1
|
Yan Q, Xun Y, Lei D, Zhai H. Tanshinone IIA protects motor neuron-like NSC-34 cells against lipopolysaccharide-induced cell injury by the regulation of the lncRNA TCTN2/miR-125a-5p/DUSP1 axis. Regen Ther 2023; 24:417-425. [PMID: 37727797 PMCID: PMC10506057 DOI: 10.1016/j.reth.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 09/21/2023] Open
Abstract
Background Tanshinone IIA (TSIIA) exerts a protective role in spinal cord injury (SCI). However, the mechanism of TSIIA activity in SCI remains to be elucidated. Methods Cell viability and apoptosis were gauged by CCK-8 assay and flow cytometry, respectively. The expression levels of lncRNA TCTN2, miR-125a-5p and DUSP1 were detected by qRT-PCR and western blot. Direct relationship between miR-125a-5p and TCTN2 or DUSP1 was verified by dual-luciferase reporter assay. Results In mouse NSC-34 cells, LPS reduced the expression of TCTN2. TSIIA alleviated cell injury induced by LPS and increased TCTN2 expression in LPS-exposed NSC-34 cells. TCTN2 was a downstream mediator of TSIIA activity. TCTN2 targeted miR-125a-5p, and TCTN2 over-expression attenuated LPS-induced cell damage in NSC-34 cells by down-regulating miR-125a-5p. TCTN2 functioned as a post-transcriptional regulator of DUSP1 expression through miR-125a-5p. DUSP1 was a functional target of miR-125a-5p in controlling NSC-34 cell injury induced by LPS. TSIIA inhibited miR-125a-5p expression and increased the level of DUSP1 protein in LPS-exposed NSC-34 cells. Conclusion Our study establishes a novel mechanism, the TCTN2/miR-125a-5p/DUSP1 axis, at least in part, for the protective activity of TSIIA in cell injury induced by LPS.
Collapse
Affiliation(s)
| | | | - Debao Lei
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| | - Hongyu Zhai
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| |
Collapse
|
2
|
Pacheco AIP. Cataractogenesis and molecular pathways, with reactive free oxygen species as a common pathway. Surv Ophthalmol 2023:S0039-6257(23)00144-3. [PMID: 37944599 DOI: 10.1016/j.survophthal.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Slowing down or stopping the natural process of cataractogenesis is certainly a challenge for those who today propose an option other than surgery. Addressing the same problem in different ways constitutes a new approach to solving what is today the number one cause of reversible blindness worldwide. The technological revolution, as well as the advances in the biological sciences, allows us to conceive mechanisms never thought of before to stop the process that, as a common pathway, constitutes opacification of the crystalline lens. A new dawn for cataracts is coming through molecular, newly-discovered mechanisms. Cataractogenesis and molecular pathways have reactive free oxygen species as a common pathway. Surgical removal is today's gold standard, but perhaps not for much longer.
Collapse
Affiliation(s)
- Arturo Iván Pérez Pacheco
- Department of Ophthalmology, The University of Medical Science, Ophthalmological General Teaching Center Hospital "Dr. Enrique Cabrera", Havana, Cuba.
| |
Collapse
|
3
|
Hong Y, Wu J, Sun Y, Zhang S, Lu Y, Ji Y. ceRNA network construction and identification of hub genes as novel therapeutic targets for age-related cataracts using bioinformatics. PeerJ 2023; 11:e15054. [PMID: 36987450 PMCID: PMC10040182 DOI: 10.7717/peerj.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Background The aim of this study is to investigate the genetic and epigenetic mechanisms involved in the pathogenesis of age-related cataract (ARC). Methods We obtained the transcriptome datafile of th ree ARC samples and three healthy, age-matched samples and used differential expression analyses to identify the differentially expressed genes (DEGs). The differential lncRNA-associated competing endogenous (ceRNA) network, and the protein-protein network (PPI) were constructed using Cytoscape and STRING. Cluster analyses were performed to identify the underlying molecular mechanisms of the hub genes affecting ARC progression. To verify the immune status of the ARC patients, immune-associated analyses were also conducted. Results The PPI network identified the FOXO1 gene as the hub gene with the highest score, as calculated by the Maximal Clique Centrality (MCC) algorithm. The ceRNA network identified lncRNAs H19, XIST, TTTY14, and MEG3 and hub genes FOXO1, NOTCH3, CDK6, SPRY2, and CA2 as playing key roles in regulating the pathogenesis of ARC. Additionally, the identified hub genes showed no significant correlation with an immune response but were highly correlated with cell metabolism, including cysteine, methionine, and galactose. Discussion The findings of this study may provide clues toward ARC pathogenic mechanisms and may be of significance for future therapeutic research.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Li Y, Deng X, Zhuang W, Li Y, Xue H, Lv X, Zhu S. Tanshinone IIA down-regulates -transforming growth factor beta 1 to relieve renal tubular epithelial cell inflammation and pyroptosis caused by high glucose. Bioengineered 2022; 13:12224-12236. [PMID: 35577353 PMCID: PMC9275952 DOI: 10.1080/21655979.2022.2074619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular disease caused by diabetes. Tanshinone IIA has been indicated to ameliorate streptozotocin-induced DN. This study explores the effect of tanshinone IIA on high glucose-induced renal tubular epithelial cell pyroptosis and inflammation. High glucose-stimulated HK-2 cells were used as the in-vitro model of DN and were treated with tanshinone IIA at concentrations of 1, 5, 10 μM for 24 h with the same doses of tolbutamide as the control. After tanshinone IIA treatment, HK-2 cells were transfected with pcDNA-transforming growth factor beta 1 (TGFB1) or sh-TGFB1 for 48 h. RT-qPCR was used to detect the mRNA levels of TNF-α, IL-6, IL-1β, and IL-18. Cell apoptosis and pyroptosis were detected by flow cytometry and cell immunofluorescence. Bioinformatics screening predicted that tanshinone IIA might be an effective component of Salvia miltiorrhiza Bunge (Labiatae) for the treatment of DN. Tanshinone IIA exerted a protective effect in the in-vitro model of DN by suppressing inflammation and pyroptosis via the TGFB1-dependent pathway. Tanshinone IIA inhibited high glucose-induced renal tubular epithelial cell inflammation and cell death through pyroptosis by regulating TGFB1, indicating the therapeutic potential of tanshinone IIA for DN treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xu Deng
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Wenlong Zhuang
- Department of General Surgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yong Li
- Department of General Surgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Hui Xue
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xin Lv
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Shuqin Zhu
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| |
Collapse
|
5
|
The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int J Mol Sci 2022; 23:ijms23063141. [PMID: 35328560 PMCID: PMC8954097 DOI: 10.3390/ijms23063141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemia–reperfusion injury is a key clinical problem of transplantology. Current achievements in optimizing organ rinse solutions and storage techniques have significantly influenced the degree of graft damage and its survival after transplantation. In recent years, intensive research has been carried out to maintain the viability of tissues and organs outside the integral environment of the body. Innovative solutions for improving the biochemical functions of the stored organ have been developed. The article discusses directions for modifying preservation solutions with antioxidants. Clinical and experimental studies aimed at optimizing these fluids, as well as perfusion and organ preservation techniques, are presented.
Collapse
|
6
|
Xu JJ, Cui J, Lin Q, Chen XY, Zhang J, Gao EH, Wei B, Zhao W. Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury. Int J Cardiol 2021; 342:82-93. [PMID: 34403762 DOI: 10.1016/j.ijcard.2021.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Nrf2, the master gene transcriptor of antioxidant proteins, and SIRT1, the unique Class III histone deacetylase of sirtuins, have been involved in protecting myocardial ischemia/reperfusion (MI/R) injury. However, whether the protective effect of SIRT1 is directly related to the deacetylation of Nrf2 in the pathology of MI/R remains to be investigated. The current study was designed to evaluate the regulation of Nrf2 deacetylation and transcriptional activity by SIRT1 in MI/R. Hypoxia/reoxygenation (H/R) cardiomyocytes and MI/R mice were used to assess the role of SIRT1 in Nrf2 activation. Oxidative stress, cardiac function, LDH release, ROS and infarct size were also evaluated. We found that Nrf2 physically interacted with SIRT1 not only in normal and H/R cardiomyocytes in vitro, but also in Sham or I/R hearts in vivo. Adenovirus induced SIRT1 overexpression resulted in protected H/R induced cell death, accompanied by declined LDH release. Through MI/R in vivo, cardiac overexpression of SIRT1 led to ameliorated cardiac function and infarct size, as well as the decreased cardiac oxidative stress. Notably, such beneficial actions of SIRT1 were blocked by the Nrf2 silence. Mechanically, acetylation of Nrf2 was significantly decreased by SIRT1 overexpression in cardiomyocytes or in whole hearts, which upregulated the downstream signaling pathway of Nrf2. Taken together, we uncovered a clue, for the first time that SIRT1 physically interacts with Nrf2. The cardioprotective effect of SIRT1 overexpression against MI/R is associated with the increased Nrf2 deacetylation and activity. These findings have offered a direct proof and new perspective of post-translational modification in the understanding of oxidative stress and MI/R treatment.
Collapse
Affiliation(s)
- Jia-Jia Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Jing Cui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Qiao Lin
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Xiu-Ying Chen
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Er-He Gao
- Center for Translational Medicine, Temple University School of Medicine, MERB, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
7
|
Guan R, Yao H, Li Z, Qian J, Yuan L, Cai Z, Ding M, Liu W, Xu J, Li Y, Sun D, Wang J, Lu W. Sodium Tanshinone IIA Sulfonate Attenuates Cigarette Smoke Extract-Induced Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Alveolar Epithelial Cells by Enhancing SIRT1 Pathway. Toxicol Sci 2021; 183:352-362. [PMID: 34515779 DOI: 10.1093/toxsci/kfab087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emphysema is one of the most important phenotypes for chronic obstructive pulmonary disease (COPD). Apoptosis in alveolar epithelial cells (AECs) causes the emphysematous alterations in the smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to attenuate mitochondrial dysfunction, oxidative stress, and to modulate apoptosis. It has been shown that sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, protects against cigarette smoke (CS)-induced emphysema/COPD in mice. However, the mechanisms underlying these findings remain unclear. Here, we investigate whether and how STS attenuates AEC apoptosis via a SIRT1-dependent mechanism. We found that STS treatment decreased CS extract (CSE)-induced apoptosis in human alveolar epithelial A549 cells. STS reduced oxidative stress, improved mitochondrial function and mitochondrial membrane potential (ΔΨm), and restored mitochondrial dynamics-related protein expression. Moreover, STS promoted mitophagy, and increased oxidative phosphorylation protein levels (complexes I-IV) in CSE-stimulated A549 cells. The protective effects of STS were associated with SIRT1 upregulation, because SIRT1 inhibition by EX 527 significantly attenuated or abolished the ability of STS to reverse the CSE-induced mitochondrial damage, oxidative stress, and apoptosis in A549 cells. In conclusion, STS ameliorates CSE-induced AEC apoptosis by improving mitochondrial function and reducing oxidative stress via enhancing SIRT1 pathway. These findings provide novel mechanisms underlying the protection of STS against CS-induced COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
8
|
Song B, Wei D, Yin G, Song X, Wang S, Jia S, Zhang J, Li L, Wu X. Critical role of SIRT1 upregulation on the protective effect of lncRNA ANRIL against hypoxia/reoxygenation injury in H9c2 cardiomyocytes. Mol Med Rep 2021; 24:547. [PMID: 34080028 PMCID: PMC8185511 DOI: 10.3892/mmr.2021.12186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/02/2021] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of long non-coding RNA (IncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is associated with the risk of myocardial infarction (MI). Therefore, the present study aimed to determine the mechanisms underlying this association, which is currently poorly understood, to the best of our knowledge. The current study used an in vitro myocardial ischemia and reperfusion (MI/R) model, in which H9c2 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R), which demonstrated that ANRIL expression was downregulated and that ANRIL positively regulated sirtuin 1 (SIRT1) expression following H/R injury. Subsequently, it was demonstrated that ANRIL upregulated SIRT1 expression by sponging microRNA-181a (miR-181a). In addition, ANRIL overexpression reduced lactate dehydrogenase release and apoptosis of H9c2 cardiomyocytes exposed to H/R, indicating that ANRIL prevented H/R-induced cardiomyocyte injury. Moreover, both miR-181a overexpression and SIRT1 knockdown significantly decreased the protective effects of ANRIL on H/R-induced cardiomyocyte injury, thus demonstrating that SIRT1 upregulation via sponging miR-181a is a critical mechanism that mediates the function of ANRIL. These results provided a novel mechanistic insight into the role of ANRIL in H/R-injured cardiomyocytes and suggested that the ANRIL/miR-181a/SIRT1 axis may be a therapeutic target for reducing MI/R injury.
Collapse
Affiliation(s)
- Binghui Song
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Dongmei Wei
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Gang Yin
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xiaoguang Song
- Department of Research Section, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Shuqing Wang
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Shanshan Jia
- Department of GI Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Jidong Zhang
- Department of GI Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Longhu Li
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xiaofei Wu
- Department of Statistics Section, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| |
Collapse
|
9
|
Juan L, Diandian W, Jianfeng W, Ning L, Yuchen F, Na L, Sijie Z, Kun L, Fengyuan S. Efficient Anticancer Effect on Choroidal Melanoma Cells Induced by Tanshinone IIA Photosensitization. Photochem Photobiol 2021; 97:841-850. [PMID: 33580504 DOI: 10.1111/php.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Tanshinone IIA (TanIIA) has multiple biological functions and already been clinically used to treat many cardiovascular diseases. TanIIA is a photoactive molecule and can be excited by light to generate 3 TanIIA*. Generation of 3 TanIIA* by TanIIA photosensitization indicates that TanIIA may serve as a photosensitizer to bring photodynamic damage to organisms. Therefore, human choroidal melanoma MUM-2B cell was chosen as a superficial tumor model and the photodynamic effect of TanIIA on tumor cells was evaluated in this study. The results showed that TanIIA photosensitization could generate singlet oxygen in noncellular system. MTT, clone formation and wound-healing assays showed that the survival and migration of MUM-2B cells could be efficiently inhibited by TanIIA photosensitization. And then, laser confocal microscope and flow cytometry were used to try to elucidate related mechanism. It was found that TanIIA could pass through cellular membrane and preferably accumulate in nucleus. TanIIA photosensitization could efficiently induce cell apoptosis and necrosis, increase intracellular ROS levels, decrease mitochondria membrane potential, and lead to cell cycle arrest in G2/M phase. Our findings indicate that TanIIA photosensitization can exert remarkable toxicity on choroidal melanoma cells.
Collapse
Affiliation(s)
- Li Juan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Diandian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Wang Jianfeng
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Ning
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fan Yuchen
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Na
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhao Sijie
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Kun
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Sun Fengyuan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
10
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 2020; 127:110228. [DOI: 10.1016/j.biopha.2020.110228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023] Open
|
12
|
Ling J, Tan K, Lu L, Yang F, Luan L. lncRNA MIAT increases cell viability, migration, EMT and ECM production in age-related cataracts by regulating the miR-181a/CTGF/ERK signaling pathway. Exp Ther Med 2020; 20:1053-1063. [PMID: 32742346 PMCID: PMC7388250 DOI: 10.3892/etm.2020.8749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related cataract (ARC) is a common cause of blindness in elderly individuals. Long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) has been reported to participate in various biological processes in a number of diseases; however, the biological mechanism underlying MIAT during ARC is not completely understood. The expression levels of MIAT, microRNA (miR)-181a and connective tissue growth factor (CTGF) were measured by reverse transcription-quantitative PCR. The protein expression levels of CTGF, α-smooth muscle actin, fibronectin, collagen type I, ERK, phosphorylated (p)-ERK, mitogen-activated protein kinase (MEK), and p-MEK were detected by western blotting. Cell viability and migration were assessed using MTT and Transwell assays, respectively. Moreover, a dual-luciferase reporter assay was performed to investigate the interaction between miR-181a and MIAT or CTGF. MIAT and CTGF were upregulated, while miR-181a was significantly downregulated in ARC tissues compared with normal tissues. MIAT or CTGF knockdown decreased cell viability, migration, epithelial-mesenchymal transition and extracellular matrix production in TGF-β2-treated SRA01/04 cells. It was hypothesized that miR-181a may be sponged by MIAT and may target CTGF. Furthermore, the miR-181a inhibitor reversed the inhibitory effect of MIAT knockdown on the progression of TGF-β2-treated SRA01/04 cells. Moreover, CTGF knockdown also reversed MIAT overexpression-mediated progression of TGF-β2-treated SRA01/04 cells. In addition, MIAT and CTGF regulated the activity of the ERK signaling pathway. The results suggested that MIAT may regulate the progression of ARC via the miR-181a/CTGF/ERK signaling pathway, which may serve as a novel therapeutic target for ARC.
Collapse
Affiliation(s)
- Jiaojiao Ling
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ke Tan
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lu Lu
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fang Yang
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lan Luan
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
13
|
Li K, Zhao B, Wei D, Cui Y, Qian L, Wang W, Liu G. Long non-coding RNA ANRIL enhances mitochondrial function of hepatocellular carcinoma by regulating the MiR-199a-5p/ARL2 axis. ENVIRONMENTAL TOXICOLOGY 2020; 35:313-321. [PMID: 31670868 DOI: 10.1002/tox.22867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Although the roles of long non-coding RNA (lncRNA) ANRIL (Antisense non-coding RNA in the INK4A locus) have been established in various tumors, its roles in mitochondrial metabolic reprogramming of hepatocellular carcinoma (HCC) cells are still unclear. This work aims to explore lncRNA ANRIL roles in regulating the mitochondrial metabolic reprogramming of liver cancer cells. First, we found that lncRAN ANRIL expression was significantly increased in HCC tissues or cells compared with the normal adjacent tissues and normal tissues or cells. Functional experiment showed that overexpression of lncRNA ANRIL promoted mitochondrial function in HCC cells, evident by the increased mitochondrial DNA copy numbers, ATP (Adenosine triphosphate) level, mitochondrial membrane potential, and the expression levels of mitochondrial markers, while ANRIL knockdown exerted the opposite effects. Mechanistically, lncRNA ANRIL acted as a competing endogenous RNA to increase ARL2 (ADP-ribosylationfactor-like 2) expression via sponging miR-199a-5p. Notably, the miR-199a-5p/ARL2 axis is necessary for ANRIL-mediated promoting effects on HCC cell mitochondrial function. This work reveals a novel ANRIL-miR-199a-5p-ARL2 axis in HCC cell progression, which might provide potential targets for HCC treatment.
Collapse
Affiliation(s)
- Kun Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Bao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Diandian Wei
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Yixuan Cui
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Wenrui Wang
- School of Life Science and Technology, Bengbu Medical College, Bengbu, China
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
14
|
Wang R, Luo Z, Zhang H, Wang T. Tanshinone IIA Reverses Gefitinib-Resistance In Human Non-Small-Cell Lung Cancer Via Regulation Of VEGFR/Akt Pathway. Onco Targets Ther 2019; 12:9355-9365. [PMID: 31807016 PMCID: PMC6844214 DOI: 10.2147/ott.s221228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gefitinib-resistance is a primary obstacle for the treatment of non-small-cell lung cancer (NSCLC). It has been shown that tanshinone IIA (Tan IIA) could induce apoptosis of NSCLC cells. However, the role of combination of gefitinib with Tan IIA on gefitinib-resistance NSCLC cells remains unclear. Thus, this study aimed to investigate the role of combination on the proliferation, apoptosis and invasion of gefitinib-resistance NSCLC cells. Methods CCK-8, flow cytometric and transwell assays were applied to detect proliferation, apoptosis and invasion in gefitinib-resistance NSCLC cells, respectively. In addition, Western blotting assay was used to detect the expressions of p-EGFR, p-VEGFR2, and p-Akt in HCC827/gefitinib cells. Results In this study, Tan IIA enhanced the cytotoxic effect of gefitinib in gefitinib-resistance NSCLC cells. In addition, the inhibitory effects of gefitinib on the proliferation, migration and invasion of gefitinib-resistance NSCLC cells were enhanced in the presence of Tan IIA. Moreover, Tan IIA enhanced the pro-apoptotic effect of gefitinib in gefitinib-resistance NSCLC cells via increasing the level of cleaved caspase 3. Meanwhile, Tan IIA enhanced the sensitivity of HCC827/gefitinib cells to gefitinib via downregulation of the VEGFR2/Akt pathway. In vivo experiments further confirmed that combination of gefitinib with Tan IIA inhibited tumor growth in mouse xenograft model of HCC827/gefitinib. Conclusion We found that Tan IIA could enhance gefitinib sensitivity in gefitinib-resistance NSCLC cells. Therefore, combination of gefitinib with Tan IIA might be considered as a therapeutic approach for the treatment of gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Rui Wang
- Department of Respiratory Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Zhilin Luo
- Department of Respiratory Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Hong Zhang
- Department of Respiratory Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Tianhu Wang
- Department of Respiratory Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| |
Collapse
|