1
|
Li Y, Chen H, Zhang B, Liu J, Ma J, Ma W, Lu S. TMEM147: A Promising Cancer Biomarker Associated with Immune Cell Infiltration and Prognosis in LIHC-Insights from a Comprehensive Pan-Cancer Genomic Analysis. ACS OMEGA 2024; 9:27137-27157. [PMID: 38947838 PMCID: PMC11209882 DOI: 10.1021/acsomega.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have demonstrated the regulatory roles of Transmembrane protein 147 (TMEM147) in various diseases, including cancer. However, systematic pan-cancer analyses investigating the role of TMEM147 in diagnosis, prognosis, and immunological prediction are lacking. An analysis of data from The Cancer Genome Atlas (TCGA) revealed differential TMEM147 expression across various types of cancer as well as within immune and molecular cancer subtypes. Moreover, high TMEM147 expression was associated with poor disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) across cancers, suggesting its potential as a prognostic biomarker. Our study further revealed a significant correlation between TMEM147 expression and T helper cell and Tcm cell infiltration in most cancer types. In the case of liver hepatocellular carcinoma (LIHC), the effect of TMEM147 on prognosis varied among different clinical subtypes. Additionally, functional enrichment analysis revealed an association between TMEM147 and metabolic pathways. Finally, experiments on the MIHA cell line and four LIHC cell lines confirmed the role of TMEM147 in promoting liver cancer cell proliferation, further confirming the clinical value of TMEM147 in liver cancer diagnosis. Our findings suggest that TMEM147 may serve as a diagnostic and prognostic biomarker across cancers while also playing a significant role in LIHC.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Hanxiang Chen
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Jianping Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Wanshan Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Sumei Lu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| |
Collapse
|
2
|
Kang H, Lee CJ. Transmembrane proteins with unknown function (TMEMs) as ion channels: electrophysiological properties, structure, and pathophysiological roles. Exp Mol Med 2024; 56:850-860. [PMID: 38556553 PMCID: PMC11059273 DOI: 10.1038/s12276-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 04/02/2024] Open
Abstract
A transmembrane (TMEM) protein with an unknown function is a type of membrane-spanning protein expressed in the plasma membrane or the membranes of intracellular organelles. Recently, several TMEM proteins have been identified as functional ion channels. The structures and functions of these proteins have been extensively studied over the last two decades, starting with TMEM16A (ANO1). In this review, we provide a summary of the electrophysiological properties of known TMEM proteins that function as ion channels, such as TMEM175 (KEL), TMEM206 (PAC), TMEM38 (TRIC), TMEM87A (GolpHCat), TMEM120A (TACAN), TMEM63 (OSCA), TMEM150C (Tentonin3), and TMEM43 (Gapjinc). Additionally, we examine the unique structural features of these channels compared to those of other well-known ion channels. Furthermore, we discuss the diverse physiological roles of these proteins in lysosomal/endosomal/Golgi pH regulation, intracellular Ca2+ regulation, spatial memory, cell migration, adipocyte differentiation, and mechanical pain, as well as their pathophysiological roles in Parkinson's disease, cancer, osteogenesis imperfecta, infantile hypomyelination, cardiomyopathy, and auditory neuropathy spectrum disorder. This review highlights the potential for the discovery of novel ion channels within the TMEM protein family and the development of new therapeutic targets for related channelopathies.
Collapse
Affiliation(s)
- Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
3
|
Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel. J Neurosci 2023; 43:526-539. [PMID: 36283831 PMCID: PMC9888509 DOI: 10.1523/jneurosci.0482-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.
Collapse
|
4
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chen JM, Chen SK, Jin PP, Sun SC. Identification of the ataxin-1 interaction network and its impact on spinocerebellar ataxia type 1. Hum Genomics 2022; 16:29. [PMID: 35906672 PMCID: PMC9335979 DOI: 10.1186/s40246-022-00404-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein. The pathogenic mechanism resulting in SCA1 is still unclear. Protein–protein interactions affect the function and stability of ataxin-1. Methods Wild-type and mutant ataxin-1 were expressed in HEK-293T cells. The levels of expression were assessed using real-time polymerase chain reaction (PCR) and Western blots. Co-immunoprecipitation was done in HEK-293T cells expressing exogenous wild-type and mutant ataxin-1 using anti-Flag antibody following by tandem affinity purification in order to study protein–protein interactions. The candidate interacting proteins were validated by immunoprecipitation. Chromatin immunoprecipitation and high-throughput sequencing and RNA immunoprecipitation and high-throughput sequencing were performed using HEK-293T cells expressing wild-type or mutant ataxin-1. Results In this study using HEK-293T cells, we found that wild-type ataxin-1 interacted with MCM2, GNAS, and TMEM206, while mutant ataxin-1 lost its interaction with MCM2, GNAS, and TMEM206. Two ataxin-1 binding targets containing the core GGAG or AAAT were identified in HEK-293T cells using ChIP-seq. Gene Ontology analysis of the top ataxin-1 binding genes identified SLC6A15, NTF3, KCNC3, and DNAJC6 as functional genes in neurons in vitro. Ataxin-1 also was identified as an RNA-binding protein in HEK-293T cells using RIP-seq, but the polyglutamine expansion in the ataxin-1 had no direct effects on the RNA-binding activity of ataxin-1. Conclusions An expanded polyglutamine tract in ataxin-1 might interfere with protein–protein or protein–DNA interactions but had little effect on protein–RNA interactions. This study suggested that the dysfunction of protein–protein or protein–DNA interactions is involved in the pathogenesis of SCA1.
Collapse
Affiliation(s)
- Jiu-Ming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Shi-Kai Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Pei-Pei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Shun-Chang Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China.
| |
Collapse
|
6
|
Dumont M, Weber-Lassalle N, Joly-Beauparlant C, Ernst C, Droit A, Feng BJ, Dubois S, Collin-Deschesnes AC, Soucy P, Vallée M, Fournier F, Lemaçon A, Adank MA, Allen J, Altmüller J, Arnold N, Ausems MGEM, Berutti R, Bolla MK, Bull S, Carvalho S, Cornelissen S, Dufault MR, Dunning AM, Engel C, Gehrig A, Geurts-Giele WRR, Gieger C, Green J, Hackmann K, Helmy M, Hentschel J, Hogervorst FBL, Hollestelle A, Hooning MJ, Horváth J, Ikram MA, Kaulfuß S, Keeman R, Kuang D, Luccarini C, Maier W, Martens JWM, Niederacher D, Nürnberg P, Ott CE, Peters A, Pharoah PDP, Ramirez A, Ramser J, Riedel-Heller S, Schmidt G, Shah M, Scherer M, Stäbler A, Strom TM, Sutter C, Thiele H, van Asperen CJ, van der Kolk L, van der Luijt RB, Volk AE, Wagner M, Waisfisz Q, Wang Q, Wang-Gohrke S, Weber BHF, Devilee P, Tavtigian S, Bader GD, Meindl A, Goldgar DE, Andrulis IL, Schmutzler RK, Easton DF, Schmidt MK, Hahnen E, Simard J. Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers (Basel) 2022; 14:cancers14143363. [PMID: 35884425 PMCID: PMC9317824 DOI: 10.3390/cancers14143363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.
Collapse
Affiliation(s)
- Martine Dumont
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Charles Joly-Beauparlant
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Arnaud Droit
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, UT 84103, USA; (B.-J.F.); (D.E.G.)
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stéphane Dubois
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Annie-Claude Collin-Deschesnes
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Penny Soucy
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Maxime Vallée
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Frédéric Fournier
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Audrey Lemaçon
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Muriel A. Adank
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (J.A.); (H.T.)
| | - Norbert Arnold
- Institute of Clinical Molecular Biology, Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, 24105 Kiel, Germany;
| | - Margreet G. E. M. Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Riccardo Berutti
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; (R.B.); (T.M.S.)
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Shelley Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
| | - Michael R. Dufault
- Precision Medicine and Computational Biology, Sanofi Genzyme, Cambridge, MA 02142, USA;
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Andrea Gehrig
- Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University of Würzburg, 97074 Würzburg, Germany;
| | | | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.G.); (A.P.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Jessica Green
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Mohamed Helmy
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Julia Hentschel
- Institute of Human Genetics, University Leipzig, 04103 Leipzig, Germany;
| | - Frans B. L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Judit Horváth
- Institute of Human Genetics, University of Münster, 48149 Münster, Germany;
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
| | - Da Kuang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Wolfgang Maier
- German Center for Neurodegenerative Diseases (DZNE), Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, 53127 Bonn, Germany;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.G.); (A.P.)
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Alfredo Ramirez
- Division for Neurogenetics and Molecular Psychiatry, Medical Faculty, University of Cologne, 50937 Cologne, Germany;
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (J.R.); (A.M.)
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany;
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Antje Stäbler
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
| | - Tim M. Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; (R.B.); (T.M.S.)
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (J.A.); (H.T.)
| | - Christi J. van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands; (C.J.v.A.); (R.B.v.d.L.)
| | - Lizet van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Rob B. van der Luijt
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands; (C.J.v.A.); (R.B.v.d.L.)
- Department of Medical Genetics, University Medical Center, 3584 Utrecht, The Netherlands
| | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany;
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University of Ulm, 89081 Ulm, Germany;
| | - Bernhard H. F. Weber
- Institute of Human Genetics, Regensburg University, 93053 Regensburg, Germany;
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Peter Devilee
- Department of Pathology, Department of Human Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands;
| | - Sean Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Gary D. Bader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Princess Margaret Research Institute, University Health Network, Toronto, ON M5G 0A3, Canada
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (J.R.); (A.M.)
| | - David E. Goldgar
- Department of Dermatology, University of Utah, Salt Lake City, UT 84103, USA; (B.-J.F.); (D.E.G.)
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Jacques Simard
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +418-654-2264
| |
Collapse
|
7
|
Li T, Guan L, Tang G, He B, Huang L, Wang J, Li M, Bai Y, Li X, Zhang H. Downregulation of TMEM220 promotes tumor progression in Hepatocellular Carcinoma. Cancer Gene Ther 2022; 29:835-844. [PMID: 34321624 DOI: 10.1038/s41417-021-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
During the process of long-term carcinogenesis, cells accumulate many mutations. Deregulated genes expression causes profound changes in cell proliferation, which is one of the hallmarks of HCC. A comprehensive understanding of these changes will contribute to the molecular mechanism of HCC progression. Through clinical sample analysis, we found that TMEM220 is downregulated in tumor and lower levels of TMEM220 is associated with poor prognosis in HCC patients. Through overexpressing TMEM220 in HCC cell lines, we found that the proliferation of cancer cells was significantly slowed down and metastasis was significantly reduced. For further study of its molecular mechanism, we performed a reverse-phase protein array (RPPA). The results suggest that phenotypic changes caused by TMEM220 in HCC cells might be associated with FOXO and PI3K-Akt pathways. Mechanism studies showed that overexpression of TMEM220 could regulate β-catenin and FOXO3 transcriptional activity by altering their subcellular localization, affecting the expression of downstream gene p21 and SNAIL, and ultimately reducing the progression of HCC. Altogether, our study proposes a working model in which upregulation of TMEM220 expression alters the genes expression involved in cell proliferation, thereby inhibiting HCC progression, which suggests that TMEM220 might serve as a clinical biomarker.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Guangbo Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Bing He
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Juan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanxia Bai
- Department of Otolaryngology-Head-Neck Surgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
8
|
Identification of gene signatures for COAD using feature selection and Bayesian network approaches. Sci Rep 2022; 12:8761. [PMID: 35610288 PMCID: PMC9130243 DOI: 10.1038/s41598-022-12780-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The combination of TCGA and GTEx databases will provide more comprehensive information for characterizing the human genome in health and disease, especially for underlying the cancer genetic alterations. Here we analyzed the gene expression profile of COAD in both tumor samples from TCGA and normal colon tissues from GTEx. Using the SNR-PPFS feature selection algorithms, we discovered a 38 gene signatures that performed well in distinguishing COAD tumors from normal samples. Bayesian network of the 38 genes revealed that DEGs with similar expression patterns or functions interacted more closely. We identified 14 up-DEGs that were significantly correlated with tumor stages. Cox regression analysis demonstrated that tumor stage, STMN4 and FAM135B dysregulation were independent prognostic factors for COAD survival outcomes. Overall, this study indicates that using feature selection approaches to select key gene signatures from high-dimensional datasets can be an effective way for studying cancer genomic characteristics.
Collapse
|
9
|
Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13050902. [PMID: 35627287 PMCID: PMC9140789 DOI: 10.3390/genes13050902] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/11/2023] Open
Abstract
Improved insight into the molecular mechanisms of triple negative breast cancer (TNBC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study is to identify key genes which may affect the prognosis of TNBC patients by bioinformatic analysis. In our study, the RNA sequencing (RNA-seq) expression data of 116 breast cancer lacking ER, PR, and HER2 expression and 113 normal tissues were downloaded from The Cancer Genome Atlas (TCGA). We screened out 147 differentially co-expressed genes in TNBC compared to non-cancerous tissue samples by using weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were constructed, revealing that 147 genes were mainly enriched in nuclear division, chromosomal region, ATPase activity, and cell cycle signaling. After using Cytoscape software for protein-protein interaction (PPI) network analysis and LASSO feature selection, a total of fifteen key genes were identified. Among them, BUB1 and CENPF were significantly correlated with the overall survival rate (OS) difference of TNBC patients (p value < 0.05). In addition, BUB1, CCNA2, and PACC1 showed significant poor disease-free survival (DFS) in TNBC patients (p value < 0.05), and may serve as candidate biomarkers in TNBC diagnosis. Thus, our results collectively suggest that BUB1, CCNA2, and PACC1 genes could play important roles in the progression of TNBC and provide attractive therapeutic targets.
Collapse
|
10
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
11
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
12
|
Song L, Feng D, Tan J, Zhang H. Effects of TMEM206 on the malignant behavior of HepG2 human hepatocellular carcinoma cells. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer of the digestive system. Recently, transmembrane proteins (TMEMs) have been extensively studied in different types of malignant tumors. However, the influence of TMEM206 in hepatocellular carcinoma is unclear. The UALCAN database was used to investigate the expression of TMEM206 mRNA in liver cancer tissues and used the Human Protein Atlas (THPA) to study the expression of TMEM206 in HCC tissues. The expression of TMEM206 was measured in normal liver HL-7702 cells and HepG2, SMMC-7721, and Bel-7402 liver cancer cells. Next, a lentivirus was used to knockdown TMEM206 in HepG2 cells. Furthermore, after verifying knockdown, we studied the effect of TMEM206 downregulation on the malignant behavior of HepG2 and on the PI3K/AKT pathway. TMEM206 was highly expressed in liver cancer cells ( p < 0.001). Downregulation of TMEM206 significantly inhibited the proliferation, migration and invasion of HepG2, significantly promoted the apoptosis of HepG2, and inhibited the expression of P-PI3K and P-AKT. TMEM206 can affect the malignant behavior of HCC. And the PI3K/AKT pathway was affected. This study provides new ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Ling Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Feng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajie Tan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Downregulation of the Proton-Activated Cl- Channel TMEM206 Inhibits Malignant Properties of Human Osteosarcoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3672112. [PMID: 34777684 PMCID: PMC8589505 DOI: 10.1155/2021/3672112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Transmembrane protein 206 (TMEM206), a proton-activated chloride channel, has been implicated in various biochemical processes, including bone metabolism, and has emerged as a novel cancer-related protein in multiple tumor types. However, its role in primary malignant bone tumors, particularly in osteosarcoma (OS), remains unclear. This study is aimed at exploring the effects of TMEM206 gene silencing on the proliferation, migration, invasion, and metastasis of human OS cells in vitro and in vivo using an shRNA-knockdown strategy. We found that TMEM206 is frequently overexpressed and that high levels of TMEM206 correlated with clinical stage and pulmonary metastasis in patients with OS. We provided evidence that TMEM206-silenced OS cancer cells exhibit decreased proliferation, migration, and invasion in vitro. Mechanistically, we identified β-catenin, a key member of Wnt/β-catenin signaling, as a downstream effector of TMEM206. TMEM206 silencing inhibits the Wnt/β-catenin signaling pathway in expression rescue experiments, confirming that TMEM206 silencing attenuates OS cell tumorigenic behavior, at least in part, via the β-catenin mediated downregulation of Wnt/β-catenin signaling. More importantly, TMEM206 knockdown-related phenotype changes were replicated in a xenograft nude mouse model where pulmonary metastases of OS cells were suppressed. Together, our results demonstrate that silencing TMEM206 negatively modulates the Wnt/β-catenin signaling pathway via β-catenin to suppress proliferation, migration, invasion, and metastasis in OS carcinogenesis, suggesting TMEM206 as a potential oncogenic biomarker and a potential target for OS treatment.
Collapse
|
14
|
Bacolod MD, Barany F. A Unified Transcriptional, Pharmacogenomic, and Gene Dependency Approach to Decipher the Biology, Diagnostic Markers, and Therapeutic Targets Associated with Prostate Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13205158. [PMID: 34680307 PMCID: PMC8534121 DOI: 10.3390/cancers13205158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This manuscript demonstrates how integrated bioinformatic and statistical reanalysis of publicly available genomic datasets can be utilized to identify molecular pathways and biomarkers that may be clinically relevant to metastatic prostate cancer (mPrCa) progression. The most notable observation is that the transition from primary prostate cancer to mPrCa is characterized by upregulation of processes associated with DNA replication, metastasis, and events regulated by the serine/threonine kinase PLK1. Moreover, our analysis also identified over-expressed genes that may be exploited for potential targeted therapeutics and minimally invasive diagnostics and monitoring of mPrCa. The primary data analyzed were two transcriptional datasets for tissues derived from normal prostate, primary prostate cancer, and mPrCa. Also incorporated in the analysis were the transcriptional, gene dependency, and drug response data for hundreds of cell lines, including those derived from prostate cancer tissues. Abstract Our understanding of metastatic prostate cancer (mPrCa) has dramatically advanced during the genomics era. Nonetheless, many aspects of the disease may still be uncovered through reanalysis of public datasets. We integrated the expression datasets for 209 PrCa tissues (metastasis, primary, normal) with expression, gene dependency (GD) (from CRISPR/cas9 screen), and drug viability data for hundreds of cancer lines (including PrCa). Comparative statistical and pathways analyses and functional annotations (available inhibitors, protein localization) revealed relevant pathways and potential (and previously reported) protein markers for minimally invasive mPrCa diagnostics. The transition from localized to mPrCa involved the upregulation of DNA replication, mitosis, and PLK1-mediated events. Genes highly upregulated in mPrCa and with very high average GD (~1) are potential therapeutic targets. We showed that fostamatinib (which can target PLK1 and other over-expressed serine/threonine kinases such as AURKA, MELK, NEK2, and TTK) is more active against cancer lines with more pronounced signatures of invasion (e.g., extracellular matrix organization/degradation). Furthermore, we identified surface-bound (e.g., ADAM15, CD276, ABCC5, CD36, NRP1, SCARB1) and likely secreted proteins (e.g., APLN, ANGPT2, CTHRC1, ADAM12) that are potential mPrCa diagnostic markers. Overall, we demonstrated that comprehensive analyses of public genomics data could reveal potentially clinically relevant information regarding mPrCa.
Collapse
|
15
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
16
|
Zhang L, Liu SY, Yang X, Wang YQ, Cheng YX. TMEM206 is a potential prognostic marker of hepatocellular carcinoma. Oncol Lett 2020; 20:174. [PMID: 32934741 PMCID: PMC7475639 DOI: 10.3892/ol.2020.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Transmembrane proteins are involved in the transportation of materials into and out of cells. The transmembrane protein (TMEM) family is a collection of poorly described transmembrane proteins that serve important roles in tumor development and progression. A number of TMEM proteins have been discovered. A newly discovered TMEM protein, TMEM206, transports ions across the membrane under physiological and pathological conditions, generating an acidic environment, which serves an important role in the microenvironment. However, the prognostic value and regulatory mechanisms of action of TMEM206 in tumors is unclear. The aim of the present study was to evaluate the prognostic value and regulation mechanisms of TMEM206 in tumors. Firstly, the expression of TMEM206 in tumors and normal tissues was assessed using the GEPIA and Oncomine databases and the results revealed that TMEM206 expression increased or decreased depending on the type of tumor. Subsequently, using the Human Protein Atlas and the Kaplan-Meier plotter, the findings of the present study revealed that TMEM206 is related to the prognosis of hepatocellular carcinoma. In order to explore the mechanism of TMEM206 in promoting tumor progression, GEO and cBioPortal were used to determine genes that may be co-expressed with TMEM206. MetaScape was used to identify the signaling pathways that TMEM206 may participate in. Finally, miRWalk, miRDB and TargetScan were used to identify miRNAs that may regulate the expression of TMEM206 and the findings revealed that 2 miRNA (hsa-miR-325 and hsa-miR-510-5p) were involved. In conclusion, upregulation of TMEM206 is associated with poor prognosis in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yan-Qing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Li J, Li X. Comprehensive analysis of prognosis-related methylated sites in breast carcinoma. Mol Genet Genomic Med 2020; 8:e1161. [PMID: 32037691 PMCID: PMC7196449 DOI: 10.1002/mgg3.1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background Breast carcinoma has become a nonnegligible public health problem in China with its increasing incidence and mortality in woman. As a early event regulating tumorigenesis and development, DNA methylation became one of the focuses of current carcinoma researches on potential diagnostic and therapeutic targets. Methods In this study, we comprehensively analyzed the gene expression data and DNA methylation data of breast carcinoma and adjacent normal tissues samples in the Gene Expression Omnibus database. Influences of tumor stage, adjuvant therapy, hormone therapy, and chemotherapy on CpG methylation level were explored by linear regression analysis. Correlations between methylation and gene expression levels were determined by spearman rank correlation analysis. Log‐rank test was applied for determining significance of associations between CpG sites methylation level and breast cancer patients' Kaplan–Meier survival. Results A total of 229 CpG sites were found to be significantly associated with tumor stage or treatment, and eight of which were potential markers that affect the survival of breast carcinoma and negatively correlated with their genes' expression levels. Conclusions We reported eight CpG sites as potential breast cancer prognosis signatures through comprehensively analyzed gene expression and DNA methylation datasets, and excluding influences of tumor stage and treatment. This should be helpful for breast cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| | - Xinzheng Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| |
Collapse
|
18
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2019; 60:96-106. [PMID: 31454669 DOI: 10.1016/j.semcancer.2019.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.
Collapse
Affiliation(s)
- Sébastien Marx
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thomas Dal Maso
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jia-Wei Chen
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Marina Bury
- de Duve Institute, 75 Avenue Hippocrate, 1200 Bruxelles, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Carine Michiels
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Benjamin Le Calvé
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
19
|
Johnston WL, Catton CN, Swallow CJ. Unbiased data mining identifies cell cycle transcripts that predict non-indolent Gleason score 7 prostate cancer. BMC Urol 2019; 19:4. [PMID: 30616540 PMCID: PMC6322345 DOI: 10.1186/s12894-018-0433-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Patients with newly diagnosed non-metastatic prostate adenocarcinoma are typically classified as at low, intermediate, or high risk of disease progression using blood prostate-specific antigen concentration, tumour T category, and tumour pathological Gleason score. Classification is used to both predict clinical outcome and to inform initial management. However, significant heterogeneity is observed in outcome, particularly within the intermediate risk group, and there is an urgent need for additional markers to more accurately hone risk prediction. Recently developed web-based visualization and analysis tools have facilitated rapid interrogation of large transcriptome datasets, and querying broadly across multiple large datasets should identify predictors that are widely applicable. METHODS We used camcAPP, cBioPortal, CRN, and NIH NCI GDC Data Portal to data mine publicly available large prostate cancer datasets. A test set of biomarkers was developed by identifying transcripts that had: 1) altered abundance in prostate cancer, 2) altered expression in patients with Gleason score 7 tumours and biochemical recurrence, 3) correlation of expression with time until biochemical recurrence across three datasets (Cambridge, Stockholm, MSKCC). Transcripts that met these criteria were then examined in a validation dataset (TCGA-PRAD) using univariate and multivariable models to predict biochemical recurrence in patients with Gleason score 7 tumours. RESULTS Twenty transcripts met the test criteria, and 12 were validated in TCGA-PRAD Gleason score 7 patients. Ten of these transcripts remained prognostic in Gleason score 3 + 4 = 7, a sub-group of Gleason score 7 patients typically considered at a lower risk for poor outcome and often not targeted for aggressive management. All transcripts positively associated with recurrence encode or regulate mitosis and cell cycle-related proteins. The top performer was BUB1, one of four key MIR145-3P microRNA targets upregulated in hormone-sensitive as well as castration-resistant PCa. SRD5A2 converts testosterone to its more active form and was negatively associated with biochemical recurrence. CONCLUSIONS Unbiased mining of large patient datasets identified 12 transcripts that independently predicted disease recurrence risk in Gleason score 7 prostate cancer. The mitosis and cell cycle proteins identified are also implicated in progression to castration-resistant prostate cancer, revealing a pivotal role for loss of cell cycle control in the latter.
Collapse
Affiliation(s)
- Wendy L Johnston
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Charles N Catton
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Carol J Swallow
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|