1
|
Xu Y, Chen Y, Zhang K, Chen M, Duan R, Ren Y. Investigating the effects of TRPV4 and Ca v1.2 channels in 3D culture for promoting the differentiation of BMSCs at various stages. Exp Cell Res 2025; 447:114515. [PMID: 40073957 DOI: 10.1016/j.yexcr.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.2 calcium ion channels have been reported to play significant roles in the cartilage differentiation of BMSCs. However, there is no study on whether the effects of these two ion channels vary in different periods of BMSC differentiation, especially in 3D culture. In this article, we clarified the role of TRPV4 and Cav1.2 signaling pathways in the early and late stages of BMSCs cartilage differentiation during 3D culture in hyaluronic acid hydrogel with specific mechanical properties. This research can provide new ideas for further accelerating the stimulation of BMSCs cartilage differentiation and formulating cartilage repair strategies in vivo.
Collapse
Affiliation(s)
- Yuanqing Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Yuhang Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Kun Zhang
- Xuzhou Stomatological Hospital, Xuzhou, 221007, China
| | - Minmin Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Ying Ren
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China.
| |
Collapse
|
2
|
Song X, Wang X, Guo L, Li T, Huang Y, Yang J, Tang Z, Fu Z, Yang L, Chen G, Chen C, Gong X. Etanercept embedded silk fibroin/pullulan hydrogel enhance cartilage repair in bone marrow stimulation. Front Bioeng Biotechnol 2022; 10:982894. [PMID: 36568290 PMCID: PMC9772014 DOI: 10.3389/fbioe.2022.982894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Bone marrow stimulation (BMS) is the most used operative treatment in repairing cartilage defect clinically, but always results in fibrocartilage formation, which is easily worn out and needs second therapy. In this study, we prepared an Etanercept (Ept) embedded silk fibroin/pullulan hydrogel to enhance the therapeutic efficacy of BMS. Methods: Ept was dissolved in silk fibroin (SF)-tyramine substituted carboxymethylated pullulan (PL) solution and enzyme crosslinked to obtain the Ept contained SF/PL hydrogel. The synergistical effect of SF/PL hydrogel and Ept was verified by rabbit osteochondral defect model. The mechanism of Ept in promoting articular cartilage repair was studied on human osteoarthritic chondrocytes (hOACs) and human bone marrow mesenchymal stromal cells (hBMSCs) in vitro, respectively. Results: At 4 and 8 weeks after implanting the hydrogel into the osteochondral defect of rabbit, histological analysis revealed that the regenerated tissue in Ept + group had higher cellular density with better texture, and the newly formed hyaline cartilage tissue was seamlessly integrated with adjacent native tissue in the Ept + group. In cellular experiments, Ept treatment significantly promoted both gene and protein expression of type II collagen in hOACs, while decreased the protein levels of metalloproteinase (MMP)-13 and a disintegrin and metalloprotease with thrombospondin motifs 5 (ADAMTS5); alcian blue staining, type II collagen and aggrecan stainings showed that addition of Ept significantly reversed the chondrogenesis inhibition effect of tumor necrosis factor alpha (TNF-α) on hBMSCs. Conclusion: BMS could be augmented by Ept embedded hydrogel, potentially by regulating the catabolic and anabolic dynamics in adjacent chondrocytes and enhancement of BMSCs chondrogenesis.
Collapse
Affiliation(s)
- Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Guo
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhexiong Tang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Liu Yang, ; Guangxing Chen, ; Cheng Chen, ; Xiaoyuan Gong,
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Liu Yang, ; Guangxing Chen, ; Cheng Chen, ; Xiaoyuan Gong,
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, China,*Correspondence: Liu Yang, ; Guangxing Chen, ; Cheng Chen, ; Xiaoyuan Gong,
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Liu Yang, ; Guangxing Chen, ; Cheng Chen, ; Xiaoyuan Gong,
| |
Collapse
|
3
|
Sonthithai P, Hankamonsiri W, Lertwimol T, Uppanan P, Janvikul W. Novel modified culture medium for enhancing redifferentiation of chondrocytes for cartilage tissue engineering applications. Biotechnol Prog 2022; 38:e3240. [DOI: 10.1002/btpr.3240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Pacharapan Sonthithai
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, 114 Thailand Science Park Phahonyothin Road, Klong Luang, Pathum Thani 12120 Thailand
| | - Weerawan Hankamonsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, 114 Thailand Science Park Phahonyothin Road, Klong Luang, Pathum Thani 12120 Thailand
| | - Tareerat Lertwimol
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, 114 Thailand Science Park Phahonyothin Road, Klong Luang, Pathum Thani 12120 Thailand
| | - Paweena Uppanan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, 114 Thailand Science Park Phahonyothin Road, Klong Luang, Pathum Thani 12120 Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, 114 Thailand Science Park Phahonyothin Road, Klong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
4
|
Retrograde Analysis of Calcium Signaling by CaMPARI2 Shows Cytosolic Calcium in Chondrocytes Is Unaffected by Parabolic Flights. Biomedicines 2022; 10:biomedicines10010138. [PMID: 35052817 PMCID: PMC8773224 DOI: 10.3390/biomedicines10010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) elevation is an essential secondary messenger in many cellular processes, including disease progression and adaptation to external stimuli, e.g., gravitational load. Therefore, mapping and quantifying Ca2+ signaling with a high spatiotemporal resolution is a key challenge. However, particularly on microgravity platforms, experiment time is limited, allowing only a small number of replicates. Furthermore, experiment hardware is exposed to changes in gravity levels, causing experimental artifacts unless appropriately controlled. We introduce a new experimental setup based on the fluorescent Ca2+ reporter CaMPARI2, onboard LED arrays, and subsequent microscopic analysis on the ground. This setup allows for higher throughput and accuracy due to its retrograde nature. The excellent performance of CaMPARI2 was demonstrated with human chondrocytes during the 75th ESA parabolic flight campaign. CaMPARI2 revealed a strong Ca2+ response triggered by histamine but was not affected by the alternating gravitational load of a parabolic flight.
Collapse
|
5
|
Zhang K, Wang L, Liu Z, Geng B, Teng Y, Liu X, Yi Q, Yu D, Chen X, Zhao D, Xia Y. Mechanosensory and mechanotransductive processes mediated by ion channels in articular chondrocytes: Potential therapeutic targets for osteoarthritis. Channels (Austin) 2021; 15:339-359. [PMID: 33775217 PMCID: PMC8018402 DOI: 10.1080/19336950.2021.1903184] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage consists of an extracellular matrix including many proteins as well as embedded chondrocytes. Articular cartilage formation and function are influenced by mechanical forces. Hind limb unloading or simulated microgravity causes articular cartilage loss, suggesting the importance of the healthy mechanical environment in articular cartilage homeostasis and implying a significant role of appropriate mechanical stimulation in articular cartilage degeneration. Mechanosensitive ion channels participate in regulating the metabolism of articular chondrocytes, including matrix protein production and extracellular matrix synthesis. Mechanical stimuli, including fluid shear stress, stretch, compression and cell swelling and decreased mechanical conditions (such as simulated microgravity) can alter the membrane potential and regulate the metabolism of articular chondrocytes via transmembrane ion channel-induced ionic fluxes. This process includes Ca2+ influx and the resulting mobilization of Ca2+ that is due to massive released Ca2+ from stores, intracellular cation efflux and extracellular cation influx. This review brings together published information on mechanosensitive ion channels, such as stretch-activated channels (SACs), voltage-gated Ca2+ channels (VGCCs), large conductance Ca2+-activated K+ channels (BKCa channels), Ca2+-activated K+ channels (SKCa channels), voltage-activated H+ channels (VAHCs), acid sensing ion channels (ASICs), transient receptor potential (TRP) family channels, and piezo1/2 channels. Data based on epithelial sodium channels (ENaCs), purinergic receptors and N-methyl-d-aspartate (NMDA) receptors are also included. These channels mediate mechanoelectrical physiological processes essential for converting physical force signals into biological signals. The primary channel-mediated effects and signaling pathways regulated by these mechanosensitive ion channels can influence the progression of osteoarthritis during the mechanosensory and mechanoadaptive process of articular chondrocytes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Lifu Wang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Zhongcheng Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Bin Geng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yuanjun Teng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xuening Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Qiong Yi
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dechen Yu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xiangyi Chen
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dacheng Zhao
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yayi Xia
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
6
|
Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021; 8:rbab013. [PMID: 33763233 PMCID: PMC7975764 DOI: 10.1093/rb/rbab013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haowei Wang
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Qingming Ji
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
7
|
K + and Ca 2+ Channels Regulate Ca 2+ Signaling in Chondrocytes: An Illustrated Review. Cells 2020; 9:cells9071577. [PMID: 32610485 PMCID: PMC7408816 DOI: 10.3390/cells9071577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Collapse
|
8
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|