1
|
Szabados T, Molnár A, Kenyeres É, Gömöri K, Pipis J, Pósa B, Makkos A, Ágg B, Giricz Z, Ferdinandy P, Görbe A, Bencsik P. Identification of New, Translatable ProtectomiRs against Myocardial Ischemia/Reperfusion Injury and Oxidative Stress: The Role of MMP/Biglycan Signaling Pathways. Antioxidants (Basel) 2024; 13:674. [PMID: 38929113 PMCID: PMC11201193 DOI: 10.3390/antiox13060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Ischemic conditionings (ICon) were intensively investigated and several protective signaling pathways were identified. Previously, we have shown the role of matrix metalloproteinases (MMP) in myocardial ischemia/reperfusion injury (MIRI) and the cardioprotective role of biglycan (BGN), a small leucine-rich proteoglycan in vitro. Here, we hypothesized that cardiac MMP and BGN signaling are involved in the protective effects of ICon. METHODS A reverse target-microRNA prediction was performed by using the miRNAtarget™ 2.0 software to identify human microRNAs with a possible regulatory effect on MMP and BGN, such as on related genes. To validate the identified 1289 miRNAs in the predicted network, we compared them to two cardioprotective miRNA omics datasets derived from pig and rat models of MIRI in the presence of ICons. RESULTS Among the experimentally measured miRNAs, we found 100% sequence identity to human predicted regulatory miRNAs in the case of 37 porcine and 24 rat miRNAs. Upon further analysis, 42 miRNAs were identified as MIRI-associated miRNAs, from which 24 miRNAs were counter-regulated due to ICons. CONCLUSIONS Our findings highlight 24 miRNAs that potentially regulate cardioprotective therapeutic targets associated with MMPs and BGN in a highly translatable porcine model of acute myocardial infarction.
Collapse
Affiliation(s)
- Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Arnold Molnár
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Éva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Judit Pipis
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Bence Pósa
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Bence Ágg
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Zoltán Giricz
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Ferdinandy
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| |
Collapse
|
2
|
Li M, Song S, Rong Y, Wu D, Yin Y. Zhishi Xiebai Guizhi Decoction for coronary heart disease: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e36588. [PMID: 38241594 PMCID: PMC10798696 DOI: 10.1097/md.0000000000036588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is a type of cardiovascular disease (CVD) caused by coronary atherosclerosis. It is a main cause of medical burden and cardiovascular related death. Zhishi Xiebai Guizhi Decoction (ZXGD) is a representative prescription of traditional Chinese medicine (TCM) in the treatment of CHD, but there is poor systemically evidence-based appraisal. OBJECTIVE To evaluate the efficacy and safety of ZXGD for CHD. METHODS Eight databases were retrieved for randomized controlled trials (RCTs). Data was extracted independently by 2 reviewers. The quality of the included studies was assessed by Cochrane Collaboration risk of bias tool. Clinical efficacy, blood lipid, vascular endothelial function, inflammatory factor and homocysteine (Hcy) were prespecified outcome measures. RESULTS Twenty-four studies (2272 patients) were included. Meta-analysis showed that compared with conventional western medicine (WM) alone, ZXGD was associated with a greater symptom improvement rate with a relative risk (RR) of 1.21 [95% CI (1.16, 1.26), P < .00001] and a greater electrocardiogram (ECG) improvement rate with a RR of 1.27 [95% CI (1.16, 1.40), P < .00001]. In terms of blood lipid, ZXGD reduced total cholesterol (TC) with a mean difference (MD) of -1.15 [95%CI (-1.75, -0.55), P = .0002] and triglyceride (TG) [MD = -0.72, 95%CI (-0.99, -0.45), P < .00001], reduced low-density lipoprotein cholesterol (LDL-C) [MD = -0.93, 95% CI (-1.17, -0.69), P < .00001], and increased high-density lipoprotein cholesterol (HDL-C) [MD = 0.31, 95%CI (0.20, 0.42), P < .00001]. In terms of vascular endothelial function, ZXGD decreased the level of endothelin-1 (ET-1) [MD = -7.81, 95%CI (-9.51, -6.10), P < .00001], and increased nitric oxide (NO) [MD = 8.90, 95%CI (7.86, 9.93), P < .00001]. ZXGD also reduced high-sensitivity C-reactive protein (hs-CRP) [MD = -1.73, 95% CI (-2.63, -0.83), P < .00001] and Hcy [MD = -2.03, 95%CI (-2.78, -1.28), P < .00001]. No significant differences were found in adverse event rate between the 2 groups with a RR of 0.77 [95% CI (0.44, 1.34), P = .36]. CONCLUSION ZXGD is effective and safe in the treatment of CHD. However, more rigorous and high-quality RCTs are needed to verify the conclusion.
Collapse
Affiliation(s)
- Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengqiang Song
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanhang Rong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongtian Yin
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Li S, Wang Y. Regulatory mechanism of DDX5 in ox-LDL-induced endothelial cell injury through the miR-640/SOX6 axis. Clin Hemorheol Microcirc 2024; 88:157-170. [PMID: 39093065 DOI: 10.3233/ch-242254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial dysfunction is an early and pre-clinical manifestation of coronary heart disease (CHD). OBJECTIVE This study investigates the role of DDX5 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury to confer novel targets for the treatment of CHD. METHODS Endothelial cells were induced by ox-LDL. DDX5, pri-miR-640, pre-miR-640, miR-640, and SOX6 expressions were analyzed by RT-qPCR and Western blot. DDX5 expression was intervened by shRNA, followed by CCK-8 analysis of proliferation, flow cytometry detection of apoptosis, and tube formation assay analysis of angiogenic potential of cells. The binding between DDX5 and pri-miR-640 was determined by RIP, and the pri-miR-640 RNA stability was measured after actinomycin D treatment. Dual-luciferase assay verified the targeting relationship between miR-640 and SOX6. RESULTS DDX5 and miR-640 were highly expressed while SOX6 was poorly expressed in ox-LDL-induced endothelial cells. Silence of DDX5 augmented cell proliferation, abated apoptosis, and facilitated angiogenesis. Mechanistically, RNA binding protein DDX5 elevated miR-640 expression by weakening the degradation of pri-miR-640, thereby reducing SOX6 expression. Combined experimental results indicated that overexpression of miR-640 or low expression of SOX6 offset the protective effect of DDX5 silencing on cell injury. CONCLUSION DDX5 elevates miR-640 expression by repressing the degradation of pri-miR-640 and then reduces SOX6 expression, thus exacerbating ox-LDL-induced endothelial cell injury.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, Heilongjiang, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Li J, Wang M, Wu X, Xie N, Wang H, Huang J, Sheng F, Ma W. miR-129-5p/FGF2 Axis is Associated with Homocysteine-induced Human Umbilical Vein Endothelial Cell Injury. Comb Chem High Throughput Screen 2024; 27:641-648. [PMID: 37165492 DOI: 10.2174/1386207326666230509100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Homocysteine (Hcy)-induced endothelial cell injury is a key event in atherosclerosis pathogenesis. In this study, we aimed to explore the mechanisms underlying Hcy-induced endothelial injury by assessing the effects of Hcy on endothelial cell proliferation and the microRNA (miR)-129-5p/fibroblast growth factor 2 (FGF2) axis. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with Hcy to construct an endothelial cell injury model. Expression levels of FGF2 in Hcy-induced HUVECs were determined using quantitative real-time polymerase chain reaction and western blotting. An FGF2 overexpression lentiviral vector was constructed to upregulate FGF2 expression in HUVECs via lentivirus transduction. A cell counting kit-8 assay was used to explore the effects of FGF2 overexpression on HUVEC proliferation. An upstream regulatory miRNA was predicted, and its targetbinding relationship with FGF2 was evaluated using a dual-luciferase reporter assay. RESULTS We found that FGF2 expression in HUVECs was inhibited by Hcy treatment. Lentivirus transduction led to the overexpression of FGF2 in HUVECs, which significantly reversed the effect of Hcy on endothelial cell proliferation. miR-129-5p was experimentally validated as an upstream regulator of FGF2, and its decreased levels in HUVECs led to increased FGF2 expression. In addition, HUVEC proliferation was enhanced by the knockdown of miR-129-5p, and this effect was reversed by Hcy treatment. CONCLUSION Taken together, the results of this study revealed that Hcy inhibits FGF2 expression in HUVECs, and FGF2 is regulated by upstream miR-129-5p to improve the effect of Hcy on endothelial cell proliferation.
Collapse
Affiliation(s)
- Jian Li
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Mingzhu Wang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Xiaoling Wu
- Nanxiang Community Health Service Center, Tongji University School of Medicine, Shanghai, 200065, China
| | - Nanzi Xie
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Haifeng Wang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Junling Huang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Fei Sheng
- Nanxiang Community Health Service Center, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenlin Ma
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| |
Collapse
|
5
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Long Y, Li D, Yu S, Zhang YL, Liu SY, Wan JY, Shi A, Deng J, Wen J, Li XQ, Ma Y, Li N, Yang M. Natural essential oils: A promising strategy for treating cardio-cerebrovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115421. [PMID: 35659628 DOI: 10.1016/j.jep.2022.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EO) are volatile compounds obtained from different parts of natural plants, and have been used in national, traditional and folk medicine to treat various health problems all over the world. Records indicate that in history, herbal medicines rich in EO have been widely used for the treatment of CVDs in many countries, such as China. AIM OF THE STUDY This review focused on the traditional application and modern pharmacological mechanisms of herbal medicine EO against CVDs in preclinical and clinical trials through multi-targets synergy. Besides, the EO and anti-CVDs drugs were compared, and the broad application of EO was explained from the properties of drugs and aromatic administration routes. MATERIALS AND METHODS Information about EO and CVDs was collected from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The obtained data sets were sequentially arranged for better understanding of EO' potential. RESULTS The study showed that EO had significant application in CVDs at different countries or regions since ancient times. Aiming at the complex pathological mechanisms of CVDs, including intracellular calcium overload, oxidative stress, inflammation, vascular endothelial cell injury and dysfunction and dyslipidemia, we summarized the roles of EO on CVDs in preclinical and clinical through multi-targets intervention. Besides, EO had the dual properties of drug and excipients. And aromatherapy was one of the complementary therapies to improve CVDs. CONCLUSIONS This paper reviewed the EO on traditional treatment, preclinical mechanism and clinical application of CVDs. As important sources of traditional medicines, EO' remarkable efficacy had been confirmed in comprehensive literature reports, which showed that EO had great medicinal potential.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
8
|
Mechanism of Yangxin Tongmai Decoction in the Treatment of Coronary Heart Disease with Blood Stasis Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4692217. [PMID: 36212940 PMCID: PMC9546682 DOI: 10.1155/2022/4692217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the mechanism of Yangxin Tongmai decoction (YXTMD) in the treatment of coronary heart disease (CHD) with blood stasis syndrome (BSS) using network pharmacology and molecular docking, and to verify these results through clinical trials. The active compounds of YXTMD were identified using the Traditional Chinese Medicine Systems Pharmacology database, and the targets of the active compounds were predicted using the SwissTarget Prediction database. The targets of CHD and BSS were predicted using the GeneCards, OMIM, PharmGKB, TTD, and DrugBank databases. The common targets of “herb-disease-phenotype” were obtained using a Venn diagram, then used Cytoscape software 3.8.2 and its plug-in CytoNCA and STRING database to construct the “herb active compounds-common target” and protein–protein interaction networks. R language software and bioconductor plug-in were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. AutoDock was used for the molecular docking analysis. Finally, clinical trials were conducted to confirm the results of network pharmacology. Eighty-three active components were obtained, and the core active components were 5,7,4′-trimethoxyflavone, tetramethoxyluteolin, isosinensetin, sinensetin, and 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one. A total of 140 common targets were identified, and the core targets were EGFR, VEGFA, AKT1, STAT3, TP53, ERBB2, and PIK3CA. Biological processes identified by the GO analysis primarily involved wound healing, regulation of body fluid levels, and vascular process in circulatory system. The cellular components were primarily located in the membrane raft, membrane microdomain, and plasma membrane raft. The primary molecular functions were activity of transmembrane receptor protein kinase, transmembrane receptor protein tyrosine kinase, and protein tyrosine kinase. KEGG analysis showed that the PI3K-Akt signaling pathway was closely related to the treatment of CHD with BSS by YXTMD. Molecular docking results showed that the core active components had a good binding activity with the core targets. The clinical trial results showed that YXTMD improved the BSS scores and decreased the serum levels of total cholesterol and low-density lipoprotein cholesterol. Moreover, the levels of PI3k and AKt mRNA were upregulated and the levels of GSK-3β mRNA were downregulated. YXTMD has multicomponent, multitarget, and multipathway effects in the treatment of CHD with BSS, and its mechanism of action may involve activation of the PI3K-AKt signaling pathway, downregulation of GSK-3β, and mediation of in vivo lipid metabolism-based metabolic processes.
Collapse
|
9
|
Chen B, Zheng L, Zhu T, Jiao K. LncRNA FOXD3-AS1 aggravates myocardial ischemia/reperfusion injury by inactivating the Redd1/AKT/GSK3β/Nrf2 signaling pathway via the miR-128/TXNIP axis. J Biochem Mol Toxicol 2022; 36:e23218. [PMID: 36098178 DOI: 10.1002/jbt.23218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Long noncoding RNA forkhead box D3-antisense RNA 1 (FOXD3-AS1) is associated with cardiovascular diseases, but its roles in myocardial ischemia/reperfusion (I/R) injury and the related signaling pathway have not been fully reported. We aimed to investigate the roles and mechanism of action of FOXD3-AS1 in myocardial I/R injury. An in vivo myocardial I/R injury mouse model and an in vitro hypoxia/reoxygenation (H/R) cardiomyocyte model was established. Quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescent assays were performed to examine the expression levels of FOXD3-AS1, microRNA (miR)-128, thioredoxin-interacting protein/regulation of development and DNA damage response 1/protein kinase B/glycogen synthase kinase 3β/nuclear factor erythroid 2-related factor 2 (TXNIP/Redd1/AKT/GSK3β/Nrf2) pathway-related proteins and apoptosis-related proteins. The interactions between FOXD3-AS1 and miR-128 and miR-128 and TXNIP were analyzed by Spearman's correlation test, predicted by ENCORI, and verified by dual-luciferase reporter assay. In addition, the levels of cardiac injury markers and oxidative stress markers were evaluated by corresponding kits. Cell Counting Kit-8 assays and flow cytometry were performed to assess cell viability and apoptosis. Hematoxylin and eosin staining was applied to observe the effect of FOXD3-AS1 on the morphology of myocardial I/R injured tissues. The results showed that the FOXD3-AS1 and TXNIP were highly expressed, whereas miR-128 was expressed at low levels in I/R myocardial tissues and H/R-induced H9c2 cells. FOXD3-AS1 directly targeted miR-128 to reduce its expression. TXNIP was confirmed as a downstream target of miR-128. Knockdown of FOXD3-AS1 led to the alleviation of I/R injury in vivo and in vitro. FOXD3-AS1 enhanced the expression of TXNIP by sponging miR-128, which inhibited the Redd1/AKT/GSK3β/Nrf2 pathway. Both inhibition of miR-128 and overexpression of TXNIP reversed the cardioprotective effect of FOXD3-AS1 small interfering RNA in H/R-induced H9c2 cells.
Collapse
Affiliation(s)
- Baozeng Chen
- Department of Cardiology, The second people's hospital of Liaocheng, Liaocheng, Shandong, China
| | - Lingling Zheng
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Teng Zhu
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Kai Jiao
- Department of Cardiovascular Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
10
|
Ligustrazine prevents coronary microcirculation dysfunction in rats via suppression of miR-34a-5p and promotion of Sirt1. Eur J Pharmacol 2022; 929:175150. [PMID: 35835182 DOI: 10.1016/j.ejphar.2022.175150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The coronary microembolization contributes to coronary microvascular dysfunction (CMD), in which miR-34a-5p may play a critical role. Ligustrazine has been reported to improve CMD. The present study was designed to discuss the role of miR-34a-5p/Sirt1 pathway in CMD and explore the underlying mechanism of ligustrazine. METHODS Coronary microembolization (CME) was induced by left ventricle injection of sodium laurate in rats. CME formation and cardiac function were examined by HE staining and hemodynamic tests to evaluate CMD. The expressions of miR-34a-5p, Sirt1 and the downstream proteins were detected by RT-qPCR and western blot. Dual-luciferase reporter (DLR) assay was performed to confirm the connection between miR-34a-5p and Sirt1. The blood markers of endothelial dysfunction, platelet activation and inflammation were examined with ELISA. RESULTS Overt CME and cardiac dysfunction as well as up-regulated miR-34a-5p and down-regulated Sirt1 were observed in CME rats. Overexpressing miR-34a-5p aggravated while silencing miR-34a-5p inhibited CME formation. DLR assay confirmed that miR-34a-5p directly inhibited Sirt1 mRNA expression. Ligustrazine pretreatment suppressed miR-34a-5p and promoted Sirt1 expression, which alleviated endothelial dysfunction, inhibited platelet activation and inflammation, and in turn reduced CME. Overexpressing miR-34a-5p diminished the positive effects of ligustrazine; while after silencing miR-34a-5p, ligustrazine failed to further promote Sirt1 expression and inhibit CME formation. CONCLUSION MiR-34a-5p contributes to CMD by inhibiting Sirt1 expression. Ligustrazine exerts endothelial-protective, anti-platelet and anti-inflammatory effects to prevent CMD via suppressing miR-34a-5p and promoting Sirt1.
Collapse
|
11
|
The interplay of long noncoding RNA HULC with microRNA-128-3p and their correlations with lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in coronary heart disease patients. Ir J Med Sci 2022; 191:2597-2603. [PMID: 35088229 DOI: 10.1007/s11845-021-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Long noncoding RNA HULC (lnc-HULC) and its target microRNA-128-3p (miR-128-3p) regulate endothelial cell function, blood lipid level, and inflammatory cytokine production, which are involved in the pathogenesis of coronary heart disease (CHD). Based on the above information, this study intended to further investigate the correlation between lnc-HULC and miR-128-3p, as well as their clinical values for CHD management. METHODS Totally, 141 CHD patients and 70 controls were enrolled. Lnc-HULC and miR-128-3p in peripheral blood mononuclear cells were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Serum inflammatory cytokines and cell adhesion molecules were further determined by enzyme-linked immunosorbent assay (ELISA) in CHD patients. RESULTS Lnc-HULC was upregulated, while miR-128-3p was downregulated in CHD patients than in controls (both P < 0.001). The ROC curve further displayed that lnc-HULC (AUC: 0.906, 95% CI: 0.867-0.945) and miR-128-3p (AUC: 0.814, 95% CI: 0.756-0.873) had the potential of discriminating CHD patients from controls. Regarding the correlation between lnc-HULC and miR-128-3p, lnc-HULC was negatively associated with miR-128-3p in CHD patients (rs = - 0.307, P < 0.001), but this association was not observed in controls (rs = - 0.155, P = 0.199). Furthermore, it was discovered that upregulated lnc-HULC was associated with elevated blood lipid levels (TG, LDL-C), inflammatory cytokines (interleukin (IL)-1β, IL-17A), cell adhesion molecules (VCAM-1), and Gensini score (all P < 0.05) in CHD patients. Meanwhile, miR-128-3p was negatively associated with blood lipid level (LDL-C), inflammatory cytokines (TNF-α, IL-1β, IL-6), cell adhesion molecules (VCAM-1, ICAM-1), and Gensini score (all P < 0.05) in CHD patients. CONCLUSION Lnc-HULC and its target miR-128-3p relate to lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in CHD patients.
Collapse
|
12
|
Modulation of Vascular Smooth Muscle Cell Multiplication, Apoptosis, and Inflammatory Damage by miR-21 in Coronary Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6942699. [PMID: 34873417 PMCID: PMC8643245 DOI: 10.1155/2021/6942699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
This study is aimed at exploring the role and potential molecular mechanism of microRNA-21 (miR-21) in coronary heart disease (CHD). RT-qPCR analysis was conducted to detect the expression of miR-21, Sprouty 1 (SPRY1), and connexin 43 (CX43). The protein expression of SPRY1 and CX43 was measured by western blot. ELISA was performed for measuring inflammatory factors, including intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 beta (IL-1β). The target relationship between miR-21 and SPRY1 was determined by dual-luciferase reporter assay. Cell multiplication and apoptosis were detected using CCK-8 assay and flow cytometry analysis, respectively. Our results indicated that miR-21, CX43, and the level of inflammatory cytokines including ICAM-1 and IL-1β were upregulated, while SPRY1 was downregulated in blood samples from CHD patients compared with the controls. Besides, miR-21 directly targeted SRPY-1. miR-21 could suppress SPRY1 expression and enhance CX43 expression in VSMCs. Moreover, miR-21 accelerated cell multiplication and attenuated cell apoptosis in VSMCs. Collectively, these findings suggested that miR-21 could effectively elevate VSMC multiplication and repress apoptosis by targeting SPRY1 in CHD, providing a potential target for therapeutic strategy of CHD.
Collapse
|
13
|
Zhan H, Huang F, Niu Q, Jiao M, Han X, Zhang K, Ma W, Mi S, Guo S, Zhao Z. Downregulation of miR-128 Ameliorates Ang II-Induced Cardiac Remodeling via SIRT1/PIK3R1 Multiple Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889195. [PMID: 34646427 PMCID: PMC8505057 DOI: 10.1155/2021/8889195] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Heqin Zhan
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qian Niu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Department of Pharmacy, Sanmenxia Central Hospital, Sanmenxia, Henan 472000, China
| | - Mingli Jiao
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xumeng Han
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - WenZhuo Ma
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Shan Mi
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shiyu Guo
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
14
|
Zuo J, Xu M, Wang D, Bai W, Li G. Role of competitive endogenous RNA networks in the pathogenesis of coronary artery disease. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1234. [PMID: 34532371 PMCID: PMC8421985 DOI: 10.21037/atm-21-2737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Background The present study aimed to construct a network of competitive endogenous RNAs (ceRNAs) related to the pathogenesis of coronary artery disease (CAD), to provide a novel rationale for CAD treatment. Methods Bioinformatics methods were applied to screen for differentially expressed long non-coding RNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs) from the GSE68506, GSE59421, and GSE20129 datasets of the Gene Expression Omnibus (GEO) database. The miRcode database was used to predict lncRNA-binding miRNAs. The miRTarBase, miRDB, and TargetScan databases were used to predict the target genes of these miRNAs. An mRNA-miRNA-lncRNA ceRNA network of CAD was established. Results Between the CAD and normal control groups there were 264 DElncRNAs, 106 DEmiRNAs, and 1,879 DEmRNAs. We screened these differentially expressed gens (DEGs) respectively. There were 21 DElncRNAs, 13 DEmiRNAs, and 143 DEmRNAs in the ceRNA network by using Cytoscape application. The DEmRNAs were involved in the PI3K-Akt signaling pathway and the NF-κB signaling pathway. The key genes in the protein-protein interaction (PPI) network were HSP90AA1, CDKN1A, MCL1, MDM2, MAPK1, ABL1, LYN, CRK, CDK9, and FAS. Conclusions The ceRNA network constructed in this study identified new candidate molecules for the treatment of CAD, providing some more comprehensive and higher-quality choices for the target treatment of CAD.
Collapse
Affiliation(s)
- Jiebin Zuo
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Mengxi Xu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Danning Wang
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Weizhe Bai
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Gang Li
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
15
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Li L, Ma X, Zeng L, Pandey S, Wan R, Shen R, Zhang Q. Impact of homocysteine levels on clinical outcome in patients with acute ischemic stroke receiving intravenous thrombolysis therapy. PeerJ 2020; 8:e9474. [PMID: 32728492 PMCID: PMC7357565 DOI: 10.7717/peerj.9474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background The purpose of this study was to retrospectively assess the potential correlation between clinical outcomes and homocysteine (Hcy) levels in acute ischemic stroke (AIS) patients after recombinant tissue plasminogen activator (rtPA) treatment. Methods AIS patients treated by rtPA were enrolled between September 2018 and March 2019 in the Stroke Center (Department of Neurology and Neurosurgery), Shanghai Tenth People’s Hospital, Tongji University School of Medicine. Demographics, baseline and clinical characteristics, and modified Rankin Scale (mRS) score after three months from the onset were retrospectively analyzed. Then we compared data about demographics, baseline and clinical characteristics between patients with favorable (mRS score 0–2) and unfavorable (mRS score 3–6) outcomes. Results Among 141 patients, 36 patients had poor outcome, for an incidence of 25.53%. Univariate analysis showed that higher Hcy levels (OR = 1.07, 95% CI [1.02–1.12]), older age (OR = 1.06, 95% CI [1.02–1.10]), longer door to needle time (DNT) (OR = 1.03, 95% CI [1.01–1.05]), higher D-Dimer levels (OR = 1.33, 95% CI [1.03–1.71]), and higher National Institutes of Health Stroke Scale (NIHSS) score before treatment (OR = 1.21, 95% CI [1.08–1.35]) were each associated with poor outcome. Also, without internal carotid artery plaque (OR = 0.30, 95% CI [0.10–0.92]) showed a protective effect on patients’ clinical outcome. Patients with higher levels of Hcy decline also showed an increased risk of poor outcome for AIS patients obtaining rtPA treatment (Non-adjusted: OR = 1.07, 95% CI [1.02–1.12]; Adjust model I adjusts for demographics (age, male): OR = 1.06, 95% CI [1.02–1.11]; Adjust model II adjusts for hospital care factors (onset to treatment, DNT): OR = 1.08, 95% CI [1.03–1.13]; Adjust model III adjusts for health and stroke factors (INR, D-Dimer, HGB, NIHSS score before treatment, smoking, drinking, hypertension, diabetes, coronary disease, hyperlipidemia, previous stroke, atrial fibrillation, hemorrhagic transformation, internal carotid artery plaque): OR = 1.06, 95% CI [1.02–1.11]). The results are very stable in all three models constructed. Conclusion The results of this study indicate that increased Hcy level independently predicts unfavorable outcome in AIS patients accepting thrombolytic therapy. However, the contribution of Hcy to the outcome, although significant, is relatively small and perhaps not clinically significant when all the other confounders are considered.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoye Ma
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sajan Pandey
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ronghao Wan
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Shen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Quanbin Zhang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Lin Y, Dan H, Lu J. Overexpression of microRNA-136-3p Alleviates Myocardial Injury in Coronary Artery Disease via the Rho A/ROCK Signaling Pathway. Kidney Blood Press Res 2020; 45:477-496. [PMID: 32434208 DOI: 10.1159/000505849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/08/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Coronary artery disease (CAD) is a cardiovascular disease that poses a fatal threat to human health, and the identification of potential biomarkers may help to delineate its pathophysiological mechanisms. Accumulating evidence has implicated microRNAs (miRNAs) in the pathogenesis and development of cardiovascular diseases. The present study aims to identify the expression of miRNA-136-3p (miR-136-3p) in CAD and further investigate its functional relevance in myocardial injury both in vitro and in vivo. METHODS Initially, CAD models were induced in rats by high-fat diet and intraperitoneal injection of pituitrin. Next, the effect of overexpressed miR-136-3p on cardiac function and pathological damage in myocardial tissue, cardiomyocyte apoptosis, oxidative stress and inflammatory response were assessed in CAD rats. Rat cardiac microvascular endothelial cells (CMECs) were isolated and cultured by the tissue explant method, and the CMEC injury model was induced by homocysteine (HCY). The function of miR-136-3p in vitro was further evaluated. RESULTS miR-136-3p was poorly expressed in the myocardial tissue of CAD rats and CMEC injury models. In vivo assays indicated that overexpressed miR-136-3p could improve cardiac function and alleviate pathological damage in myocardial tissue, accompanied by reduced oxidative stress and inflammatory response. Moreover,in vitro assays suggested that overexpression of miR-136-3p enhanced proliferation and migration while inhibiting apoptosis of HCY-stressed CMECs. Notably, we revealed that EIF5A2 was a target gene of miR-136-3p, and miR-136-3p inhibited EIF5A2 expression and activation of the Rho A/ROCK signaling pathway. CONCLUSION In conclusion, the overexpression of miR-136-3p could potentially impede myocardial injury in vitro and in vivo in CAD through the blockade of the Rho A/ROCK signaling pathway, highlighting a potential miR-136-3p functional relevance in the treatment of CAD.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Jinguo Lu
- Department of Cardiology, Hospital of Traditional Chinese and Western Medicine in Hubei Province, Wuhan, China,
| |
Collapse
|
19
|
Zhan B, Xu Z, Zhang Y, Wan K, Deng H, Wang D, Bao H, Wu Q, Hu X, Wang H, Huang X, Cheng X. Nicorandil reversed homocysteine-induced coronary microvascular dysfunction via regulating PI3K/Akt/eNOS pathway. Biomed Pharmacother 2020; 127:110121. [PMID: 32407984 DOI: 10.1016/j.biopha.2020.110121] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Nicorandil exerts a protective effect against coronary microvascular dysfunction in acute myocardial infarction (AMI) patients. However, the mechanism and effect of nicorandil in hyperhomocysteinemia (HHcy) AMI patients remain unclear. METHODS C57/BL6 mice with mild to moderate HHcy and human coronary artery endothelial cells (HCAECs) cotreated with HHcy (1 mmol/L) for 24 h and hypoxia for 6 h were selected as models. Small animal ultrasound detection was used to compare cardiac function. CD31 immunofluorescence staining and tomato lectin staining were used to assess the number of microcirculation changes in vivo. MTT, tube formation and western blotting assays were used to evaluate the effect of nicorandil on HCAECs and the PI3K/Akt/eNOS pathway. RESULTS The results showed that nicorandil improved cell viability and p-PI3K/PI3K, p-Akt/Akt, and p-eNOS/eNOS expression in the vitro HHcy and hypoxia models. The beneficial effects of nicorandil on HCAECs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the nitric oxide synthase (NOS) inhibitor L-NAME. In vivo, nicorandil improved the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the post-HHcy + MI model, and the levels of CD31 and tomato lectin expression were higher in the nicorandil treatment group. The effectiveness of nicorandil was inhibited in the PI3K and L-NAME groups. CONCLUSION The results suggest that nicorandil improves Hcy-induced coronary microvascular dysfunction through the PI3K/Akt/eNOS signalling pathway.
Collapse
Affiliation(s)
- Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Zongyu Xu
- Department of Cardiology, Huangpu Branch of the Ninth People's Hospital Affiliated to the Medical College of Shanghai Jiaotong University, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, China
| | - Kefei Wan
- Clinical Medicine, Medical College of Nanchang University, China
| | - Hanyue Deng
- Clinical Medicine, Medical College of Nanchang University, China
| | - Dimeng Wang
- Clinical Medicine, Medical College of Nanchang University, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Xiaohong Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology Lewis Katz School of Medicine, Temple University, 3500 Broad Street, Philadelphia, PA, 19140, United States
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
20
|
Zhang Y, Zhu M, Zhang F, Zhang S, Du W, Xiao X. Integrating Pharmacokinetics Study, Network Analysis, and Experimental Validation to Uncover the Mechanism of Qiliqiangxin Capsule Against Chronic Heart Failure. Front Pharmacol 2019; 10:1046. [PMID: 31619994 PMCID: PMC6759796 DOI: 10.3389/fphar.2019.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: The purpose of this study was to propose an integrated strategy for investigating the mechanism of Qiliqiangxin capsule (QLQX) to treat chronic heart failure (CHF). Methods: Pharmacokinetics analysis was performed to screen the active components of QLQX using high-performance liquid chromatography-tandem mass spectrometry techniques. We then constructed the component-target network between the targets of active components in QLQX and CHF using Cytoscape. A network analysis, including topological parameters, clustering, and pathway enrichment, was established to identify the hub targets and pathways. Finally, some of the predicted hub targets were validated experimentally in human cardiac microvascular endothelial cell (HCMEC). Results: We identified 29 active components in QLQX, and 120 consensus potential targets were determined by the pharmacokinetics analysis and network pharmacology approach. Further network analysis indicated that 6 target genes, namely, VEGFA, CYP1A1, CYP2B6, ATP1A1, STAT3, and STAT4, and 10 predicted functional genes, namely, KDR, FLT1, NRP2, JAK2, EGFR, IL-6, AHR, ATP1B1, JAK1, and HIF1A, may be the primary targets regulated by QLQX for the treatment of CHF. Among these targets, VEGFA, IL-6, p-STAT3, and p-JAK2 were selected for validation in the HCMEC. The results indicated that QLQX may inhibit inflammatory processes and promote angiogenesis in CHF via the JAK/STAT signaling pathway. Conclusions: This study provides a strategy for understanding the mechanism of QLQX against CHF by combining pharmacokinetics study, network pharmacology, and experimental validation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingdan Zhu
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fugeng Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Shaoqiang Zhang
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wuxun Du
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Association between epicardial adipose tissue and adverse outcomes in coronary heart disease patients with percutaneous coronary intervention. Biosci Rep 2019; 39:BSR20182278. [PMID: 30979830 PMCID: PMC6504663 DOI: 10.1042/bsr20182278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
We assessed the relationship between the volume of epicardial adipose tissue and long-term outcomes in patients with coronary heart disease (CHD) undergoing percutaneous coronary intervention (PCI). The patients with CHD were followed for at least 2 years after PCI. The epicardial adipose tissue volume (EATV) was measured using multi-slice computed tomography. Cox regression analysis was used to examine the relationship between EATV and clinical outcome. In this study, 500 patients were enrolled and followed up for a median of 25.2 months. The incidence of adverse cardiovascular events was 12.4%. No significant differences were observed in age, sex, proportion of patients with hypertension or diabetes, smoking, drinking, total cholesterol, triglyceride, high-density lipoprotein, or unstable angina pectoris among different EATV quartiles (P>0.05). The EATV was associated with body mass index (P<0.0001), low-density lipoprotein level (P=0.039), high-sensitivity C-reactive protein level (P<0.001), uric acid level (P=0.004), adiponectin level (P<0.001), and left ventricular ejection fraction (P<0.001). Kaplan–Meier analysis indicated a significant difference in survival rate of patients in EATV quartile 1 versus 4 (P=0.019). After adjusting for confounding factors, EATV quartile 4 (>216.15 cm3) was still associated with adverse cardiovascular outcomes (HR = 1.98, 95% CI: 1.15–4.47, P=0.023) compared with quartile 1 (<101.58 cm3). Our data suggest that EATV is an independent predictor of long-term major adverse cardiovascular events in CHD patients after PCI. Therefore, assessment of EATV using multi-slice computed tomography may contribute to risk stratification in these patients.
Collapse
|