1
|
Priante-Silva C, Godoi B, Menegon R, da Silva N, Pacheco-Soares C. Antitumor activity of membranes associated with Acmella oleracea extract. Braz J Med Biol Res 2024; 57:e14129. [PMID: 39504069 PMCID: PMC11540258 DOI: 10.1590/1414-431x2024e14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Epithelial cancers, such as epidermoid cancer and some adenocarcinomas, affect surface areas that are generally more accessible to various treatments. However, this group of tumor cells has an aggressive behavior, leading to a high annual mortality rate. The development of a biomaterial that is non-invasive, can kill tumor cells, and prevent opportunistic infections is the basis for the treatment for this type of cancer. Therefore, the objective of this study was to develop a biomaterial from chitosan and A. oleracea extracts that exhibits cytotoxic action against the HEp-2 tumor cell line. Dried crude 90% ethanol extracts were obtained through ultrasound-assisted maceration, followed by liquid-liquid extraction to yield the butanol fraction. From these extracts, chitosan membranes were developed and evaluated for their antitumor activity against HEp-2 using viability tests with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in addition to a wound healing test. The cytotoxic assays indicated a significant reduction in cell density and mitochondrial activity, especially at the concentration of 1000 µg/mL of crude extract. The butanol fraction had minimal effects on mitochondrial activity. The wound healing test demonstrated that the biomaterial and extract prevented closure of the wound created in the cell monolayer within 48 h of incubation and caused changes in cell morphology. In view of this, we concluded that a chitosan membrane associated with a 90% ethanol extract of Acmella oleracea exhibited cytotoxic activity is a potential alternative treatment for superficial cancers.
Collapse
Affiliation(s)
- C.A. Priante-Silva
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - B.H. Godoi
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Fotobiologia Aplicada è Saúde, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - R.F. Menegon
- Laboratório de Insumos Naturais e Sintéticos, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - N.S. da Silva
- Universidade Estadual de São Paulo Júlio de Mesquita Filho, São José dos Campos, SP, Brasil
| | - C. Pacheco-Soares
- Instituto de Pesquisa e Desenvolvimento, Laboratório de Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| |
Collapse
|
2
|
Musumeci L, Russo C, Schumacher U, Lombardo GE, Maugeri A, Navarra M. The pro-differentiating capability of a flavonoid-rich extract of Citrus bergamia juice prompts autophagic death in THP-1 cells. Sci Rep 2024; 14:19971. [PMID: 39198517 PMCID: PMC11358463 DOI: 10.1038/s41598-024-70656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic neoplasm, characterized by a blockage of differentiation and an unconstrained proliferation of immature myeloid cells. Recently, the survival of leukemia patients has increased thanks to the use of differentiating agents, though these may cause serious side effects. Hence, the search for safer differentiating compounds is necessary. Our aim was to assess the pro-differentiating effects of a flavonoid-rich extract of bergamot juice (BJe) in human monocytic leukemia THP-1 cells, an in vitro AML model. For the first time, we showed that treatment with BJe induced differentiation of THP-1 cells, changes in cell morphology and increased expression of differentiation-associated surface antigens CD68, CD11b and CD14. Moreover, BJe enhanced protein levels of autophagy-associated markers, such as Beclin-1 and LC3, as well as induced the phosphorylation of the MAPKs JNK, ERK and p38, hence suggesting a potential mechanism underlying its antiproliferative effects. Indeed, parallel experiments highlighted that BJe was able to hamper THP-1 cell growth. In conclusion, our study suggests that BJe induces the differentiation of THP-1 cells and reduces their proliferation, highlighting its potential in differentiation therapy of AML.
Collapse
Affiliation(s)
- Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Medical School Berlin, 10117, Berlin, Germany
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
3
|
Zhao W, Mo M, Yu J, Cheng S, Long G, Luo Z, Liang W, Yan C, Luo H, Sun B. A novel α,β-unsaturated ketone inhibits leukemia cell growth as PARP1 inhibitor. Med Oncol 2024; 41:113. [PMID: 38602586 DOI: 10.1007/s12032-024-02324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 04/12/2024]
Abstract
Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.
Collapse
Affiliation(s)
- Weijia Zhao
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Min Mo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Guiping Long
- GuiZhou KingMed Center for Clinical Laboratory Co., Ltd, Guiyang, 550014, China
| | - Zhiqiong Luo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Wei Liang
- Department of Pharmacy, An Shun City People's Hospital, Anshun, 561000, China
| | - Chen Yan
- Department of Pharmacy, An Shun City People's Hospital, Anshun, 561000, China.
| | - Heng Luo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Allani M, Akhilesh, Tiwari V. Caspase-driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications. Cell Biochem Funct 2024; 42:e3944. [PMID: 38348642 DOI: 10.1002/cbf.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Apoptosis is the cell's natural intrinsic regulatory mechanism of normal cells for programmed cell death, which plays an important role in cancer as a classical mechanism of tumor cell death causing minimal inflammation without causing damage to other cells in the vicinity. Induction of apoptosis by activation of caspases is one of the primary targets for cancer treatment. Over the years, a diverse range of natural, synthetic, and semisynthetic compounds and their derivatives have been investigated for their caspase-mediated apoptosis-induced anticancer activities. The review aims to compile the preclinical evidence and highlight the critical mechanistic pathways related to caspase-induced cell apoptosis in cancer treatment. The focus is placed on the key components of the mechanisms, including their chemical nature, and specific attention is given to phytochemicals derived from natural sources and synthetic and semisynthetic compounds. 180+ compounds from the past two decades with potential as anticancer agents are discussed in this review article. By summarizing the current knowledge and advancements in this field, this review provides a comprehensive overview of potential therapeutic strategies targeting apoptosis in cancer cells. The findings presented herein contribute to the ongoing efforts to combat cancer and stimulate further research into the development of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Sun H, Liao F, Tian Y, Lei Y, Fu Y, Wang J. Molecular-Scale Investigations Reveal the Effect of Natural Polyphenols on BAX/Bcl-2 Interactions. Int J Mol Sci 2024; 25:2474. [PMID: 38473728 DOI: 10.3390/ijms25052474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis signaling controls the cell cycle through the protein-protein interactions (PPIs) of its major B-cell lymphoma 2-associated x protein (BAX) and B-cell lymphoma 2 protein (Bcl-2). Due to the antagonistic function of both proteins, apoptosis depends on a properly tuned balance of the kinetics of BAX and Bcl-2 activities. The utilization of natural polyphenols to regulate the binding process of PPIs is feasible. However, the mechanism of this modulation has not been studied in detail. Here, we utilized atomic force microscopy (AFM) to evaluate the effects of polyphenols (kaempferol, quercetin, dihydromyricetin, baicalin, curcumin, rutin, epigallocatechin gallate, and gossypol) on the BAX/Bcl-2 binding mechanism. We demonstrated at the molecular scale that polyphenols quantitatively affect the interaction forces, kinetics, thermodynamics, and structural properties of BAX/Bcl-2 complex formation. We observed that rutin, epigallocatechin gallate, and baicalin reduced the binding affinity of BAX/Bcl-2 by an order of magnitude. Combined with surface free energy and molecular docking, the results revealed that polyphenols are driven by multiple forces that affect the orientation freedom of PPIs, with hydrogen bonding, hydrophobic interactions, and van der Waals forces being the major contributors. Overall, our work provides valuable insights into how molecules tune PPIs to modulate their function.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fenghui Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Xie B, Zhao L, Zhang Z, Zhou C, Tian Y, Kang Y, Chen J, Wei H, Li L. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells. BMC Cancer 2023; 23:955. [PMID: 37814227 PMCID: PMC10561441 DOI: 10.1186/s12885-023-11458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.
Collapse
Affiliation(s)
- Bei Xie
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Lei Zhao
- Shaanxi Meili Omni-Honesty Animal Health Co., Ltd, Xi'an, 710000, Shaanxi, China
| | - Zhewen Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Cunmin Zhou
- The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ye Tian
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingying Kang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Jing Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hulai Wei
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Linjing Li
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
8
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Khan J, Palai S, Patel SB, Parmar VK, Kushwaha G, Singh O, Jeevanandam J, Kumarasamy S, Uche CZ, Narayanan M, Rudrapal M, Odoh U, Chikeokwu I, Găman M, Saravanan K, Ifemeje JC, Ezzat SM, Olisah MC, Chikwendu CJ, Adedokun KA, Imodoye SO, Bello IO, Twinomuhwezi H, Awuchi CG. Phytochemicals and bioactive compounds effective against acute myeloid leukemia: A systematic review. Food Sci Nutr 2023; 11:4191-4210. [PMID: 37457145 PMCID: PMC10345688 DOI: 10.1002/fsn3.3420] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal HusbandryOUATOdishaBhubaneswarIndia
| | - Sandip B. Patel
- Department of PharmacologyL.M. College of Pharmacy, NavrangpuraAhmedabadIndia
| | | | - Garima Kushwaha
- Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
| | - Omkar Singh
- Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia
| | - Jaison Jeevanandam
- CQM—Centro de Química da MadeiraUniversidade da Madeira, Campus da PenteadaFunchalPortugal
| | | | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNsukkaNigeria
| | - Mathiyazhagan Narayanan
- Division of Research and InnovationDepartment of Biotecnology, Saveetha School of Engineering SIMATSTamil NaduChennaiIndia
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical SciencesVignan’s Foundation for Science, Technology & ResearchGunturIndia
| | - Uchenna Odoh
- Department of Pharmacognosy and Environmental Medicines, Faculty of Pharmaceutical SciencesUniversity of NigeriaNsukkaNigeria
| | - Ikenna Chikeokwu
- Department of PharmacognosyEnugu State University of Science and Technology (ESUT)Agbani Enugu StateEnuguNigeria
| | - Mihnea‐Alexandru Găman
- Faculty of Medicine"Carol Davila" University of Medicine and PharmacyBucharestRomania
- Department of HematologyCenter of Hematology and Bone Marrow TransplantationBucharestRomania
| | - Kaliyaperumal Saravanan
- PG and Research Department of ZoologyNehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University)Tamil NaduTiruchirappalliIndia
| | - Jonathan C. Ifemeje
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
- Department of Pharmacognosy, Faculty of PharmacyOctober University for Modern Sciences and Arts (MSA)GizaEgypt
| | - Michael C. Olisah
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesChukwuemeka Odumegwu Ojukwu University, Uli CampusAnambraNigeria
| | - Chukwudi Jude Chikwendu
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterNew YorkBuffaloUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahUtahSalt Lake CityUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleIllinoisEdwardsvilleUSA
| | - Hannington Twinomuhwezi
- Department of ChemistryKyambogo University, KyambogoKampalaUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | | |
Collapse
|
9
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
10
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Willig JB, de Couto NMG, Vianna DRB, Mariot CDS, Gnoatto SCB, Buffon A, Pilger DA. Betulinic Acid-Brosimine B Hybrid Compound Has a Synergistic Effect with Imatinib in Chronic Myeloid Leukemia Cell Line, Modulating Apoptosis and Autophagy. Pharmaceuticals (Basel) 2023; 16:ph16040586. [PMID: 37111343 PMCID: PMC10142704 DOI: 10.3390/ph16040586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the formation of the BCR-ABL (breakpoint cluster region-Abelson) oncoprotein. As many patients display therapeutic resistance, the development of new drugs based on semisynthetic products represents a new potential therapeutic approach for treating the disease. In this study, we investigated the cytotoxic activity, possible mechanism of action of a hybrid compound of betulinic acid (BA) and brosimine B in CML cell lines that are sensitive (K-562) and resistant (K-562R) to imatinib, in addition to evaluating lower doses of imatinib in combination with the hybrid compound. The effects of the compound, and its combination with imatinib, on apoptosis, cell cycle, autophagy and oxidative stress were determined. The compound was cytotoxic in K-562 (23.57 ± 2.87 μM) and K-562R (25.80 ± 3.21 μM) cells, and a synergistic effect was observed when it was associated with imatinib. Apoptosis was mediated by the caspase 3 and 9 intrinsic pathway, and cell cycle evaluation showed arrest at G0/G1. In addition, the hybrid compound increased the production of reactive oxygen species and induced autophagy by increasing LC3II and Beclin-1 mRNA levels. Results suggest that this hybrid compound causes the death of both imatinib-sensitive and -resistant cell lines and may hold potential as a new anticancer treatment against CML.
Collapse
Affiliation(s)
- Julia Biz Willig
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Nádia Miléo Garcês de Couto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Débora Renz Barreto Vianna
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Camila da Silveira Mariot
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Simone Cristina Baggio Gnoatto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Andréia Buffon
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Diogo André Pilger
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| |
Collapse
|
12
|
Zhang J, Jiang T, Song X, Li Q, Liu Y, Wang Y, Chi X, Sun J, Zhang L. The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2'-dicarboxylic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010129. [PMID: 36615323 PMCID: PMC9822075 DOI: 10.3390/molecules28010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
A novel two-dimensional copper(II) framework (LDU-1), formulated as {[Cu2(L)2·2NMP}n (H2L = flavone-6,2'-dicarboxylic acid, NMP = N-Methyl pyrrolidone), has been constructed under solvothermal conditions and characterized by single-crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis and powder X-ray diffraction (PXRD). In the crystal structure, the Cu(II) shows hex-coordinated with the classical Cu paddle-wheel coordination geometry, and the flavonoid ligand coordinates with the Cu(II) ion in a bidentate bridging mode. Of particular interest of LDU-1 is the presence of anti-tumor activity against three human cancer cell lines including lung adenocarcinoma(A549), Michigan cancer foundation-7 (MCF-7), erythroleukemia (K562) and murine melanoma B16F10, indicating synergistic enhancement effects between metal ions and organic linkers. A cell cycle assay indicates that LDU-1 induces cells to arrest at S phase obviously at a lower concentration.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Science, Ludong University, Yantai 264025, China
| | - Tingting Jiang
- School of Life Science, Ludong University, Yantai 264025, China
| | - Xinyu Song
- School of Life Science, Ludong University, Yantai 264025, China
| | - Qing Li
- School of Life Science, Ludong University, Yantai 264025, China
| | - Yang Liu
- School of Life Science, Ludong University, Yantai 264025, China
| | - Yanhua Wang
- School of Life Science, Ludong University, Yantai 264025, China
| | - Xiaoyan Chi
- School of Life Science, Ludong University, Yantai 264025, China
| | - Jie Sun
- School of Life Science, Ludong University, Yantai 264025, China
- Correspondence:
| | - Liangliang Zhang
- Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University (NPU), Ningbo 315103, China
| |
Collapse
|
13
|
Russo C, Maugeri A, De Luca L, Gitto R, Lombardo GE, Musumeci L, De Sarro G, Cirmi S, Navarra M. The SIRT2 Pathway Is Involved in the Antiproliferative Effect of Flavanones in Human Leukemia Monocytic THP-1 Cells. Biomedicines 2022; 10:biomedicines10102383. [PMID: 36289647 PMCID: PMC9598940 DOI: 10.3390/biomedicines10102383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) represents the most alarming hematological disease for adults. Several genetic modifications are known to be pivotal in AML; however, SIRT2 over-expression has attracted the scientific community’s attention as an unfavorable prognostic marker. The plant kingdom is a treasure trove of bioactive principles, with flavonoids standing out among the others. On this line, the aim of this study was to investigate the anti-leukemic properties of the main flavanones of Citrus spp., exploring the potential implication of SIRT2. Naringenin (NAR), hesperetin (HSP), naringin (NRG), and neohesperidin (NHP) inhibited SIRT2 activity in the isolated recombinant enzyme, and more, the combination between NAR and HSP. In monocytic leukemic THP-1 cells, only NAR and HSP induced antiproliferative effects, altering the cell cycle. These effects may be ascribed to SIRT2 inhibition since these flavonoids reduced its gene expression and hampered the deacetylation of p53, known sirtuin substrate, and contextually modulated the expression of the downstream cell cycle regulators p21 and cyclin E1. Additionally, these two flavanones proved to interact with the SIRT2 inhibitory site, as shown by docking simulations. Our results suggest that both NAR and HSP may act as anti-leukemic agents, alone and in combination, via targeting the SIRT2/p53/p21/cyclin E1 pathway, thus encouraging deeper investigations.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence:
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
14
|
Zaharie MGO, Radu N, Pirvu L, Bostan M, Voicescu M, Begea M, Constantin M, Voaides C, Babeanu N, Roman V. Studies Regarding the Pharmaceutical Potential of Derivative Products from Plantain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1827. [PMID: 35890460 PMCID: PMC9321672 DOI: 10.3390/plants11141827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, three types of extracts isolated from leaves of Plantain (Plantago lanceolata) were tested for their chemical content and biological activities. The three bioproducts are combinations of polysaccharides and polyphenols (flavonoids and iridoidic compounds), and they were tested for antioxidant, antifungal, antitumor, and prebiotic activity (particularly for polysaccharides fraction). Briefly, the iridoid-enriched fraction has revealed a pro-oxidant activity, while the flavonoid-enriched fraction had a high antioxidant potency; the polysaccharide fraction also indicated a pro-oxidant activity, explained by the co-presence of iridoid glycosides. All three bioproducts demonstrated moderate antifungal effects against Aspergillus sp., Penicillium sp., and dermatophytes, too. Studies in vitro proved inhibitory activity of the three fractions on the leukemic tumor cell line THP-1, the main mechanism being apoptosis stimulation, while the polysaccharide fraction indicated a clear prebiotic activity, in the concentration range between 1 and 1000 µg/mL, evaluated as higher than that of the reference products used, inulin and dextrose, respectively.
Collapse
Affiliation(s)
- Marilena-Gabriela Olteanu Zaharie
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Lucia Pirvu
- Biotechnology Department, National Institute of Chemical Pharmaceutical R & D, 112 Vitan Road, 031299 Bucharest, Romania;
| | - Marinela Bostan
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry Ilie Murgulescu, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060026 Bucharest, Romania
| | - Mariana Constantin
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
- Faculty of Pharmacy, University Titu Maiorescu, 178 Calea Vacaresti, 040051 Bucharest, Romania
| | - Catalina Voaides
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Narcisa Babeanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Viviana Roman
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
| |
Collapse
|
15
|
Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res 2022; 177:106116. [PMID: 35122954 DOI: 10.1016/j.phrs.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Pediatric acute lymphoblastic leukemia (pALL), a malignancy of the lymphoid line of blood cells, accounts for a large percentage of all childhood leukemia cases. Although the 5-year survival rate for children with ALL has greatly improved over years, using chemotherapeutics as its first-line treatment still causes short- and long-term side effects. Furthermore, induction of toxicity and resistance, as well as the high cost, limit their application. Phytochemicals, with remarkable cancer preventive and chemotherapeutic characteristics, may serve as old solutions to new challenges. Bioactive plant secondary metabolites have exhibited promising antileukemic and adjunctive effects by targeting various molecular processes, including autophagy, cell cycle, angiogenesis, and extrinsic/intrinsic apoptotic pathways. Although numerous reports have shown that numerous plant secondary metabolites can interfere with the progression of malignancies, including leukemia, there was no comprehensive review article on the effect of phytochemicals on pALL. This systematic review aims to provide critical and cohesive analysis of the potential of various naturally-occurring metabolites in the management of pALL with the understanding of underlying molecular and cellular mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Nabizadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Ghanbari-Movahed
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6742775333, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
16
|
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, Hagh MF. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics. Front Genet 2021; 12:703883. [PMID: 34992627 PMCID: PMC8725977 DOI: 10.3389/fgene.2021.703883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.
Collapse
Affiliation(s)
- Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sajjadi-Dokht
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Zhang J, Chen Y, Yin D, Feng F, An Q, Liu Z, An N, Xu J, Yi J, Gu S, Yin W, Wang Y, Hu X. Caspase-3/NLRP3 signaling in the mesenchymal stromal niche regulates myeloid-biased hematopoiesis. Stem Cell Res Ther 2021; 12:579. [PMID: 34801085 PMCID: PMC8605603 DOI: 10.1186/s13287-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background The fate of hematopoietic stem cells (HSCs) is determined by a complex regulatory network that includes both intrinsic and extrinsic signals. In the past decades, many intrinsic key molecules of HSCs have been shown to control hematopoiesis homeostasis. Non-hematopoietic niche cells also contribute to the self-renewal, quiescence, and differentiation of HSCs. Mesenchymal stromal cells (MSCs) have been identified as important components of the niche. However, the regulatory role of MSCs in hematopoiesis has not been fully understood. Methods Caspase-3 and NLRP3 gene knockout mice were generated respectively, and hematopoietic development was evaluated in the peripheral circulation and bone marrow by flow cytometry, colony formation assay, and bone marrow transplantation. Bone-associated MSCs (BA-MSCs) were then isolated from gene knockout mice, and the effect of Caspase-3/NLRP3 deficient BA-MSCs on hematopoiesis regulation was explored in vivo and ex vivo. Results We report that Caspase-3 deficient mice exhibit increased myelopoiesis and an aberrant HSC pool. Ablation of Caspase-3 in BA-MSCs regulates myeloid lineage expansion by altering the expression of hematopoietic retention cytokines, including SCF and CXCL12. Interestingly, NLRP3 gene knockout mice share phenotypic similarities with Caspase-3 deficient mice. Additionally, we found that NLRP3 may play a role in myeloid development by affecting the cell cycle and apoptosis of hematopoietic progenitors. Conclusions Our data demonstrate that the Caspase-3/NLRP3 signaling functions as an important regulator in physiological hematopoiesis, which provides new insights regarding niche signals that influence hematopoiesis regulation in the bone marrow. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02640-y.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dandan Yin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Yi
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yazhou Wang
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
18
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Ampelopsin Inhibits Cell Proliferation and Induces Apoptosis in HL60 and K562 Leukemia Cells by Downregulating AKT and NF-κB Signaling Pathways. Int J Mol Sci 2021; 22:ijms22084265. [PMID: 33924032 PMCID: PMC8073078 DOI: 10.3390/ijms22084265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.
Collapse
|
20
|
Alhamad DW, Elgendy SM, Al-Tel TH, Omar HA. Tangeretin as an adjuvant and chemotherapeutic sensitizer against various types of cancers: a comparative overview. J Pharm Pharmacol 2021; 73:601-610. [PMID: 33772294 DOI: 10.1093/jpp/rgab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer is a leading cause of disabling morbidities and death worldwide. Although there are various strategies for the management of cancer, the severe adverse effects negatively impact the patient's quality of life. In addition, the development of resistance limits the efficacy of many chemotherapeutics. Many natural agents are capable of reducing the adverse effects associated with chemotherapy and improving the therapeutic outcome. Tangeretin, a polymethoxy flavone, is one of the promising natural anticancer agents. KEY FINDINGS Tangeretin not only targets various malignancies but also synergizes chemotherapeutic agents and reverses cancer resistance. Hence, the application of tangeretin as an adjuvant in cancer chemotherapy would be a promising strategy. SUMMARY This work critically highlighted the proposed anticancer activity of tangeretin and discussed its potential combination with various chemotherapeutic agents. Additionally, it shed light on tangeretin chemical derivatives with improved pharmacokinetic and pharmacodynamic activity. Finally, this review described flavonoid biosynthetic pathways and how bioengineering can be employed to enhance the production yield of tangeretin. Thus, this work paves the way for the rational clinical utilization of tangeretin as a safe and effective adjuvant in chemotherapeutic protocols.
Collapse
Affiliation(s)
- Dima W Alhamad
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sara M Elgendy
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
21
|
Yehia S, Abdel-Salam IM, Elgamal BM, El-Agamy B, Hamdy GM, Aldesouki HM. Cytotoxic and Apoptotic Effects of Luffa Cylindrica Leaves Extract against Acute Lymphoblastic Leukemic Stem Cells. Asian Pac J Cancer Prev 2020; 21:3661-3668. [PMID: 33369466 PMCID: PMC8046306 DOI: 10.31557/apjcp.2020.21.12.3661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is an aggressive malignancy defined by accumulation of lymphoblasts in the bone marrow. Leukemic stem cells (LSCs) are the major cause of the recurrence and metastasis of ALL. This study aimed to develop an effective anti-cancer agent targeting these LSCs. Luffa Cylindrica (L.C.) leaves extract was selected to evaluate its effect on ALL via eradicating the LSCs as it contains many active anti-cancer flavonoids. METHODS Thirty-two bone marrow samples of ALL patients were used in this study. LSCs population was identified in the selected samples. Cell viability was measured by MTT assay and flow cytometry. Cell cycle, apoptosis, proliferation marker; ki-67 and colony forming assay were further analyzed. RESULTS This study revealed the expression of CD34+/CD38+ cells in addition to CD34+/CD38- population and the extract was effective against the two LSCs populations. MTT assay showed that treated leukemic cells exhibited significant reduction in the viable cells in a dose dependent manner with IC50 of 3 µg/µl which was then confirmed by flow cytometry. Cell cycle analysis results showed significant reduction in the percentage of cells treated with L.C. extract in both the S and G0/G1 phases, with concomitant increase in the G2/M phase. Also, L.C. extract could effectively induce apoptosis, inhibit proliferation and suppress colonogenecity of leukemic cells. CONCLUSION This study validated the medicinal potential of L.C. leaves extract as a promising anti-leukemic agent targeting both LSCs and blasts in ALL patients, which may be explained by the synergy found between its potent flavonoids especially apigenin, luteolin and kaempferol.
Collapse
Affiliation(s)
- Shimaa Yehia
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | | - Basma M. Elgamal
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Basma El-Agamy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Germine M. Hamdy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala M. Aldesouki
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
22
|
Tan Y, Wu Q, Zhou F. Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Crit Rev Oncol Hematol 2020; 152:102993. [PMID: 32502928 DOI: 10.1016/j.critrevonc.2020.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
High relapse rate of acute myeloid leukemia (AML) is still a crucial problem despite considerable advances in anti-cancer therapies. One crucial cause of relapse is the existence of leukemia stem cells (LSCs) with self-renewal ability, which contribute to repeated treatment resistance and recurrence. Treatments targeting LSCs, especially in combination with existing chemotherapy regimens or hematopoietic stem cell transplantation might help achieve a higher complete remission rate and improve overall survival. Many novel agents of different therapeutic strategies that aim to modulate LSCs self-renewal, proliferation, apoptosis, and differentiation are under investigation. In this review, we summarize the latest advances of different therapies in development based on the biological characteristics of LSCs, with particular attention on natural products, synthetic compounds, antibody therapies, and adoptive cell therapies that promote the LSC eradication. We also explore the causes of AML recurrence and proposed potential strategies with new dimensions for targeting LSCs in the future.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
23
|
Hassanzadeh A, Hosseinzadeh E, Rezapour S, Vahedi G, Haghnavaz N, Marofi F. Quercetin Promotes Cell Cycle Arrest and Apoptosis and Attenuates the Proliferation of Human Chronic Myeloid Leukemia Cell Line-K562 Through Interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer Agents Med Chem 2020; 19:1523-1534. [PMID: 31362681 DOI: 10.2174/1871520619666190729150442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic Myeloid Leukaemia (CML) starts in certain blood-forming cells of the bone marrow when cells acquire Philadelphia chromosome. Nowadays, scientists attempt to find novel and safe therapeutic agents and approaches for CML therapy using Tyrosine Kinase Inhibitors (TKIs), CML conventional treatment agents, has some restrictions and also adverse effects. Recently, it has been proposed that phytochemicals, such as flavonoids due to their low side effects and notable safety have the potential to be used for CML therapy. MATERIALS AND METHODS K-562 cells were exposed with three concentrations of the querectin (10, 40 and 80µM) for 12, 24 and 48 hours. After that, these cells apoptosis rate was estimated using Annexin-V/PI staining and flowcytometry analysis, and their proliferation rate was evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT). Finally, the expression of the 70 and 90 kilodalton heat shock proteins (HSP70 and 90), methionine adenosyltransferase 2A (MAT2A), Forkhead box protein M1 (FOXM1), caspase-3 and -8, Bcl-X(L) and Bax involved in leukemic cells survival and proliferation was assessed using Real-Time PCR within 12, 24 and 48 hours after exposure with quercetin 40 and 80µM. RESULTS Considering consequences, querecetin induced apoptosis in K-562 cells, and also abrogated these cells proliferation. On the other hand, RT-PCR results showed a reduction in some of the candidate genes expression, especially HSP70, Bcl-X(L) and FOXM1, when cells were treated with quercetin 40 and 80µM. Also, Bax, caspase-3 and caspase-8 expression was significantly improved in K-562 cells upon quercetin exposure. CONCLUSION We concluded that CML therapy by querecetin due to its anti-proliferative and anti-survival potentials could lead to the promising therapeutic outcome through targeting major survival and proliferation involved genes expression.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saleheh Rezapour
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navideh Haghnavaz
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Biocatalytic Synthesis of Calycosin-7-O-β-D-Glucoside with Uridine Diphosphate–Glucose Regeneration System. Catalysts 2020. [DOI: 10.3390/catal10020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calycosin-7-O-β-D-glucoside (Cy7G) is one of the principal components of Radix astragali. This isoflavonoid glucoside is regarded as an indicator to assess the quality of R. astragali and exhibits diverse pharmacological activities. In this study, uridine diphosphate-dependent glucosyltransferase (UGT) UGT88E18 was isolated from Glycine max and expressed in Escherichia coli. Recombinant UGT88E18 could selectively and effectively glucosylate the C7 hydroxyl group of calycosin to synthesize Cy7G. A one-pot reaction by coupling UGT88E18 to sucrose synthase (SuSy) from G. max was developed. The UGT88E18–SuSy cascade reaction could recycle the costly uridine diphosphate glucose (UDPG) from cheap sucrose and catalytic amounts of uridine diphosphate (UDP). The important factors for UGT88E18–SuSy cascade reaction, including UGT88E18/SuSy ratios, different temperatures, and pH values, different concentrations of dimethyl sulfoxide (DMSO), UDP, sucrose, and calycosin, were optimized. We produced 10.5 g L−1 Cy7G in the optimal reaction conditions by the stepwise addition of calycosin. The molar conversion of calycosin was 97.5%, with a space–time yield of 747 mg L−1 h−1 and a UDPG recycle of 78 times. The present study provides a new avenue for the efficient and cost-effective semisynthesis of Cy7G and other valuable isoflavonoid glucosides by UGT–SuSy cascade reaction.
Collapse
|
25
|
Marín FR, Hernández-Ruiz J, Arnao MB. A colorimetric method for the determination of different functional flavonoids using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and peroxidase. Prep Biochem Biotechnol 2019; 49:1033-1039. [PMID: 31407950 DOI: 10.1080/10826068.2019.1650378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In many occasions it is necessary to use fast and simple methods, different to the chromatographic techniques, for the quantification of biomolecules such as flavonoids. Also, the flavonoid levels in some foodstuffs can be influenced by industrial extraction processes such as pressing and squeezing, resulting in modification of their functional value. For this purpose, we have developed a rapid method to analyze flavonoids, based on a coupling reaction between ABTS and flavonoid mediated by peroxidase. The present method can be used to detect and measure flavonoids with hydroxyl moieties on A- or B-rings, not adjacent to methoxy or oxo substitutions. The visible spectrum of the ABTS-flavonoid complex, the calibration curve (within the range 5-50 μM) and the molar absorption coefficients for isosakuranetin, isonaringin, rhoifolin, hyperoside, rutin, hesperetin, quercetin, kaempherol and naringenin are given. The method has been applied to complex culture media and is sensitive, accurate, quick and easy to apply. This method can be used in laboratories that do not have sophisticated and expensive techniques such as liquid chromatography and also as a quick, simple and inexpensive technique for student practice laboratories.
Collapse
Affiliation(s)
- Francisco R Marín
- Department of Applied Chemistry-Physics. Faculty of Science, University Autónoma of Madrid , Madrid , Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia , Murcia , Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia , Murcia , Spain
| |
Collapse
|