PGC-1α pathway. NOX1 down-regulation might alleviate oxidative stress-induced mitochondria damage and intestinal mucosal injury via modulating excessive autophagy and SIRT1/PGC-1α signaling pathway. The data will shed light on the molecular mechanism of NOX1 on intestine oxidative damage following pig transportation.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yulong He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Cheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Tongtong Ba
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
23
|
Li JJ, Chen XF, Wang M, Zhang PP, Zhang F, Zhang JJ. Long non-coding RNA UCA1 promotes autophagy by targeting miR-96-5p in acute myeloid leukaemia. Clin Exp Pharmacol Physiol 2020; 47:877-885. [PMID: 31953866 DOI: 10.1111/1440-1681.13259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been identified as an oncogene and is involved in acute myeloid leukaemia (AML). Autophagy contributes to tumourigenesis and cancer cell survival. The purpose of this study was to investigate the regulatory role and mechanism of UCA1 in AML cell viability by its effect on autophagy. The expression of UCA1, miR-96-5p, and ATG7 was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. The autophagy level was assessed by green fluorescent protein (GFP)-LC3 immunofluorescence and western blot. The interaction between UCA1 and miR-96-5p or ATG7 was analyzed by luciferase reporter activity. The results showed that UCA1 promoted AML cell proliferation by inducing autophagy. Mechanistically, UCA1 acted as a sponge of miR-96-5p by binding to miR-96-5p. ATG7 was a direct target of miR-96-5p and positively regulated by UCA1. Further results showed that the miR-96-5p mimic effectively counteracted the UCA1 overexpression-mediated induction of the ATG7/autophagy pathway. Collectively, UCA1 functions as a sponge of miR-96-5p to upregulate its target ATG7, thereby resulting in autophagy induction. Our findings reveal a UCA1-mediated molecular mechanism responsible for autophagy induction in AML and help to improve the understanding of the molecular mechanism of AML progression.
Collapse
Affiliation(s)
- Jia Jia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Feng Chen
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ping Ping Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Feng Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Jing Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
24
|
Huo Y, Chen W, Zheng X, Zhao J, Zhang Q, Hou Y, Cai Y, Lu X, Jin X. The protective effect of EGF-activated ROS in human corneal epithelial cells by inducing mitochondrial autophagy via activation TRPM2. J Cell Physiol 2020; 235:7018-7029. [PMID: 32083315 DOI: 10.1002/jcp.29597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
Oxidative stress is a major pathogenesis of some ocular surface diseases. Our previous study demonstrated that epidermal growth factor (EGF)-activated reactive oxygen species (ROS) could protect against human corneal epithelial cell (HCE) injury. In the present study, we aimed to explore the role and mechanisms of oxidative stress and mitochondrial autophagy in HCE cells subjected to scratch injury. CCK-8 assays, EdU assays, Western blot analysis, wound-healing assays, and flow cytometry were conducted to determine cell viability, proliferation, protein expression, cell apoptosis, and intracellular ROS levels, respectively. The results showed that EGF could promote damage repair and inhibit cell apoptosis in scratch injured HCE cells by upregulating ROS (**p < .01, ***p < .001). EGF also induced mitochondrial autophagy and alleviated mitochondrial damage. Interestingly, the combination of the mitochondrial autophagy inhibitor and mitochondrial division inhibitor 1 (MDIVI-1) with EGF could reduce cell proliferation, viability, and the ROS level (*p < .05, **p < .01, ***p < .001). Treatment using the ROS inhibitor N-acetyl- l-cysteine abrogated the increase in mitochondrial membrane potential after EGF treatment. (*p < .05). Taken together, these findings indicated that EGF plays an important role in HCE damage repair and could activate ROS to protect against HCE injury by inducing mitochondrial autophagy via activation of TRPM2.
Collapse
Affiliation(s)
- Yanan Huo
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoxiao Zheng
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinchuan Zhao
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang, China
| | - Yuerou Hou
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying Cai
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuemei Lu
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiuming Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
He Q, Long J, Yin Y, Li Y, Lei X, Li Z, Zhu W. Emerging Roles of lncRNAs in the Formation and Progression of Colorectal Cancer. Front Oncol 2020; 9:1542. [PMID: 32010629 PMCID: PMC6978842 DOI: 10.3389/fonc.2019.01542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the primary cause of cancer-related death worldwide; however, specific and sensitive tools for the early diagnosis and targeted therapy of CRC are currently lacking. High-throughput sequencing technology revealed that gene expression of long-chain non-coding RNAs (lncRNAs) in a number of cancers directly or indirectly interferes with various biological processes. Emerging evidence suggests that lncRNAs regulate target genes and play an important role in the biological processes of malignancies, including CRC. Many carcinostatic/oncogenic lncRNAs have been identified as biomarkers for metastasis and prognosis in CRC; hence, they serve as therapeutic tools. In this article, we systematically review the literature on the disordered lncRNAs in CRC from four aspects: DNA transcription, RNA level regulation, post-translational level, and the translation of lncRNAs into polypeptides. Subsequently, we analyze the mechanism through which lncRNAs participate in the biological process of CRC. Finally, we discuss the application and prospects of these lncRNAs in CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jiali Long
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan Hospital of Southern Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
26
|
Lv L, He L, Chen S, Yu Y, Che G, Tao X, Wang S, Jian Z, Zhang X. Long Non-coding RNA LINC00114 Facilitates Colorectal Cancer Development Through EZH2/DNMT1-Induced miR-133b Suppression. Front Oncol 2019; 9:1383. [PMID: 31921641 PMCID: PMC6928983 DOI: 10.3389/fonc.2019.01383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify the roles of the long non-coding RNA LINC00114 in colorectal cancer (CRC) development. The expression levels of LINC00114 and miR-133b in CRC were determined by reverse transcription (RT)-polymerase chain reaction (PCR) and the functions of LINC00114 in CRC were evaluated in vitro and in vivo. Methylation-specific PCR assay was performed to detect the miR-133b promoter methylation in CRC cells. Bioinformatics analysis, RNA immunoprecipitation, dual luciferase assay, RNA pull-down, co-immunoprecipitation (IP), and chromatin IP (ChIP) assays were used to elucidate whether LINC00114 could recruit EZH2/DNMT1 and bind to the miR-133b promoter region, leading to dysregulated methylation and the depression of miR-133b. The expression levels of DNA methyltransferases (DNMTs), EZH2, and nucleoporin 214(NUP214) were analyzed by western blotting. Data showed that LINC00114 was highly expressed, whereas miR-133b was downregulated in the CRC tissues and cells. In vitro, silencing LINC00114 inhibited cell proliferation and impeded cell cycle at the G1/S phase by upregulating miR-133b. In vivo, LINC00114 knockdown reduced tumor growth. Further analysis showed that the methylation in miR-133b promoter region was increased in the CRC and silencing LINC00114 increased miR-133b expression through depressing methylation of its promoter region. ChIP-PCR experiments demonstrated that EZH2 and DNMT1 could bind to the miR-133b promoter region and it was abolished by LINC00114 knockdown. sh-EZH2 reversed the overexpression of DNMTs and CRC cell cycle progression induced by the LINC00114 upregulation. LINC00114 could regulate the NUP214 protein expression by sponging miR-133b. These results demonstrated that LINC00114 suppressed miR-133b expression via EZH2/DNMT1-mediated methylation of its promoter region, indicating that LINC00114 might be a potential novel target for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Lv Lv
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Liang He
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guosong Che
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuan Tao
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shengtao Wang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhiyuan Jian
- Gastrointestinal Surgery Department, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
27
|
Liu X, Liu X, Qiao T, Chen W. Prognostic and clinicopathological significance of long non-coding RNA UCA1 in colorectal cancer: Results from a meta-analysis. Medicine (Baltimore) 2019; 98:e18031. [PMID: 31770217 PMCID: PMC6890311 DOI: 10.1097/md.0000000000018031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Urothelial cancer-associated 1 (UCA1), an oncogenic long non-coding RNA, was aberrantly upregulated in colorectal cancer (CRC). This study aimed to further explore the clinical value of UCA1 in CRC. METHODS Eligible studies were retrieved by searching Pubmed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases. Pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI) were applied to assess the prognostic role and clinical significance of UCA1. RESULTS A total of 7 eligible studies with 775 cancer patients were recruited in the meta-analysis. The results showed that UCA1 overexpression was significantly correlated with poor overall survival in patients with CRC (HR = 2.25, 95% CI: 1.77-2.87, P < .001). There was also a significantly negative association between high UCA1 levels and tumor differentiation (OR = 2.84, 95% CI: 1.87-4.31, P < .001), lymph node metastasis (OR = 3.48, 95% CI: 2.24-5.41, P < .001), distant metastasis (OR = 2.67, 95% CI: 1.32-5.38, P = .006), tumor node metastasis stage (OR = 3.01, 95% CI: 2.16-4.18, P < .001), tumor invasion depth (OR = 2.18, 95% CI: 1.03-4.61, P = .04), and tumor size (OR = 2.27, 95% CI: 1.56-3.32, P < .001). CONCLUSIONS Our study revealed that UCA1 overexpression was associated with poor prognosis and more advanced clinicopathological features, suggesting that UCA1 may serve as an indicator for unfavorable outcome of patients with CRC.
Collapse
Affiliation(s)
| | - Xiangdong Liu
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China
| | | | - Wei Chen
- Center for Tumor Diagnosis and Therapy
| |
Collapse
|
28
|
UCA1 long non-coding RNA: An update on its roles in malignant behavior of cancers. Biomed Pharmacother 2019; 120:109459. [PMID: 31585301 DOI: 10.1016/j.biopha.2019.109459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
The lncRNA urothelial carcinoma-associated 1 (UCA1) is a 1.4 kb long transcript which has been firstly recognized in human bladder cancer cell line. Subsequent studies revealed its over-expression in a wide array of human cancer cell lines and patients' samples. In addition to conferring malignant phenotype to cells, it enhances resistance to conventional anti-cancer drugs. Moreover, transcript levels of this lncRNA have been regarded as diagnostic markers in several cancer types including gastric, bladder and liver cancers. The underlying mechanism of its participation in carcinogenesis has been identified in some cancer types. Sponging tumor suppressor miRNAs, interacting with cancer-promoting signaling pathways and enhancing cell cycle progression are among these mechanisms. Although few studies have shown anti-carcinogenic properties for this lncRNA, the bulk of evidence supports its oncogenic roles. In the current study, we have reviewed the current literature on the role of UCA1 in the carcinogenic process based on the results of in vitro studies, investigations in animal models and assessment of UCA1 expression in clinical samples.
Collapse
|
29
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
30
|
Liu P, Ma C, Wu Q, Zhang W, Wang C, Yuan L, Xi X. MiR-369-3p participates in endometrioid adenocarcinoma via the regulation of autophagy. Cancer Cell Int 2019; 19:178. [PMID: 31337985 PMCID: PMC6624956 DOI: 10.1186/s12935-019-0897-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background The aim of this study is to examine miRNA profiling and miR-369-3p participates in endometrioid adenocarcinoma (EEC) via the regulation of autophagy. Methods EEC and its adjacent normal tissues were obtained from 20 clinical patients after surgery. MiRNA profiling was performed using next generation sequencing (NGS) and was validated with quantitative real time PCR (qRT-PCR). qRT-PCR was also employed to measure miR-369-3p and autophagy-related protein 10 (ATG10) expression levels. Western blotting assay was performed to measure the expressions of ATG10 and LC3B. Luciferase reporter assay was conducted to confirm the direct targeting of ATG10 by miR-369-3p. Cell proliferation and migration assays were utilized to analyze the role of miR-369-3p in HEC-1-A cells. Results We found that miR-369-3p expression levels were down-regulated in EEC compared to the control tissues. The overexpression of miR-369-3p inhibited cell proliferation and migration in EEC; furthermore, ATG10 expression increased in EEC tissues. ATG10 was found to be a potential target of miR-369-3p via a dual-luciferase reporter assay, and ATG10 was shown to be down-regulated by miR-369-3p in protein levels. Conclusions This study revealed that miR-369-3p inhibited cell proliferation and migration by targeting ATG10 via autophagy in EEC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0897-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Liu
- 1Gynecology Department, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080 China.,Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, 200051 China
| | - Chengbin Ma
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, 200051 China
| | - Qiongwei Wu
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, 200051 China
| | - Wenying Zhang
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, 200051 China
| | - Cao Wang
- Gynecology Department, Changning Maternity and Infant Health Hospital, Shanghai, 200051 China
| | - Li Yuan
- 3School of Basic Medical Sciences of Nanjing Medical University, Nanjing, 211166 China
| | - Xiaowei Xi
- 1Gynecology Department, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080 China
| |
Collapse
|