1
|
Jeepipalli S, Gurusamy P, Luz Martins AR, Colella E, Nadakuditi SR, Desaraju T, Yada A, Onime J, William J, Bhattacharyya I, Chan EKL, Kesavalu L. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632435. [PMID: 39829929 PMCID: PMC11741372 DOI: 10.1101/2025.01.10.632435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health. Many factors modulate the TLR-mediated signaling pathway, including specific miRNAs. The present study was designed to characterize the function of TLR2/4 signaling to the miRNA profile after polybacterial infection with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in C57BL6/J wild-type, TLR2 -/- , and TLR4 -/- mice (n=16/group) using RT-qPCR. The selection of 15 dominant miRNAs for RT-qPCR analysis was based on prior NanoString global miRNA expression profiling in response to polymicrobial and monobacterial infection. Polybacterial infections established gingival colonization in wild-type, TLR2 -/- and TLR4 -/- mice with induction of bacterial-specific IgG. A significant reduction in alveolar bone resorption (ABR) and gingival inflammation was observed in the mandibles of TLR2/4 -/- mice compared to C57BL6/J wild-type mice ( p <0.0001). Periodontal bacteria disseminated from gingival tissue to the multiple organs in wild-type and TLR2 -/- mice (heart, lungs, brain, kidney) and limited to heart ( F. nucleatum ), lungs ( P. gingivalis ), kidney ( T. forsythia ) in TLR4 -/- mice. The diagnostic potential of miRNAs was assessed by receiver operating characteristic (ROC) curves. Among 15 miRNAs, three were upregulated in C57BL6/J wild-type mice, two in TLR2 -/- , and seven in TLR4 -/- mice. Notably, the anti-inflammatory miR-146a-5p was consistently upregulated in all the mice. Additionally, miR-15a-5p was upregulated in wild-type and TLR2 -/- mice. let-7c-5p was upregulated in TLR4 -/- mice and downregulated in the wild-type mice. Multi-species oral bacterial infection alters the TLR2/4 signaling pathways by modulating the expression of several potential biomarker miRNAs in periodontium. IMPORTANCE Periodontitis is the most prevalent chronic immuno-infectious multispecies dysbiotic disease of the oral cavity. The Toll-like receptors (TLR) provide the first line of defense, one of the best-characterized pathogens-detection systems and play a vital role in recognizing multiple microbial products. Multispecies infection with periodontal bacteria S. gordonii, F. nucleatum, P. gingivalis, T. denticola, and T. forsythia induced gingival inflammation, alveolar bone resorption (ABR) and miRNA expression in the C57BL6/J wild-type mice and whereas infection did not increase significant ABR in the TLR2/4 deficient mice. Among the 15 miRNAs investigated, miR-146a - 5p, miR-15a-5p were upregulated in wild-type and TLR2 -/- mice and miR-146a-5p, miR-30c-5p, let-7c-5p were upregulated in the TLR4 -/- mice compared to sham-infected controls. Notably, inflammatory miRNA miR-146a-5p was upregulated uniquely among the three different infection groups. The upregulated miRNAs (miR-146a, miR-15-a-5p, let-7c-5p) and downregulated miRNAs could be markers for TLRs-mediated induction of periodontitis.
Collapse
|
2
|
Chen Y, Luo YM, Li D, Liu H, Luo X, Zhang X, Ling Y, Ouyang W. Characteristics of Myocardial Structure and Central Carbon Metabolism during the Early and Compensatory Stages of Cardiac Hypertrophy. J Proteome Res 2024; 23:4229-4241. [PMID: 39178178 DOI: 10.1021/acs.jproteome.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Cardiac hypertrophy is a classical forerunner of heart failure and myocardial structural and metabolic remodeling are closely associated with cardiac hypertrophy. We aim to investigate the characteristics of myocardial structure and central carbon metabolism of cardiac hypertrophy at different stages. Using echocardiography and pathological staining, early and compensatory cardiac hypertrophy were respectively defined as within 7 days and from 7 to 14 days after transverse aortic constriction (TAC) in mice. Among mass-spectrometry-based metabolomics, we identified 45 central carbon metabolites. Differential metabolite analysis showed that six metabolites, including citrate, cis-aconitate and so on, decreased significantly on day 1 after TAC. Ten metabolites, including l-lactate, (S)-2-hydroxyglutarate and so on, were obviously changed on days 10 and 14. Pathway analysis showed that these metabolites were involved in seven metabolic pathways, including carbohydrates, amino acids and so on. Western blot showed the expression of ATP-citrate lyase, malate dehydrogenase 1 and lactate dehydrogenase A in myocardium changed markedly on day 3, while the phosphorylation level of AMP-activated protein kinase did not show significantly difference. We hope our research will promote deeper understanding and early diagnosis of cardiac hypertrophy in clinical practice. All raw data were deposited in MetaboLights (MTBLS10555).
Collapse
Affiliation(s)
- Yuan Chen
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
- Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Yu-Mei Luo
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Dong Li
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
- Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Haiqiong Liu
- Department of Health Management, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Xiaoqin Luo
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Xinlei Zhang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Yuanna Ling
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Wei Ouyang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
4
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Tagashira H, Abe F, Sato-Numata K, Aizawa K, Hirasawa K, Kure Y, Iwata D, Numata T. Cardioprotective effects of Moku-boi-to and its impact on AngII-induced cardiomyocyte hypertrophy. Front Cell Dev Biol 2023; 11:1264076. [PMID: 38020917 PMCID: PMC10661958 DOI: 10.3389/fcell.2023.1264076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiomyocyte hypertrophy, induced by elevated levels of angiotensin II (AngII), plays a crucial role in cardiovascular diseases. Current therapeutic approaches aim to regress cardiac hypertrophy but have limited efficacy. Widely used Japanese Kampo medicines are highly safe and potential therapeutic agents. This study aims to explore the impact and mechanisms by which Moku-boi-to (MBT), a Japanese Kampo medicine, exerts its potential cardioprotective benefits against AngII-induced cardiomyocyte hypertrophy, bridging the knowledge gap and contributing to the development of novel therapeutic strategies. By evaluating the effects of six Japanese Kampo medicines with known cardiovascular efficiency on AngII-induced cardiomyocyte hypertrophy and cell death, we identified MBT as a promising candidate. MBT exhibited preventive effects against AngII-induced cardiomyocyte hypertrophy, cell death and demonstrated improvements in intracellular Ca2+ signaling regulation, ROS production, and mitochondrial function. Unexpectedly, experiments combining MBT with the AT1 receptor antagonist losartan suggested that MBT may target the AT1 receptor. In an isoproterenol-induced heart failure mouse model, MBT treatment demonstrated significant effects on cardiac function and hypertrophy. These findings highlight the cardioprotective potential of MBT through AT1 receptor-mediated mechanisms, offering valuable insights into its efficacy in alleviating AngII-induced dysfunction in cardiomyocytes. The study suggests that MBT holds promise as a safe and effective prophylactic agent for cardiac hypertrophy, providing a deeper understanding of its mechanisms for cardioprotection against AngII-induced dysfunction.
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumiha Abe
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Karen Aizawa
- School of Medicine, Akita University, Akita, Japan
| | - Kei Hirasawa
- School of Medicine, Akita University, Akita, Japan
| | | | - Daiki Iwata
- School of Medicine, Akita University, Akita, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
6
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
7
|
The expression profiling of serum miR-92a, miR-134 and miR-375 in acute ischemic stroke. Future Sci OA 2022; 8:FSO829. [PMID: 36874371 PMCID: PMC9979103 DOI: 10.2144/fsoa-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Aim To investigate the expression profile and diagnostic potentials of serum miR-92a, 134, and 375 in acute ischemic stroke (AIS) patients. Materials & methods Serum miRs-92a, 134, and 375 expression profiles were estimated by qRT-PCR for 70 AIS patients, age-matched with 25 control subjects. Their diagnostic potential was estimated by ROC analysis. Results Down-expression of miR-92a and miR-375 was found (56; 96.5%; -1.86 ± 1.36; and 53; 91.4%; -1.63 ± 1.38, respectively), while miR-134 showed a predominant upregulation (46; 79.3%; 0.853 ± 1.34). The diagnostic accuracy was the highest for miR-92a and miR-375 (area under the curve = 0.9183 and 0.898, respectively), with greater specificity for miR-375 (Sp = 96%). Conclusion Serum miR-92a and miR-375 could be promising early detective biomarkers of AIS.
Collapse
|
8
|
Matveeva NA, Baulina NM, Kiselev IS, Titov BV, Favorova OO. MiRNA miR-375 as a Multifunctional Regulator of the Cardiovascular System. Mol Biol 2022. [DOI: 10.1134/s0026893322020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Schuchardt EL, Miyamoto SD, Crombleholme T, Karimpour-Fard A, Korst A, Neltner B, Howley LW, Cuneo B, Sucharov CC. Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy-Identification of Differences and Predicting Demise. J Cardiovasc Dev Dis 2022; 9:37. [PMID: 35200691 PMCID: PMC8878714 DOI: 10.3390/jcdd9020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Twin-twin transfusion syndrome (TTTS) is a rare but serious cause of fetal cardiomyopathy with poorly understood pathophysiology and challenging prognostication. This study sought a nonbiased, comprehensive assessment of amniotic fluid (AF) microRNAs from TTTS pregnancies and associations of these miRNAs with clinical characteristics. For the discovery cohort, AF from ten fetuses with severe TTTS cardiomyopathy were selected and compared to ten normal singleton AF. Array panels assessing 384 microRNAs were performed on the discovery cohort and controls. Using a stringent q < 0.0025, arrays identified 32 miRNAs with differential expression. Top three microRNAs were miR-99b, miR-370 and miR-375. Forty distinct TTTS subjects were selected for a validation cohort. RT-PCR targeted six differentially-expressed microRNAs in the discovery and validation cohorts. Expression differences by array were confirmed by RT-PCR with high fidelity. The ability of these miRNAs to predict clinical differences, such as cardiac findings and later demise, was evaluated on TTTS subjects. Down-regulation of miRNA-127-3p, miRNA-375-3p and miRNA-886 were associated with demise. Our results indicate AF microRNAs have potential as a diagnostic and prognostic biomarker in TTTS. The top microRNAs have previously demonstrated roles in angiogenesis, cardiomyocyte stress response and hypertrophy. Further studies of the mechanism of actions and potential targets is warranted.
Collapse
Affiliation(s)
- Eleanor L. Schuchardt
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
- Department of Pediatrics, Rady Children’s Hospital, School of Medicine, University of California San Diego, San Diego, CA 92123, USA
| | - Shelley D. Miyamoto
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Timothy Crombleholme
- Fetal Care Center Dallas, Medical City Children’s Hospital, Dallas, TX 75230, USA;
| | - Anis Karimpour-Fard
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Armin Korst
- Research Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Bonnie Neltner
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Lisa W. Howley
- Division of Cardiology, Department of Pediatrics, The Children’s Heart Clinic, Children’s Minnesota, Minneapolis, MN 55404, USA;
| | - Bettina Cuneo
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
10
|
Yang Y, Wang Z, Yao M, Xiong W, Wang J, Fang Y, Yang W, Jiang H, Song N, Liu L, Qian J. Oxytocin Protects Against Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting PI3K/AKT Pathway via a lncRNA GAS5/miR-375-3p/KLF4-Dependent Mechanism. Front Pharmacol 2021; 12:766024. [PMID: 34925023 PMCID: PMC8678504 DOI: 10.3389/fphar.2021.766024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023] Open
Abstract
Cardiac hypertrophy is caused by cardiac volume or pressure overload conditions and ultimately leads to contractile dysfunction and heart failure. Oxytocin (OT), an endocrine nonapeptide, has been identified as a cardiovascular homeostatic hormone with anti-hypertrophic effects. However, the underlying mechanism remains elusive. In this study, we aimed to investigate the role and mechanism of OT in cardiac hypertrophy. The rats with cardiac hypertrophy induced by isoproterenol (ISO) were treated with or without oxytocin. Cardiac functional parameters were analyzed by echocardiography. The changes in cell surface area were observed using wheat germ agglutinin (WGA) or immunofluorescence staining. The expressions of cardiac hypertrophy markers (B-Natriuretic Peptide, BNP and β-myosin heavy chain, β-MHC), long non-coding RNA Growth (LcRNA) Arrest-Specific transcript 5 (lncRNA GAS5), miR-375-3p, and Kruppel-like factor 4 (Klf4) were detected by qRT-PCR. KLF4 protein and PI3K/AKT pathway related proteins were detected by Western blot. The interactions among lncRNA GAS5, miR-375-3p, and Klf4 were verified by dual-luciferase reporter assays. The findings showed that OT significantly attenuated cardiac hypertrophy, increased expressions of lncRNA GAS5 and KLF4, and decreased miR-375-3p expression. In vitro studies demonstrated that either knock-down of lncRNA GAS5 or Klf4, or over-expression of miR-375-3p blunted the anti-hypertrophic effects of OT. Moreover, down-regulation of lncRNA GAS5 promoted the expression of miR-375-3p and inhibited KLF4 expression. Similarly, over-expression of miR-375-3p decreased the expression of KLF4. Dual-luciferase reporter assays validated that lncRNA GAS5 could sponge miR-375-3p and Klf4 was a direct target gene of miR-375-3p. In addition, OT could inactivate PI3K/AKT pathway. The functional rescue experiments further identified OT regulated PI3K/AKT pathway through lncRNA GAS5/miR-375-3p/KLF4 axis. In summary, our study demonstrates that OT ameliorates cardiac hypertrophy by inhibiting PI3K/AKT pathway via lncRNA GAS5/miR-375-3p/KLF4 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengran Yao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Fang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixia Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ning Song
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lan Liu
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Jinqiao Qian,
| |
Collapse
|
11
|
Lou X, Wang D, Gu Z, Li T, Ren L. Mechanism of microRNA regulating the progress of atherosclerosis in apoE-deficient mice. Bioengineered 2021; 12:10994-11006. [PMID: 34775883 PMCID: PMC8809940 DOI: 10.1080/21655979.2021.2004979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs play important roles in atherosclerogenesis and are important novel pharmaceutic targets in atherosclerosis management. The whole spectrum of miRNAs dysregulation is still under intense investigation. This study intends to identify more novel dysregulated microRNAs in atherosclerotic mice. Half of eight-week-old male ApoE-/- mice were fed with high-fat-diet for 12 weeks as a model mice, and the remaining half of ApoE-/- mice were fed with a normal-diet as a control. A serum lipid profile was performed with ELISA kits, and atherosclerotic lesions were assessed. Aortic tissues were dissected for gene expression profiling using a Multispecies miRNA 4.0 Array, and significant differentially expressed miRNAs were identified with fold change ≥ 2 and p < 0.05. Real-time quantitative PCR was used to validate microarray gene expression data on selected genes. Predicted target genes were extracted and subjected to bioinformatic analysis for molecular function and pathway enrichment analysis. Model mice showed a 15.32% atherosclerotic lesion compared to 1.52% in the control group. A total of 25 significant differentially expressed microRNAs were identified, with most of them (24/25) downregulated. Real-time quantitative PCR confirmed the GeneChip data. Bioinformatic analysis of predicted target genes identified high involvement of the PI3K/Akt/mTOR signaling pathway. Microarray profiling of miRNAs in high-fat-fed Model mice identified 25 differentially expressed miRNAs, including some novel miRNAs, and the PI3K/Akt/mTOR signaling pathway is highly enriched in the predicted target genes. The novel identified dysregulated miRNAs suggest a broader spectrum of miRNA dysregulation in the progression of atherosclerosis and provide more research and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zehui Gu
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep 2021; 32:108087. [PMID: 32877669 PMCID: PMC7520916 DOI: 10.1016/j.celrep.2020.108087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
The heart manifests hypertrophic growth in response to high blood pressure, which may decompensate and progress to heart failure under persistent stress. Metabolic remodeling is an early event in this process. However, its role remains to be fully characterized. Here, we show that lactate dehydrogenase A (LDHA), a critical glycolytic enzyme, is elevated in the heart in response to hemodynamic stress. Cardiomyocyte-restricted deletion of LDHA leads to defective cardiac hypertrophic growth and heart failure by pressure overload. Silencing of LDHA in cultured cardiomyocytes suppresses cell growth from pro-hypertrophic stimulation in vitro, while overexpression of LDHA is sufficient to drive cardiomyocyte growth. Furthermore, we find that lactate is capable of rescuing the growth defect from LDHA knockdown. Mechanistically, lactate stabilizes NDRG3 (N-myc downregulated gene family 3) and stimulates ERK (extracellular signal-regulated kinase). Our results together suggest that the LDHA/NDRG3 axis may play a critical role in adaptive cardiomyocyte growth in response to hemodynamic stress. Dai et al. find that LDHA is significantly increased in the heart under hemodynamic stress, and cardiomyocyte-specific deletion of LDHA leads to severe cardiac dysfunction in response to pressure overload. LDHA may govern adaptive growth through elevation of NDRG3 and activation of ERK.
Collapse
|
13
|
Tantawy M, Chekka LM, Huang Y, Garrett TJ, Singh S, Shah CP, Cornell RF, Baz RC, Fradley MG, Waheed N, DeRemer DL, Yuan L, Langaee T, March K, Pepine CJ, Moreb JS, Gong Y. Lactate Dehydrogenase B and Pyruvate Oxidation Pathway Associated With Carfilzomib-Related Cardiotoxicity in Multiple Myeloma Patients: Result of a Multi-Omics Integrative Analysis. Front Cardiovasc Med 2021; 8:645122. [PMID: 33996940 PMCID: PMC8116486 DOI: 10.3389/fcvm.2021.645122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/20/2023] Open
Abstract
Multiple myeloma (MM) is the second most frequent hematologic cancer in the United States. Carfilzomib (CFZ), an irreversible proteasome inhibitor being used to treat relapsed and refractory MM, has been associated with cardiotoxicity, including heart failure. We hypothesized that a multi-omics approach integrating data from different omics would provide insights into the mechanisms of CFZ-related cardiovascular adverse events (CVAEs). Plasma samples were collected from 13 MM patients treated with CFZ (including 7 with CVAEs and 6 with no CVAEs) at the University of Florida Health Cancer Center. These samples were evaluated in global metabolomic profiling, global proteomic profiling, and microRNA (miRNA) profiling. Integrative pathway analysis was performed to identify genes and pathways differentially expressed between patients with and without CVAEs. The proteomics analysis identified the up-regulation of lactate dehydrogenase B (LDHB) [fold change (FC) = 8.2, p = 0.01] in patients who experienced CVAEs. The metabolomics analysis identified lower plasma abundance of pyruvate (FC = 0.16, p = 0.0004) and higher abundance of lactate (FC = 2.4, p = 0.0001) in patients with CVAEs. Differential expression analysis of miRNAs profiling identified mir-146b to be up-regulatein (FC = 14, p = 0.046) in patients with CVAE. Pathway analysis suggested that the pyruvate fermentation to lactate pathway is associated with CFZ-CVAEs. In this pilot multi-omics integrative analysis, we observed the down-regulation of pyruvate and up-regulation of LDHB among patients who experienced CVAEs, suggesting the importance of the pyruvate oxidation pathway associated with mitochondrial dysfunction. Validation and further investigation in a larger independent cohort are warranted to better understand the mechanisms of CFZ-CVAEs.
Collapse
Affiliation(s)
- Marwa Tantawy
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lakshmi Manasa Chekka
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Yimei Huang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Chintan P Shah
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Robert F Cornell
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Preston Research Building, Nashville, TN, United States
| | - Rachid C Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nida Waheed
- Department of Internal Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | | | - Lihui Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Keith March
- Division of Cardiovascular Medicine, Department of Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, FL, United States
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, FL, United States
| | - Jan S Moreb
- Novant Health Forsyth Medical Center, Hematology, Transplantation, and Cellular Therapy Division, Winston-Salem, NC, United States
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, Gainesville, FL, United States.,Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Li Y, Li X, Wang L, Han N, Yin G. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells. Biotechnol Lett 2020; 43:353-367. [PMID: 33128129 DOI: 10.1007/s10529-020-03013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
miRNAs have been pointed to play critical role in the development of congenital heart disease (CHD). miRNA-375-3p (miR-375-3p) was involved in cardiac dysfunction and cardiogenesis. However, no prior study had established a therapeutic role of miR-375-3p in CHD. We intended to investigate the effect and mechanism of miR-375-3p on apoptosis in hypoxic cardiomyocytes in vitro. Expression of miR-375-3p, forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) was detected using real-time quantitative PCR and western blot. Apoptosis was measured with MTT assay, flow cytometry and caspase-3 activity assay. The potential target binding between miR-375-3p and FOXP1/Bcl2l2 was predicted on DianaTools, and was validated by luciferase reporter assay and RNA pull-down assay. As a result, miR-375-3p was upregulated and FOXP1/Bcl2l2 was downregulated in maternal serum of women with fetal CHD and hypoxia-induced rat cardiomyocyte h9c2 cells. Hypoxia induced apoptosis rate elevation, caspase-3 activity promotion and viability inhibition in h9c2 cells; overexpression of miR-375-3p promoted, whereas knockdown of miR-375-3p antagonized hypoxia-induced effects in h9c2 cells. In addition, miR-375-3p was validated to negatively regulate FOXP1 and Bcl2l2 expression through target binding, and silencing of FOXP1 and Bcl2l2 could independently abate the anti-apoptosis role of miR-375-3p knockdown in hypoxic h9c2 cells. Collectively, blocking miR-375-3p suppressed hypoxia-evoked apoptosis of cardiomyocytes by targeting and upregulating FOXP1 and Bcl2l2. Our results might suggest maternal serum miR-375-3p as a potential biomarker for prenatal detection of fetal CHD.
Collapse
Affiliation(s)
- Yuefan Li
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Xiaofei Li
- Department of Acupuncture, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Ling Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Na Han
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China
| | - Gang Yin
- Department of Cardiology, Qingdao Central Hospital, No. 127, Siliu South Road, Qingdao, 266042, Shandong, China.
| |
Collapse
|
15
|
Zhang H, Tian Y, Liang D, Fu Q, Jia L, Wu D, Zhu X. The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Med Sci Monit 2020; 26:e920557. [PMID: 32186283 PMCID: PMC7102408 DOI: 10.12659/msm.920557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Doxorubicin-induced myocardial toxicity is associated with oxidative stress, cardiomyocyte, apoptosis, and loss of contractile function. Previous studies showed that microRNA-375 (miR-375) expression was increased in mouse models of heart failure and clinically, and that inhibition of miR-375 reduced inflammation and increased survival of cardiomyocytes. This study aimed to investigate the effects and mechanisms of inhibition of miR-375 in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro. MATERIAL AND METHODS The mouse model of doxorubicin-induced cardiac toxicity was developed using an intraperitoneal injection of doxorubicin (15 mg/kg diluted in 0.9% saline) for eight days. Treatment was followed by a single subcutaneous injection of miR-375 inhibitor. H9c2 rat cardiac myocytes and adult murine cardiomyocytes (AMCs) were cultured in vitro and treated with doxorubicin, with and without pretreatment with miR-375 inhibitor. RESULTS Doxorubicin significantly upregulated miR-375 expression in vitro and in vivo, and inhibition of miR-375 re-established myocardial redox homeostasis, prevented doxorubicin-induced oxidative stress and cardiomyocyte apoptosis, and activated the PDK1/AKT axis by reducing the direct binding of miR-375 to 3' UTR of the PDK1 gene. Inhibition of PDK1 and AKT abolished the protective role of miR-375 inhibition on doxorubicin-induced oxidative damage. CONCLUSIONS Inhibition of miR-375 prevented oxidative damage in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro through the PDK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Qiang Fu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Liqun Jia
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Dawei Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Xinyuan Zhu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| |
Collapse
|
16
|
Huang M, Yang B, Chen H, Zhang H, Wu Z, Ai H, Ren J, Huang L. The fine-scale genetic structure and selection signals of Chinese indigenous pigs. Evol Appl 2020; 13:458-475. [PMID: 31993089 PMCID: PMC6976964 DOI: 10.1111/eva.12887] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
Genome-wide SNP profiling has yielded insights into the genetic structure of China indigenous pigs, but has focused on a limited number of populations. Here, we present an analysis of population structure and signals of positive selection in 42 Chinese pig populations that represent the most extensive pig phenotypic diversity in China, using genotype data of 1.1 million SNPs on customized Beadchips. This unravels the fine-scale genetic diversity, phylogenic relationships, and population structure of these populations, which shows remarkably concordance between genetic clusters and geography with few exceptions. We also reveal the genetic contribution to North Chinese pigs from European modern pigs. Furthermore, we identify possible targets of selection in the Tibetan pig, including the well-characterized hypoxia gene (EPAS1) and several previously unrecognized candidates. Intriguingly, the selected haplotype in the EPAS1 gene is associated with higher hemoglobin contents in Tibetan pigs, which is different from the protective role of EPAS1 in the high-altitude adaptation in Tibetan dogs and their owners. Additionally, we present evidence for the causality between EDNRB variants and the two-end-black (TEB) coat color phenotype in all Chinese pig populations except the Jinhua pig. We hypothesize that distinct targets have been independently selected for the formation of the TEB phenotype in Chinese pigs of different geographic origins. This highlights the importance of characterizing population-specific genetic determinants for heritable phenotype in diverse pig populations.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
- Present address:
College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
17
|
MicroRNAs in Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20194714. [PMID: 31547607 PMCID: PMC6801828 DOI: 10.3390/ijms20194714] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.
Collapse
|
18
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|