1
|
Zhou Q, Xu K, Zhao BW, Qiao JY, Li YY, Lei WL, Li J, Ouyang YC, Hou Y, Schatten H, Wang ZB, Sun QY. Mitochondrial E3 ubiquitin ligase MARCH5 is required for mouse oocyte meiotic maturation†. Biol Reprod 2023; 108:437-446. [PMID: 36503987 DOI: 10.1093/biolre/ioac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
As the most abundant organelles in oocytes, mitochondria play an important role in maintaining oocyte quality. Here, we report that March5, encoding a mitochondrial ubiquitin ligase that promotes mitochondrial elongation, plays a critical role in mouse oocyte meiotic maturation via regulating mitochondrial function. The subcellular localization of MARCH5 was similar to the mitochondrial distribution during mouse oocyte meiotic progression. Knockdown of March5 caused decreased ratios of the first polar body extrusion. March5-siRNA injection resulted in oocyte mitochondrial dysfunctions, manifested by increased reactive oxygen species, decreased ATP content as well as decreased mitochondrial membrane potential, leading to reduced ability of spindle formation and an increased ratio of kinetochore-microtubule detachment. Further study showed that the continuous activation of the spindle assembly checkpoint and the failure of Cyclin B1 degradation caused MI arrest and first polar body (PB1) extrusion failure in March5 knockdown oocytes. Taken together, our results demonstrated that March5 plays an essential role in mouse oocyte meiotic maturation, possibly via regulation of mitochondrial function and/or ubiquitination of microtubule dynamics- or cell cycle-regulating proteins.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
2
|
Merhi Z, Seckin S, Mouanness M. Intraovarian platelet-rich plasma administration could improve blastocyst euploidy rates in women undergoing in vitro fertilization. Clin Exp Reprod Med 2022; 49:210-214. [PMID: 36097737 PMCID: PMC9468693 DOI: 10.5653/cerm.2021.05057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Platelet-rich plasma (PRP) therapy has received a considerable attention as an adjunct to fertility treatments, especially in women with very low ovarian reserve and premature ovarian insufficiency. Although recent studies have demonstrated that PRP led to improvements in folliculogenesis and biomarkers of ovarian reserve, the effect of intraovarian PRP administration on embryo genetics has not been studied. Methods We report a pilot study of patients who had preimplantation genetic testing for aneuploidy (PGT-A) before and then within 3 months following PRP administration. Twelve infertile women with at least one prior failed in vitro fertilization (IVF) cycle underwent ovarian stimulation (cycle 1) with a gentle stimulation protocol and PGT-A performed at the blastocyst stage. Following cycle 1, autologous intraovarian PRP administration was performed. Within 3 months following PRP administration, the patients underwent cycle 2 and produced blastocysts for PGT-A. The percentage of euploid embryos between both cycles was compared. Results The mean age of all participants was 40.08±1.46 years, and their mean body mass index was 26.18±1.18 kg/m2. The number of good-quality embryos formed at the blastocyst stage was similar between cycle 1 and cycle 2 (3.08±0.88 vs. 2.17±0.49, respectively; p=0.11). Among all patients in cycle 1, 3 of 37 embryos were euploid (8.11%) while in cycle 2, 11 out of 28 embryos were euploid (39.28%, p=0.002). Three clinical pregnancies were noted among this patient group. Conclusion This novel study is the first to present an improvement in the embryo euploidy rate following intraovarian PRP application in infertile women with prior failed IVF cycles. The growth factors present in PRP may exhibit a local paracrine effect that could improve meiotic aberrations in human oocytes and thus improve euploidy rates. Whether PRP improves live birth rates and lowers miscarriage rates remains to be determined in large trials.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, New York, NY, USA
- Rejuvenating Fertility Center, New York, NY, USA
- Corresponding author: Zaher Merhi Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University and Rejuvenating Fertility Center, 315 West 57th st, New York, NY 10019, USA Tel: +1-203-557-8686, E-mail:
| | - Serin Seckin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, New York, NY, USA
| | | |
Collapse
|
3
|
Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Effect of maternal aging and vitrification on mitochondrial DNA copy number in embryos and spent culture medium. Reprod Biol 2021; 21:100506. [PMID: 33906097 DOI: 10.1016/j.repbio.2021.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Maternal aging and vitrification affect mitochondrial quality and quantity in embryos. The present study investigated the effects of maternal aging on mitochondrial DNA (mtDNA) copy number in embryos, and the amount of cell-free mtDNA (cf-mtDNA) in spent culture medium (SCM) of embryos. Moreover, we examined the effects of vitrification on mtDNA copy number in embryos of young and aged cows, and on cf-mtDNA abundance in SCM. Oocytes collected from ovaries of young (20-40 months old) and aged cows (> 140 months old) were used to produce early stage embryos (8-12 cell-stage, 48 h after insemination). These embryos were individually cultured for 5 days, and mtDNA copy number in blastocysts and cf-mtDNA content in SCM, were evaluated by real-time PCR. At 48 h post-insemination, mtDNA copy number in embryos was greater for young cows compared with that of aged cows, whereas no significant difference was observed in cf-mtDNA in the SCM. Next, we addressed whether zona pellucida (ZP) may mask the difference in cf-mtDNA content in SCM. Using ZP-free embryos, we found significantly greater cf-mtDNA content in the SCM of blastocysts derived from aged cows. Furthermore, when embryos were vitrified and warmed, mtDNA copy number in blastocysts derived from young cows was lower, whereas cf-mtDNA content in SCM was greater than in those derived from aged cows. In conclusion, maternal aging affects mitochondrial kinetics and copy number in embryos following vitrification.
Collapse
Affiliation(s)
- Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
4
|
Kageyama M, Ito J, Shirasuna K, Kuwayama T, Iwata H. Mitochondrial reactive oxygen species regulate mitochondrial biogenesis in porcine embryos. J Reprod Dev 2021; 67:141-147. [PMID: 33612552 PMCID: PMC8075724 DOI: 10.1262/jrd.2020-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The number of mitochondria in blastocysts is a potential marker of embryo quality. However, the molecular mechanisms governing the mitochondrial number in
embryos are unclear. This study was conducted to investigate the effect of reduced mitochondrial reactive oxygen species (ROS) levels on mitochondrial
biogenesis in porcine embryos. Oocytes were collected from gilt ovaries and activated to generate over 4 cell-stage embryos at day 2 after activation. These
embryos were cultured in media containing either 0.1 μM MitoTEMPOL (MitoT), 0.5 μM Mitoquinol (MitoQ), or vehicle (ethanol) for 5 days to determine the rate of
development to the blastocyst stage. The mitochondrial number in blastocysts was evaluated by real-time polymerase chain reaction (PCR). Five days after
activation, the embryos (early morula stage) were subjected to immunostaining to determine the expression levels of NRF2 in the nucleus. In addition, the
expression levels of PGC1α and TFAM in the embryos were examined by reverse transcription PCR. One day of incubation with the
antioxidants reduced the ROS content in the embryos but did not affect the rate of development to the blastocyst stage. Blastocysts developed in medium
containing MitoT had lower mitochondrial DNA copy numbers and ATP content, whereas MitoQ showed similar but insignificantly trends. Treatment of embryos with
either MitoT or MitoQ decreased the expression levels of NRF2 in the nucleus and levels of PGC1α and TFAM. These findings
indicate that reductions in mitochondrial ROS levels are associated with low mitochondrial biogenesis in embryos.
Collapse
Affiliation(s)
- Mio Kageyama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
5
|
Kobayashi M, Ito J, Shirasuna K, Kuwayama T, Iwata H. Comparative analysis of cell-free DNA content in culture medium and mitochondrial DNA copy number in porcine parthenogenetically activated embryos. J Reprod Dev 2020; 66:539-546. [PMID: 32908082 PMCID: PMC7768170 DOI: 10.1262/jrd.2020-097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the effect of ploidy on mitochondrial DNA (mtDNA) copy number in embryos and the amount of cell-free mitochondrial and nucleic DNA content (cf-mtDNA and cf-nDNA) in spent culture medium (SCM). Oocytes collected from the ovaries were matured, activated, incubated in medium containing cycloheximide (CHX) or CHX and cytochalasin B (CB) for 4.5 h to produce haploid or diploid embryos (H-group and D-group embryos). These embryos were cultured for 7 days, and the blastocysts and SCM were examined. The amount of mtDNA and nDNA was determined by real-time PCR. The rate of development to the blastocyst stage was higher for the D-group than for the H-group. Moreover, D-group blastocysts had less mtDNA compared to the H-group blastocysts. After activation, the mitochondrial content was constant before the blastocyst stage in D-group embryos, but increased earlier in H-group embryos. The amount of cf-mtDNA in the SCM of D-group blastocysts was greater than that of H-group blastocysts. However, when the cf-mtDNA in the SCM of 2 cell-stage embryos (day 2 post-activation) was examined, the amount of cf-mtDNA was greater in the H-group than in the D-group embryos. When D-group embryos were cultured for 7 days, a significant correlation was observed between the total cell number of blastocysts and cf-nDNA content in the SCM. Hence, although careful consideration is needed regarding the time point for evaluating mtDNA content in the embryos and SCM, this study demonstrates that mtDNA in the embryos and SCM was affected by the ploidy of the embryos.
Collapse
Affiliation(s)
- Mitsuru Kobayashi
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
6
|
Hara S, Aoki S, Nagata M, Shirasuna K, Noguchi T, Iwata H. Xanthan gum and locust bean gum substrate improves bovine embryo development. Reprod Domest Anim 2020; 55:1124-1131. [PMID: 32562321 DOI: 10.1111/rda.13750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
One of the major difference between the in vivo and in vitro embryonic environments is the stiffness of the culture substrate. Xanthan gum (XG) and locust bean gum (LBG) are natural materials that are safe, inexpensive and easy to handle. In this study, we investigated the effects of using a polysaccharide culture substrate made from 1% XG and 1% LBG (XG-LBG gel) on bovine embryonic development. Oocytes collected from bovine ovaries were subjected to maturation, and fertilization to generate embryos at an early developmental stage (>4 cell stage). Cleaved embryos were further cultured in a well of 96-well cell culture plate coated with or without XG-LBG gel for 5 days. While the developmental rate up to the blastocyst stage did not differ between the two culture systems (control, 38.0 vs. gel, 38.6%), blastocysts developed on the XG-LBG gel produced significantly high cell numbers and ATP content. Embryos cultured on XG-LBG gels for 24 hr had high expression levels of F-actin and a highly even distribution of E-cadherin. In addition, embryos developed on XG-LBG gel demonstrated increased translocation of YAP to the nucleus and increased connective tissue growth factor (CTGF) protein levels (downstream of Hippo signalling). These findings suggest that soft culture substrates improve embryonic development by enhancing mechanotransduction, including YAP-CTGF signalling.
Collapse
Affiliation(s)
- Shunsuke Hara
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Sogo Aoki
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Miki Nagata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Tatsuo Noguchi
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
7
|
Wood SH, Sills ES. Intraovarian vascular enhancement via stromal injection of platelet-derived growth factors: Exploring subsequent oocyte chromosomal status and in vitro fertilization outcomes. Clin Exp Reprod Med 2020; 47:94-100. [PMID: 32466629 PMCID: PMC7315860 DOI: 10.5653/cerm.2019.03405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The inverse correlation between maternal age and pregnancy rate represents a major challenge for reproductive endocrinology. The high embryo ploidy error rate in failed in vitro fertilization (IVF) cycles reflects genetic misfires accumulated by older oocytes over time. Despite the application of different follicular recruitment protocols during IVF, gonadotropin modifications are generally futile in addressing such damage. Even when additional oocytes are retrieved, quality is frequently poor. Older oocytes with serious cytoplasmic and/or chromosomal errors are often harvested from poorly perfused follicles, and ovarian vascularity and follicular oxygenation impact embryonic chromosomal competency. Because stimulation regimens exert their effects briefly and immediately before ovulation, gonadotropins alone are an ineffective antidote to long-term hypoxic pathology. In contrast, the tissue repair properties (and particularly the angiogenic effects) of platelet-rich plasma (PRP) are well known, with applications in other clinical contexts. Injection of conventional PRP and/or its components (e.g., isolated platelet-derived growth factors as a cell-free substrate) into ovarian tissue prior to IVF has been reported to improve reproductive outcomes. Any derivative neovascularity may modulate oocyte competence by increasing cellular oxygenation and/or lowering concentrations of intraovarian reactive oxygen species. We propose a mechanism to support intrastromal angiogenesis, improved follicular perfusion, and, crucially, embryo ploidy rescue. This last effect may be explained by mRNA upregulation coordinated by PRP-associated molecular signaling, as in other tissue systems. Additionally, we outline an intraovarian injection technique for platelet-derived growth factors and present this method to help minimize reliance on donor oocytes and conventional hormone replacement therapy.
Collapse
Affiliation(s)
| | - E Scott Sills
- Gen 5 Fertility Center, San Diego, CA, USA.,Applied Biotechnology Research Group, University of Westminster, London, UK
| |
Collapse
|
8
|
Lin E, Li Z, Huang Y, Ru G, He P. High Dosages of Equine Chorionic Gonadotropin Exert Adverse Effects on the Developmental Competence of IVF-Derived Mouse Embryos and Cause Oxidative Stress-Induced Aneuploidy. Front Cell Dev Biol 2020; 8:609290. [PMID: 33634101 PMCID: PMC7900142 DOI: 10.3389/fcell.2020.609290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Gonadotropins play vital roles in the regulation of female reproductive ability and fertility. Our study aimed to determine the effects of superovulation induced by increasing doses of equine chorionic gonadotropin [eCG; also referred to as pregnant mare serum gonadotropin (PMSG)] on the developmental competence of mouse embryos and on aneuploidy formation during in vitro fertilization (IVF). eCG dose-dependently enhanced the oocyte yield from each mouse. Administration of 15 IU eCG significantly reduced the fertilization rate and the formation of four-cell embryos and blastocysts and increased the risk of chromosome aneuploidy. The IVF-derived blastocysts in the 15 IU eCG treatment group had the fewest total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells. Moreover, more blastocysts and fewer apoptotic cells were observed in the 0, 5, and 10 IU eCG treatment groups than in the 15 IU eCG treatment group. We also investigated reactive oxygen species (ROS) levels and variations in several variables: mitochondrial membrane potential (MMP); active mitochondria; mitochondrial superoxide production; adenosine triphosphate (ATP) content; spindle structures; chromosome karyotypes; microfilament distribution; and the expression of Aurora B [an important component of the chromosomal passenger complex (CPC)], the spindle assembly checkpoint (SAC) protein mitotic arrest deficient 2 like 1 (MAD2L1), and the DNA damage response (DDR) protein γH2AX. Injection of 15 IU eCG increased ROS levels, rapidly reduced MMP, increased active mitochondria numbers and mitochondrial superoxide production, reduced ATP content, increased abnormal spindle formation rates, and induced abnormalities in chromosome number and microfilament distribution, suggesting that a high dose of eCG might alter developmental competence and exert negative effects on IVF-obtained mouse embryos. Additionally, the appearance of γH2AX and the significantly increased expression of Aurora B and MAD2L1 suggested that administration of relatively high doses of eCG caused Aurora B-mediated SAC activation triggered by ROS-induced DNA damage in early mouse IVF-derived embryos for self-correction of aneuploidy formation. These findings improve our understanding of the application of gonadotropins and provide a theoretical basis for gonadotropin treatment.
Collapse
|
9
|
Sills ES, Rickers NS, Svid CS, Rickers JM, Wood SH. Normalized Ploidy Following 20 Consecutive Blastocysts with Chromosomal Error: Healthy 46, XY Pregnancy with IVF after Intraovarian Injection of Autologous Enriched Platelet-derived Growth Factors. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:84-90. [PMID: 32195207 PMCID: PMC7073267 DOI: 10.22088/ijmcm.bums.8.1.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
One explanation for why downstream gonadotropin protocol changes during IVF commonly arrive too late to have significant effects is that embryo development actually begins during oogenesis. Thus, efforts to modify the chromosomal status of blastocysts must address the ovarian milieu well in advance of follicular recruitment. A 42 year old woman with primary infertility of 3 year duration attended with her partner. Five previous IVF cycles had produced 20 embryos, but all had genetic abnormalities and no embryo transfer was performed. Karyotypes and all lab tests were normal for both partners. 3 months before her IVF here, she received isolated platelet-derived growth factors injected into both ovaries as a cell-free, enriched substrate. Genetic assessments were via whole genome amplification and DNA tagmentation and PCR adapter sequences. Comprehensive chromosomal screening was carried out by dual-indexed sequencing of pooled libraries on the MiSeq™ platform. From this IVF cycle one euploid 46, XY blastocyst was produced and vitrified on the day of trophectoderm biopsy. 9 days after frozen embryo transfer, serum human chorionic gonadotropin was 250 mIU/ml and a transvaginal ultrasound at 6 week gestation confirmed a single intrauterine pregnancy with fetal heart at 153/min. A healthy male infant was delivered by c-section at 39 weeks' gestation. While cellular and molecular events directing the oocyte-to-embryo transition are incompletely characterized, processes related to ovarian stem cell differentiation, mitochondrial dynamics, and mRNA storage, translation, and degradation likely are relevant. It appears that intraovarian application of autologous platelet-derived growth factors, when used before IVF, can impact oocyte integrity and facilitate euploid blastocyst development. Although research on intraovarian injection of autologous activated platelet rich plasma has already shown improved quantitative IVF responses, this is the first description of qualitative improvements in embryo genetics after intraovarian injection of autologous platelet-derived growth factors.
Collapse
Affiliation(s)
- E Scott Sills
- Gen 5 Fertility; La Jolla, California, USA.,Office for Reproductive Research, Center for Advanced Genetics; La Jolla, California, USA.,Department of Obstetrics and Gynecology, Palomar Medical Center; Escondido, California, USA
| | - Natalie S Rickers
- Office for Reproductive Research, Center for Advanced Genetics; La Jolla, California, USA
| | - Channel S Svid
- Office for Reproductive Research, Center for Advanced Genetics; La Jolla, California, USA
| | - J M Rickers
- Gen 5 Fertility; La Jolla, California, USA.,Office for Reproductive Research, Center for Advanced Genetics; La Jolla, California, USA
| | | |
Collapse
|