1
|
Chen G, Zhang Y, Zhou Y, Luo H, Guan H, An B. Targeting the mTOR Pathway in Hepatocellular Carcinoma: The Therapeutic Potential of Natural Products. J Inflamm Res 2024; 17:10421-10440. [PMID: 39659752 PMCID: PMC11630751 DOI: 10.2147/jir.s501270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Despite advancements in cancer treatment through surgery and drugs, hepatocellular carcinoma (HCC) remains a significant challenge, as reflected by its low survival rates. The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating the cell cycle, proliferation, apoptosis, and metabolism. Notably, dysregulation leading to the activation of the mTOR signaling pathway is common in HCC, making it a key focus for in-depth research and a target for current therapeutic strategies. This review focuses on the role of the mTOR signaling pathway and its downstream effectors in regulating HCC cell proliferation, apoptosis, autophagy, cell cycle, and metabolic reprogramming. Moreover, it emphasizes the potential of natural products as modulators of the mTOR signaling pathway. When incorporated into combination therapies, these natural products have been demonstrated to augment therapeutic efficacy and surmount drug resistance. These products target key signaling pathways such as mTOR signaling pathways. Examples include 11-epi-sinulariolide acetate, matrine, and asparagus polysaccharide. Their inhibitory effects on these processes suggest valuable directions for the development of more effective HCC therapeutic strategies. Various natural products have demonstrated the ability to inhibit mTOR signaling pathway and suppress HCC progression. These phytochemicals, functioning as mTOR signaling pathway inhibitors, hold great promise as potential anti-HCC agents, especially in the context of overcoming chemoresistance and enhancing the outcomes of combination therapies.
Collapse
Affiliation(s)
- Guo Chen
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ya Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yaqiao Zhou
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hao Luo
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hongzhi Guan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Baiping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
3
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
The Regulatory Roles of Polysaccharides and Ferroptosis-Related Phytochemicals in Liver Diseases. Nutrients 2022; 14:nu14112303. [PMID: 35684103 PMCID: PMC9182636 DOI: 10.3390/nu14112303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health burden with high morbidity and mortality worldwide. Liver injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma, without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment. Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation, and tumor killing. Recent studies have shown that many natural polysaccharides play protective roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably, ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemicals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related liver diseases. This review summarizes our current understanding of the mechanisms of ferroptosis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and phytochemicals in treating liver disease.
Collapse
|
5
|
Zong S, Ye H, Ye Z, He Y, Zhang X, Ye M. Polysaccharides from Lachnum sp. Inhibited colitis-associated colon tumorigenesis in mice by modulating fecal microbiota and metabolites. Int Immunopharmacol 2022; 108:108656. [PMID: 35390743 DOI: 10.1016/j.intimp.2022.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
It is still uncertain whether the consumption of Lachnum sp. polysaccharides (LEP) alleviates colorectal cancer (CRC) through the gut microbiota. In this study, our efforts are focused on the influence of LEP on CRC, intestinal barrier and inflammation, and fecal microbiota and the metabolites, in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. Results showed that LEP inhibited CRC mouse colon shortening and weight loss, decreased tumor incidence, restored intestinal barrier integrity, and reduced excessive inflammation. LEP consumption significantly altered microbiota overall structure and community, with reduced pernicious bacteria (such as Parabacteroides, Escherichia_Shigella, Desulfovibrio and Helicobacter), and increased beneficial bacterium (such as Alistipes, Alloprevotella and Ruminiclostridium). Fecal-metabolome profile indicated that a total of 43 metabolites were clearly changed, with 10 down-regulated and 33 up-regulated metabolites. In addition, short-chain fatty acids (SCFAs), including acetic acid, propionic acid and n-butyric acid, were significantly increased after LEP administration. Moreover, a strong correlation between the fluctuant gut microbiota and metabolites was found. These findings provided not only deeper insights into the responsibility of LEP for CRC alleviation, and but also the potential of LEP as a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Zong
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Hongling Ye
- School of Agriculture, Forestry and Fashion Technology, Anqing Vocational and Technical College, Anqing 246003, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaling He
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Zong S, Wang H, Li J, Liu J, Jin C. Chemical compositions, anti-oxidant and anti-inflammatory potential of ethanol extract from Zhuke-Hulu tea. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Shao T, Yuan P, Zhang W, Dou D, Wang F, Hao C, Liu C, Han J, Chen K, Wang G. Preparation and characterization of sulfated inulin-type fructans from Jerusalem artichoke tubers and their antitumor activity. Carbohydr Res 2021; 509:108422. [PMID: 34478936 DOI: 10.1016/j.carres.2021.108422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
The modification of polysaccharides is important for enhancing their biological activities. In this study, a pure inulin-type fructan, denoted as Jerusalem artichoke polysaccharide (P-JAP), was purified from Jerusalem artichoke tubers and modified by sulfation via treatment with a sulfur trioxide-pyridine complex to produce its sulfated derivative (S-JAP). Fourier-transform infrared spectroscopic analysis confirmed the successful introduction of sulfate groups. The inhibitory effects of S-JAP on the proliferation of human liver hepatocellular carcinoma (HepG2) cells was evaluated via a CCK-8 assay, and the pro-apoptotic effects were assessed using annexin V-FITC/PI double staining. The inhibition rates of various concentrations of S-JAP on HepG2 cells after 24, 48, and 72 h were significantly higher than those of P-JAP; moreover, S-JAP succeeded in promoting cell apoptosis. Thus, the sulfate-modified polysaccharide extracted from Jerusalem artichoke tubers was shown to exhibit effective antitumor activity with potential for further development.
Collapse
Affiliation(s)
- Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Pingchuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China
| | - Wenzhi Zhang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Deyu Dou
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China
| | - Fengge Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chengyi Hao
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Chunyan Liu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, 241002, China; Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
8
|
Li J, Wu H, Liu Y, Nan J, Park HJ, Chen Y, Yang L. The chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food Funct 2021; 12:9327-9338. [PMID: 34606556 DOI: 10.1039/d1fo01683k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular polysaccharide of Morchella esculenta cultivated under submerged fermentation was extracted. A single polysaccharide was purified through DEAE-Cellulose 52 and Sephadex G 100, and named as MEP 2a. The molecular weight of MEP 2a was determined by HPGPC and it is about 1391.5 kDa. MEP 2a is composed of mannose and glucose as the monosaccharide unit with a molar ratio of 8.15 : 1.07. The main polysaccharide chemical structure was analyzed by 1D and 2D NMR. Methylation and NMR analysis revealed that the backbone of MEP 2a consists of 1,3,4-linked-Manp, 1,2-linked-Manp and 1,6-linked-Glcp. 1D and 2D NMR results indicated that the main chain is based on →1)-β-D-Glcp-(6→, →1)-α-D-Manp-(3,4→, →1)-α-D-Manp-(2→) and the branch chain is composed of α-D-Manp-(1→, →1)-β-D-Glcp-(6→ and α-D-Glcp-(1→). MEP 2a promoted the phagocytosis function and secretion of NO, IL-1β, IL-6 and TNF-α of macrophages. In the present study, the chemical structure and immunomodulatory ability of an extracellular polysaccharide of Morchella esculenta was investigated which guarantees further research studies and promising applications.
Collapse
Affiliation(s)
- Jinglei Li
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Haishan Wu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Yuting Liu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Jian Nan
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, 410007 Changsha, Hunan, China
| | - Liu Yang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| |
Collapse
|
9
|
Fazary AE, Alfaifi MY, Elbehairi SEI, Amer ME, Nasr MSM, Abuamara TMM, Badr DA, Ju YH, Mohamed AF. Bioactivity Studies of Hesperidin and XAV939. ACS OMEGA 2021; 6:20042-20052. [PMID: 34368589 PMCID: PMC8340382 DOI: 10.1021/acsomega.1c03080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
The present work aimed to evaluate the reactivity of natural bioflavonoid hesperidin (HSP) and synthetically derived XAV939 (XAV) against human hepatocellular carcinoma (HepG2), human breast cancer (MDA-MB231) cancer cell lines, and related molecular and pathological profiles. Data recorded revealed that the cytotoxic potential of the tested products was found to be cell type- and concentration-dependent. The half-maximal inhibitory concentration (IC50) value of the HSP-XAV mixture against MDA-MB231 was significantly decreased in the case of using the HSP-XAV mixture against the HepG2 cell line. Also, there was a significant upregulation of the phosphotumor suppressor protein gene (P53) and proapoptotic genes such as B-cell lymphoma-associated X-protein (Bax, CK, and Caspase-3), while antiapoptotic gene B-cell lymphoma (Bcl-2) was significantly downregulated compared with the untreated cell control. The cell cycle analysis demonstrated that DNA accumulation was detected mainly during the G2/M phase of the cell cycle accompanied with the elevated reactive oxygen species level in the treatment of HepG2 and MDA-MB231 cell lines by the HSP-XAV mixture, more significantly than that in the case of cell control. Finally, our finding suggests that both HSP and XAV939 and their mixture may offer an alternative in human liver and breast cancer therapy.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
- National
Committee for Pure and Applied Chemistry (NCPAC 2018-2022), Academy of Scientific Research and Technology (ASRT), 110 Al Kasr Al Aini, El-Sayeda Zainab, Cairo Governorate 11334, Egypt
- . Tel.: +2-0106-358-2851
| | - Mohammad Y. Alfaifi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
- Cell
Culture Laboratory, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Mohamed E. Amer
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Damietta, P.C. 34511, Egypt
| | - Mohamed S. M. Nasr
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Tamer M. M. Abuamara
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Doaa A. Badr
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Yi-Hsu Ju
- Graduate
Institute of Applied Science and Technology, Department of Chemical
Engineering, Taiwan Building Technology Center, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Aly F. Mohamed
- The
International Center for Advanced Researches (ICTAR-Egypt), Cairo 307422, Egypt
| |
Collapse
|
10
|
Zong S, Yang L, Park HJ, Li J. Dietary intake of Lycium ruthenicum Murray ethanol extract inhibits colonic inflammation in dextran sulfate sodium-induced murine experimental colitis. Food Funct 2021; 11:2924-2937. [PMID: 32285052 DOI: 10.1039/d0fo00172d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, phytochemical compositions of Lycium ruthenicum Murray ethanol extract (LRE) were analyzed by LC-ESI-MS/MS and the protective effect of LRE on inflammatory bowel disease (IBD) was evaluated in a dextran sulfate sodium (DSS) induced experimental colitis mice model. The results showed that a total of 129 compounds were tentatively identified, including phenols/phenolic acids, flavonoids and others. LRE supplementation significantly reduced DSS-induced body weight loss, disease activity index increase, colon length shortening and colonic pathological damage. LRE inhibited intestinal inflammation by regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, restored intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and suppressed (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation. Moreover, the LRE profoundly ameliorated aberrant oxidative stress and restored the intestinal barrier integrity of colitis. Together, LRE supplementation might provide a new dietary strategy for preventing and ameliorating IBD as a functional food.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
11
|
Zhang Q, Du Z, Zhang Y, Zheng Z, Li Q, Wang K. Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization. Food Nutr Res 2020; 64:4364. [PMID: 33240031 PMCID: PMC7672475 DOI: 10.29219/fnr.v64.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lentinus edodes is a medicinal mushroom widely used in Asian countries for protecting people against some types of cancer and other diseases. Objective The objective of the present study was to investigate the direct antiproliferation activity and the antitumor mechanisms of water-extracted polysaccharide (WEP1) purified from L. edodes in H22 cells and H22-bearing mice. Design The extraction, isolation, purification, and structure determination of the water-soluted L. edodes polysaccharide WEP1 were performed. The growth inhibitory effects of WEP1 on H22 cells and H22-bearing mice were determined by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) method and animal studies. Flow cytometry, scanning electron microscopy, and laser scanning confocal microscopy were used to observe the morphological characteristics of apoptotic cells. The levels of intracellular reactive oxygen species (ROS) were detected by flow cytometry using 2',7'-dichlorofluorescein-3',6'-diacetate (DCFH-DA). Western blot was used to determine the expressions of cell cycle proteins and apoptosis-related proteins. Results Results showed that WEP1 with a molecular weight of 662.1 kDa exhibited direct antiproliferation activity on H22 cells in a dose-dependent manner. In vivo, WEP1 significantly inhibited the growth of tumor at different doses (50, 100, and 200 mg/kg) and the inhibition rates were 28.27, 35.17, and 51.72%, respectively. Furthermore, morphological changes of apoptosis and ROS overproduction were observed in H22 cells by WEP1 treatment. Cell cycle assay and western blot analyses indicated that the apoptosis induction activity of WEP1 was associated with arresting cell cycle at G2/M phase and activating mitochondrial-apoptotic pathway. Besides, WEP1 disrupted the microtubule network accompanied by alteration of cellular morphology. Conclusion Results suggested that the antitumor mechanisms of WEP1 might be related to arresting cell cycle at G2/M phase, inhibiting tubulin polymerization and inducing mitochondrial apoptosis. Therefore, WEP1 possibly could be used as a promising functional food for preventing or treating liver cancer.
Collapse
Affiliation(s)
- Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zhaosong Du
- Department of Pharmacy, Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zong S, Ye Z, Zhang X, Chen H, Ye M. Protective effect of Lachnum polysaccharide on dextran sulfate sodium-induced colitis in mice. Food Funct 2020; 11:846-859. [PMID: 31934694 DOI: 10.1039/c9fo02719j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammatory bowel disease (IBD) has been gradually considered as a public health challenge worldwide. This study determined the protective effect of Lachnum polysaccharide (LEP) on dextran sulfate sodium (DSS)-induced experimental colitis in mice and explored the underlying mechanism. Results showed that dietary LEP reduced DSS-induced disease activity index (DAI), colon shortening and colonic tissue damage. LEP treatment restored intestinal barrier integrity by regulating the expression of tight junction proteins and mucus layer protecting proteins. Moreover, pro-inflammatory cytokine production was inhibited by LEP through regulating PPARγ/NF-κB and IL-6/STAT3 pathways and inhibiting inflammatory cell infiltration. In addition, LEP also inhibited (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, endoplasmic reticulum (ER) stress and oxidative/nitrosative stress induced by DSS. These results provided a scientific basis for LEP as a potential natural agent for protecting mice from DSS-induced IBD.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China.
| | | | | | | | | |
Collapse
|
13
|
Su P, Ahmad B, Zou K, Zou L. β-Elemene Enhances the Chemotherapeutic Effect of 5-Fluorouracil in Triple-Negative Breast Cancer via PI3K/AKT, RAF-MEK-ErK, and NF-κB Signaling Pathways. Onco Targets Ther 2020; 13:5207-5222. [PMID: 32606741 PMCID: PMC7294576 DOI: 10.2147/ott.s242820] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Background The most common chemotherapeutic drug for triple-negative breast cancer (TNBC) treatment is 5-fluorouracil (5-FU), but its therapeutic index is low due to its toxicity. β-Elemene (ELE) possesses antitumor activity against different cancers, but it has never been used in combination with 5-FU to improve its chemotherapeutic effect against TNBC. Materials and Methods We treated MDA-MB-231 and BT549 cells of TNBC with ELE alone, 5-FU alone, or their combination to investigate their treatment effects on cell viability, proliferation, migration, invasion, and colony formation. We verified the molecular mechanisms of our results through confocal immunofluorescence, immunohistochemistry, and Western blot analysis in vitro and in vivo. Results Our result revealed that ELE enhanced the 5-FU effect against cell viability, proliferation, migration, invasion, and colony formation through different mechanisms in MDA-MB-231 and BT549 cell lines. In molecular mechanisms, ELE and 5-FU in combination enhances apoptosis in both cell lines through Bl-2 family protein and caspase cascade modulation, thereby inhibiting NF-kB pathway through IKKβ, IKKα, and p65 downregulation in the cytoplasm and p50 and p65 downregulation in the nucleus. ELE and 5-FU in combination regulated the PI3K/AKT pathway through p-AKT, P-85, p110r, p-PDK1, and p110a protein and RAF-MEK-ERK pathway inhibition through the p-c-raf and p-ERK downregulation. The PI3K inhibitor LY294002 or RAF-MEK-ERK inhibitor U0126 in combination with ELE and 5-FU decreased cell viability in both cell lines significantly, thereby showing the involvement of these pathways in cell apoptosis. In mouse xenograft model, ELE and 5-FU in combination inhibited the tumor growth and modulated its molecular markers. Conclusion The conclusion obtained, considering that the results suggest that the combination may be important specifically in the treatment of TNBC.
Collapse
Affiliation(s)
- Pengyu Su
- The Second Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Bashir Ahmad
- College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Kun Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
14
|
Zhang R, Pan T, Xiang Y, Zhang M, Feng J, Liu S, Duan T, Chen P, Zhai B, Chen X, Wang W, Chen B, Han X, Chen L, Yan L, Jin T, Liu Y, Li G, Huang X, Zhang W, Sun Y, Li Q, Zhang Q, Zhuo L, Xie T, Wu Q, Sui X. β-Elemene Reverses the Resistance of p53-Deficient Colorectal Cancer Cells to 5-Fluorouracil by Inducing Pro-death Autophagy and Cyclin D3-Dependent Cycle Arrest. Front Bioeng Biotechnol 2020; 8:378. [PMID: 32457882 PMCID: PMC7225311 DOI: 10.3389/fbioe.2020.00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Colorectal cancer is a malignant tumor of the digestive system with high morbidity and mortality. 5-fluorouracil remains a widely used chemotherapeutic drug in the treatment of advanced colorectal cancer, but chemotherapy drugs are prone to develop drug resistance, p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to 5-fluorouracil. β-elemene has been proved to have the potential of reverse chemotherapy drug resistance, but the mechanism is unknown. This study aimed to investigate the effect of β-elemene to 5-fluorouracil in drug-resistant p53-deficient colorectal cancer cells HCT116p53–/–, and determine the possible molecular mechanism of β-elemene to reverse 5-fluorouracil resistance. Methods The effect of β-elemene on HCT116p53–/– cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. The autophagy was detected by western blot, immunofluorescence and transmission electron microscope. Determine the role of Cyclin-related protein Cyclin D3 in β-elemene reversing the resistance of HCT116p53–/– to 5-fluorouracil was detected by overexpression of Cyclin D3. The effect of β-elemene on the tumorigenic ability of p53-deficient colorectal cancer cells was detected establishing HCT116p53–/– all line xenograft model. Results For p53 wildtype colorectal cancer cells, β-elemene could augment the sensitivity of 5-fluorouracil, for p53-deficient colorectal cancer cells, β-elemene significantly inhibited cell proliferation in a concentration-dependent manner, and reversed the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest. Conclusion β-elemene enhances the sensitivity of p53 wild-type cells to 5-fluorouracil, β-elemene can reverse the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest in p53-deficient colorectal cancer, which will provide a new method for the treatment of p53 deletion colorectal cancer patients.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ting Pan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Xiang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Mingming Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuiping Liu
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Peng Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bingtao Zhai
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaying Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wengang Wang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuemeng Han
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lili Yan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Jin
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guohua Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingxing Huang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenzheng Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yitian Sun
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qiujie Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lvjia Zhuo
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
15
|
Zong S, Li J, Ye Z, Zhang X, Yang L, Chen X, Ye M. Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype. Int J Biol Macromol 2019; 144:1022-1033. [PMID: 31669462 DOI: 10.1016/j.ijbiomac.2019.09.179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
Therapeutic strategies that targeting tumor-associated macrophages (TAMs) reprogramming play a crucial role in ameliorating the immunosuppressive tumor microenvironment and boosting anti-tumor immune responses. In this study, we demonstrated that Lachnum polysaccharide (LEP) could work as an immunomodulator to reset TAMs from pro-tumor M2 to anti-tumor M1 phenotype. Mechanistically, LEP promoted Th1 polarization and the secretion of IFN-γ, which played a key role in M1 phenotype polarization. In parallel, LEP might directly activate M1 macrophages via TLR4 mediated NF-κB signaling pathway. Moreover, LEP also resulted in the accumulation of anti-tumor immune cells and decreased the infiltration of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and Treg cells, thereby potentiating anti-tumor immunity. In summary, these results revealed a novel mechanism of the anti-tumor effect of LEP and provided a potential new avenue targeting TAMs and cancer immunotherapy.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ziyang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xinmiao Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xue Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|