1
|
Wang HC, Tang H, Wu SM, Liu JM, Yu H, Ning S, Li Y, Liu YF, Zhu JX, Xu LS, Wang YJ, Ye YX. A novel fluorescent sensor for evaluating pH changes in organophosphorus pesticides-treated cells and C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125251. [PMID: 39395278 DOI: 10.1016/j.saa.2024.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
pH plays an important role in the evaluation of the healthy status in versatile circumstances. The fluctuation of pH could be affected by complex internal and external stimuli. Especially, the abnormal pH changes is a common characteristic of organophosphorus pesticides (OPs)-caused damage owing to the irreversible inhibition of acetylcholinesterase (AChE) activity. Therefore, the rapid and efficient detection of pH changes is of great significance for predicting the OPs poisoning in living system. However, quick and convenient detecting pH levels in living cells is still limited by the lack of effective chemical tools. Here, a novel fluorescent probe TH-1 based on ESIPT mechanism was synthesized, showing specific fluorescent effects in different pH solutions. Importantly, the AChE catalyzed the hydrolysis product of acetylthiocholine iodide (ATCh) and changed the pH of solution, which influence its fluorescent intensity. Moreover, the probe TH-1 was applied to detecting the pH levels in living cells and C. elegans, providing an efficient chemical sensor for revealing the potential mechanisms of OPs in physiological and pathological processes.
Collapse
Affiliation(s)
- Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Hao Tang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Shi-Mao Wu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Jia-Mei Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Hui Yu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Shuai Ning
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ying Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Yi-Fan Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Jia-Xuan Zhu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Li-Sheng Xu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China.
| | - Yu-Jie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Tianfang Tea Industry Co., Ltd, 22 Qiupu East Road, Shitai County 245100, Anhui, China.
| |
Collapse
|
2
|
Guo M, Qiu MY, Zeng L, Nie YX, Tang YL, Luo Y, Gu HF. Acidosis induces autophagic cell death through ASIC1-mediated Akt/mTOR signaling in HT22 neurons. Toxicology 2025; 511:154045. [PMID: 39756784 DOI: 10.1016/j.tox.2025.154045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Although it has been confirmed that acid-sensing ion channel 1 (ASIC1) plays a critical role in acidosis-induced neuronal injury and death, its underlying mechanisms remain largely unclear. In the present study, we investigated the involvement of ASIC1 in acidosis-induced neuronal death and its underlying mechanisms in HT22 neurons. The neurons were cultured in acidic medium to mimic extracellular acidosis. Cell viability and death, autophagy, ASIC1 expression, and the phosphorylation of Akt and mTOR were evaluated. Our results demonstrated that acidosis markedly increased the cell death rate, which was profoundly reversed by 3-MA (an autophagy inhibitor) but exacerbated by rapamycin (an autophagy activator). Moreover, our results indicated that acidosis induced excessive autophagy by increasing the expression and translocation of ASIC1, and decreasing the phosphorylation of the Akt and mTOR proteins. Intriguingly, inhibiting the activation of ASIC1 with its blocker PcTx-1 not only significantly decreased acidosis-induced neurotoxicity but also markedly compromised acidosis-induced autophagy and Akt/mTOR signaling inactivation, as evidenced by a decrease in the neuronal death rate, LC3Ⅱ/LC3Ⅰ ratio, and autophagosome number as well as p62 degradation and an increase in the phosphorylation of Akt and mTOR. Collectively, these results indicate that acidosis exerts its cytotoxic effects on HT22 neurons by inducing autophagic cell death through the ASIC1-related Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Miao Guo
- Department of Physiology & Institute of Neuroscience, School of Basic Medical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ming-Yue Qiu
- Department of Physiology & Institute of Neuroscience, School of Basic Medical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Mianyang 404 Hospital, Mianyang, Sichuan 621000, People's Republic of China
| | - Lin Zeng
- Department of Neurology & Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ya-Xiong Nie
- Department of Neurology & Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, School of Basic Medical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan Luo
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, School of Basic Medical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
3
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
4
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
5
|
Rabiee S, Hoveizi E, Barati M, Salehzadeh A, Joghataei MT, Tavakol S. Cancer cells same as zombies reprogram normal cells via the secreted microenvironment. PLoS One 2023; 18:e0288003. [PMID: 37506087 PMCID: PMC10381049 DOI: 10.1371/journal.pone.0288003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results. Cell metabolic activity is deviated in a direction other than the Krebs cycle by acidic media The mitochondrial metabolic activity of all groups was enhanced over time, except for acidic media. Unlike the highest amount of ROS in conditioned media, its level decreased to the level of acidic media in the combination group. Furthermore, cells were deviated towards autophagy, rather than apoptosis, by the addition of acidic media to the conditioned media, unlike the conditioned media. Global DNA methylation analysis revealed significantly higher DNA hypomethylation in acidic media than in normal and combination media. Not only were cells treated with conditioned media rescued by acidic media, but also DNA hypomethylation and apoptosis in the combination group were decreased through epigenetic modifications. The acidic and conditioned media produced by cancer cells can remotely activate malignant signaling pathways, much like zombies, which can cause metabolic and epigenetic changes in normal cells.
Collapse
Affiliation(s)
- Shadi Rabiee
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
8
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
9
|
Autophagic Flux Unleashes GATA4-NF- κB Axis to Promote Antioxidant Defense-Dependent Survival of Colorectal Cancer Cells under Chronic Acidosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:8189485. [PMID: 34987705 PMCID: PMC8720590 DOI: 10.1155/2021/8189485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Solid tumors are usually associated with extracellular acidosis due to their increased dependence on glycolysis and poor vascularization. Cancer cells gradually become adapted to acidic microenvironment and even acquire increased aggressiveness. They are resistant to apoptosis but exhibit increased autophagy that is essential for their survival. We here show that NF-κB, a master regulator of cellular responses to stress, is upregulated in colorectal cancer cells adapted to acidosis (CRC-AA). NF-κB is more relied upon for survival in CRC-AA than in their parental cells and drives a robust antioxidant response. Supplementation of antioxidant abolishes the increased sensitivity of CRC-AA to NF-κB inhibition or depletion, suggesting that NF-κB supports the survival of CRC-AA by maintaining redox homeostasis. Because SQSTM1/p62 is known to mediate the selective autophagy of GATA4 that augments NF-κB function, we tested whether the enhanced autophagic flux and consequently the reduction of SQSTM1/p62 in CRC-AA cells could activate the GATA4-NF-κB axis. Indeed, GATA4 is upregulated in CRC-AA cells and augments the NF-κB activity that underlies the increased expression of cytokines, inhibition of apoptosis, and reduction of reactive oxygen species. Interestingly, secretory factors derived from HCT15-AA cells, the soluble ICAM-1 in particular, also possess antioxidant cytoprotective effect against acidic stress. Together, our results demonstrate a prosurvival role of the p62-restricted GATA4-NF-κB axis in cancer cells adapted to acidic microenvironment.
Collapse
|
10
|
Ding M, Liu J, Yang J, Wang H, Xie X, Yang X, Li Y, Guo N, Ouyang R, Miao Y. How do bismuth-based nanomaterials function as promising theranostic agents for the tumor diagnosis and therapy? Curr Med Chem 2021; 29:1866-1890. [PMID: 34365944 DOI: 10.2174/0929867328666210806123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
The complexity of tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. At the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth-based NMs, hoping to provide researchers some inspirations to design safe and effective nanotherapeutic agents for the clinical treatments of cancers.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| |
Collapse
|
11
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
12
|
Chen M, Xu X, Shu G, Lu C, Wu J, Lv X, Song J, Wu F, Chen C, Zhang N, Du Y, Wang J, Xu M, Fang S, Weng Q, Zhu Y, Huang Y, Zhao Z, Du Y, Ji J. Multifunctional Microspheres Dual-Loaded with Doxorubicin and Sodium Bicarbonate Nanoparticles to Introduce Synergistic Trimodal Interventional Therapy. ACS APPLIED BIO MATERIALS 2021; 4:3476-3489. [PMID: 35014432 DOI: 10.1021/acsabm.1c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lactic acid in the tumor microenvironment is highly correlated with the prognosis of tumor chemoembolization, but there are limited clinical strategies to deal with it. To improve the efficacy, NaHCO3 nanoparticles are innovatively introduced into drug-loaded microspheres to neutralize lactic acid in the tumor microenvironment. Here we showed that multifunctional ethyl cellulose microspheres dual-loaded with doxorubicin (DOX) and NaHCO3 nanoparticles (DOX/NaHCO3-MS) presented excellent antitumor effects by improving the pH of the tumor microenvironment. The homeostasis of the tumor microenvironment was continuously disturbed due to the sustained release of NaHCO3 nanoparticles, which also led to a significant increase in tumor cell apoptosis (compared with the control and DOX-MS groups). We also showed that the administration of DOX/NaHCO3-MS via the hepatic artery in a rabbit model of VX2 orthotopic liver cancer resulted in optimal antitumor efficacy, and the area of tumor necrosis at the embolization site was significantly increased and the proliferation of tumor cells was significantly weakened. The designed DOX/NaHCO3-MS exhibited strong synergistic antitumor effects of embolization, chemotherapy, and tumor microenvironment improvement. The present microspheres provided a strategy for the enhancement of the chemoembolization of hepatocellular carcinoma, which could also be extended to other clinical embolization treatments for blood-rich solid tumors.
Collapse
Affiliation(s)
- Minjiang Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiahui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuling Lv
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chunmiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Nannan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980-8577, Japan
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yiling Zhu
- Department of Pathology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yuan Huang
- Department of Pathology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| |
Collapse
|
13
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Sahebkar A. New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anticancer Agents Med Chem 2021; 21:679-691. [PMID: 32560613 DOI: 10.2174/1871520620666200619180716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. METHODS A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. RESULTS It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. CONCLUSION Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | |
Collapse
|
14
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
15
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
16
|
Davoodi-Monfared P, Akbari-Birgani S, Mohammadi S, Kazemi F, Nikfarjam N, Nikbakht M, Mousavi SA. Synthesis, characterization, and in vitro evaluation of the starch-based α-amylase responsive hydrogels. J Cell Physiol 2020; 236:4066-4075. [PMID: 33151570 DOI: 10.1002/jcp.30148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
Controlled-release drug delivery systems are promising platforms in medicine. Among various types of material in drug delivery, hydrogels are interesting ones. They are water-soluble and tissue compatible polymers with a high capacity to carry and release drugs in a controllable manner. In this study, we introduce the synthesis, characterization, and application of an α-amylase responsive hydrogel in controlled drug delivery. The newly synthesized starch-based hydrogels structurally characterized by means of Fourier-transform infrared spectroscopy and scanning electron microscopy. A proapoptotic drug, doxorubicin, was loaded into the hydrogels and the controlled release of the drug was assessed in the presence of α-amylase and ultimately it was evaluated to controlled-drug release in vitro and subsequently in killing cancer cells. Our results highlight the effectiveness of temporal drug delivery using α-amylase responsive hydrogels in killing cancer cells.
Collapse
Affiliation(s)
- Parviz Davoodi-Monfared
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
18
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
19
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Wang L, Zhou Y, Zhang Y, Zhang G, Zhang C, He Y, Dong C, Shuang S. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells. Talanta 2020; 209:120436. [PMID: 31892062 DOI: 10.1016/j.talanta.2019.120436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
pH regulates the function of many organelles and plays a pivotal role in requiring multitud cellular behaviors. Compared with single fluorescent probes, ratio fluorescent probes have higher sensitivity and immunity to interference. Herein, a novel Janus ratio nanoprobe was developed for intracellular pH detection. Modified rhodamine B probe and fluorescein isothiocyanate (FITC) were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via Pickering emulsion. Moreover, it exhibits a satasified ratiometric detection of pH compared to the previous core-shell structure and organic small molecule probe. Accordingly, the Janus nanoprobe possesses many important features as an attractive sensor, including high anti-jamming capability, excellent stability, good reversibility and low cytotoxicity. Variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor, which can respond to wide range of pH values from 3 to 8. To be more specific, with a single excitation wavelength of 488 nm, there are dual emission bands centered at 538 nm and 590 nm. Also the Janus nanoprobe displays a excellent linear relationship in the physiologically relevant pH range of 4.0-6.0. Consequently, detecting of pH and imaging was successfully achieved in living cells, which provides a simple and reliable method for detecting intracelluar pH and other similar substances.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yujian He
- College of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
21
|
Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, Ashrafizadeh M, Mohammadinejad R, Tavakol S, Sethi G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020; 25:E689. [PMID: 32041140 PMCID: PMC7037405 DOI: 10.3390/molecules25030689] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Todays, nano-pharmaceutics is emerging as an important field of science to develop and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the prevention and treatment of various chronic diseases such as cancers, a number of them have displayed issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor solubility and bioavailability that may compromise its clinical application to a great extent. Therefore, the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver curcumin effectively to the different target sites will be discussed.
Collapse
Affiliation(s)
- Mahshid Moballegh Nasery
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 7616911319, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Banafshe Abadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran 1916893813, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Peyman Keyhanvar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran;
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
22
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S. Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 2020; 126:9-20. [PMID: 31237736 DOI: 10.1111/bcpt.13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
From the beginning of the 21st century, much attention has been made towards the medicinal herbs due to their low side effects and valuable biological activities. Among them, terpenes comprise a large group of naturally occurring chemical compounds that are considered as main components of flavours, antifeedants and pheromones. Monoterpenes have demonstrated a favourable profile as compounds that have antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anti-tumour activities. On the other hand, autophagy is a 'self-digestion' mechanism which plays a remarkable role in a number of pathological conditions such as cancer, ageing, metabolic disorders and infection. Also, autophagy is considered as a stress adaptor that may lead to apoptotic cell death under severe and sustained stress. Autophagy modulation is a promising strategy in cancer treatment, and a variety of drugs have been designed in line with this strategy. In the present MiniReview, we discuss the effects of monoterpenes on autophagy and its relationship with therapeutic impacts of monoterpenes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Kaviyani
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
24
|
Rabiee Motmaen S, Tavakol S, Joghataei MT, Barati M. Acidic pH derived from cancer cells as a double-edged knife modulates wound healing through DNA repair genes and autophagy. Int Wound J 2019; 17:137-148. [PMID: 31714008 DOI: 10.1111/iwj.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a sequester program that involves diverse cell signalling cascades. Notwithstanding, complete signal transduction pathways underpinning acidic milieu derived from cancer cells is not clear, yet. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, fluorescein diacetate/propidium iodide staining, and cell cycle flow cytometry revealed that acidic media decreased cell viability and cell number along with enhanced dead cells and S-phase arrest in normal fibroblasts. Notably, the trends of intracellular reactive oxygen species production and lactate dehydrogenase release significantly increased with time. It seems the downregulation of Klf4 is in part due to acidosis-induced DNA damage. It promoted cells towards S-phase arrest and diminished cell proliferation. Klf4 downregulation had a direct correlation with the P53 level while acidic microenvironment promotes cells towards cell death mechanisms including apoptosis and autophagy. Noteworthily, the unchanged levels of Rb and Mlh1 indicated in those genes had no dominant role in the repairing of DNA damage in fibroblasts treated with the acidic microenvironment. Therefore, cells owing to not entering to mitosis and accumulation of DNA damage were undergone cell death to preserve cell homeostasis. Since acidic media decreased the level of tumour suppressor and DNA repair genes and altered the normal survival pathways in fibroblasts, caution should be exercised to not lead to cancer rather than wound healing.
Collapse
Affiliation(s)
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Kazemi M, Mombeiny R, Tavakol S, Keyhanvar P, Mousavizadeh K. A combination therapy of nanoethosomal piroxicam formulation along with iontophoresis as an anti-inflammatory transdermal delivery system for wound healing. Int Wound J 2019; 16:1144-1152. [PMID: 31394589 PMCID: PMC7949395 DOI: 10.1111/iwj.13171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/16/2019] [Accepted: 07/07/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammation accounts as one of the major phases in wound healing, while prolonged and chronic inflammation may lead to adverse pathological conditions. Therefore, transdermal delivery of nonsteroidal anti-inflammatory (NSAIDs) such as encapsulated piroxicam into a nanocarrier seems to be promising. For the first time, a nanoethosomal piroxicam of <200 nm was prepared and combined with iontophoresis. Results showed that there was a critical point at the concentration of 5 mg lecithin with the smallest particle size. Besides, lecithin concentration had direct and inverse linear relationships with turbidity and pH of nanocarriers, respectively. Moreover, as there was no linear relationship between the lecithin concentration and particle size, the effect of lecithin concentration was dominant on turbidity compared with particle size. It seems that a pH higher than 5.5 disturbed the linear relationship of pH and entrapment efficacy percentage (EE%) while at the pH range of 4 to 5.5, the relationship was linear and EE% gradually decreased with increasing pH. These data showed that an optimised nanocarrier with special physicochemical properties is dominant to the just particle size. Besides, ex vivo permeation studies in rat skin showed that there was no significant difference between the permeation of free drug and ethosomal ones. However, iontophoresis significantly enhanced ethosomal piroxicam permeation compared with the free drug. Overall, these data emphasise the superiority of iontophoresis for the transdermal delivery of nanoethosomal medications while nanoethosomal delivery without iontophoresis did not show significant transdermal potential. To sum up, transdermal nanoethosomal piroxicam along with iontophoresis seems to be promising in wound healing.
Collapse
Affiliation(s)
- Mostafa Kazemi
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Reza Mombeiny
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Shima Tavakol
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
| | - Peyman Keyhanvar
- Stem Cell research centerTabriz University of Medical SciencesTabrizIran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
26
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Roomiani S, Katebi M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J Cell Physiol 2019; 234:19471-19479. [PMID: 31032940 DOI: 10.1002/jcp.28740] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Melanoma as the most major skin malignancy has attracted much attention, so far. Although a successful therapeutic strategy requires an accurate understanding of the precise mechanisms for the initiation and progression of the melanoma. Several types of cell death mechanisms have recently been identified along with conventional cell death mechanisms such as apoptosis and necrosis. Among those mechanisms, necroptosis, anoikis, ferroptosis, and autophagy may be considered to have remarkable modulatory impacts on melanoma. In the present review, we explain the mechanisms of cell death signaling pathways related to autophagy, ferroptosis, anoikis, necroptosis, and reticulum endoplasmic stress in cells and describe how those mechanisms transduce signals in melanoma cells. Meanwhile, we describe how we can modulate those mechanisms to eliminate melanoma.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| |
Collapse
|