1
|
Alimena S, Stephenson BJK, Webber JW, Wollborn L, Sussman CB, Packard DG, Williams M, Comrie CE, Wang JY, Markert T, Spiegel J, Rodriguez CB, Lightfoot M, Graye A, O'Connor S, Elias KM. Differences in Serum miRNA Profiles by Race, Ethnicity, and Socioeconomic Status: Implications for Developing an Equitable Ovarian Cancer Screening Test. Cancer Prev Res (Phila) 2024; 17:177-185. [PMID: 38388186 PMCID: PMC11070176 DOI: 10.1158/1940-6207.capr-23-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Serum miRNAs are promising biomarkers for several clinical conditions, including ovarian cancer. To inform equitable implementation of these tests, we investigated the effects of race, ethnicity, and socioeconomic status on serum miRNA profiles. Serum samples from a large institutional biobank were analyzed using a custom panel of 179 miRNA species highly expressed in human serum, measured using the Abcam Fireplex assay via flow cytometry. Data were log-transformed prior to analysis. Differences in miRNA by race and ethnicity were assessed using logistic regression. Pairwise t tests analyzed racial and ethnic differences among eight miRNAs previously associated with ovarian cancer risk. Pearson correlations determined the relationship between mean miRNA expression and the social deprivation index (SDI) for Massachusetts residents. Of 1,586 patients (76.9% white, non-Hispanic), compared with white, non-Hispanic patients, those from other racial and ethnic groups were younger (41.9 years ± 13.2 vs. 51.3 ± 15.1, P < 0.01) and had fewer comorbidities (3.5 comorbidities ± 2.7 vs. 4.6 ± 2.8, P < 0.01). On logistic regression, miRNAs predicted race and ethnicity at an AUC of 0.69 (95% confidence interval, 0.66-0.72), which remained consistent when stratified by most comorbidities. Among eight miRNAs previously associated with ovarian cancer risk, seven significantly varied by race and ethnicity (all P < 0.01). There were no significant differences in SDI for any of these eight miRNAs. miRNA expression is significantly influenced by race and ethnicity, which remained consistent after controlling for confounders. Understanding baseline differences in biomarker test characteristics prior to clinical implementation is essential to ensure instruments perform comparably across diverse populations. PREVENTION RELEVANCE This study aimed to understand factors affecting miRNA expression, to ensure we create equitable screening tests for ovarian cancer that perform well in diverse populations. The goal is to ensure that we are detecting ovarian cancer cases earlier (secondary prevention) in women of all races, ethnic backgrounds, and socioeconomic means.
Collapse
Affiliation(s)
- Stephanie Alimena
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Briana Joy K Stephenson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - James W Webber
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Laura Wollborn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | - Amia Graye
- Georgetown University, Washington, District of Columbia
| | | | - Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Michel S, Atmakuri A, von Ehrenstein OS. Prenatal exposure to ambient air pollutants and congenital heart defects: An umbrella review. ENVIRONMENT INTERNATIONAL 2023; 178:108076. [PMID: 37454629 DOI: 10.1016/j.envint.2023.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollutants has been linked to congenital heart defects (CHD), but findings of existing systematic reviews have been mixed. OBJECTIVE To assess the epidemiological evidence on associations between prenatal exposure to ambient air pollutants and CHD subtypes, based on a systematic overview of reviews ("umbrella review"). METHODS We conducted a systematic search for reviews assessing associations between prenatal exposure to criteria air pollutants and CHD. The risk of bias was evaluated using the Risk of Bias in Systematic Reviews (ROBIS) tool. The certainty of the systematic review findings was graded using the Navigation Guide methodology. RESULTS We identified eleven systematic reviews, including eight with meta-analyses, assessing in total 35 primary studies of prenatal exposure to criteria air pollutants and various CHD subtypes. The certainty of the findings of four meta-analyses indicating an increased risk for coarctation of the aorta associated with nitrogen dioxide exposure was rated as moderate. The certainty of findings indicating positive, inverse, or null associations for other pollutant-subtype combinations was rated as very low to low, based on low precision and high statistical heterogeneity of summary odds ratios (SOR), substantial inconsistencies between review findings, and methodological limitations of the systematic reviews. DISCUSSION The inconsistent findings and high statistical heterogeneity of many SOR of the included systematic reviews may partly be traced to differences in methodological approaches, and the risk of bias across included reviews (e.g., inclusion criteria, systematic search strategies, synthesis methods) and primary studies (e.g., exposure assessment, diagnostic criteria). Adherence to appropriate systematic review guidelines for environmental health research, as well as rigorous evaluation of risk of bias in primary studies, are essential for future risk assessments and policy-making. Still, our findings suggest that prenatal exposure to ambient air pollutants may increase risks for at least some CHD subtypes.
Collapse
Affiliation(s)
- Sophie Michel
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA.
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Sun D, Ding Z, Hai Y, Cheng Y. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Front Genet 2023; 14:1211376. [PMID: 37564871 PMCID: PMC10411889 DOI: 10.3389/fgene.2023.1211376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Scoliosis is a three-dimensional structural deformity of the spine; more than 80% of scoliosis has no specific pathogenesis but is understood to be closely related to genetic, hormonal, and environmental factors. In recent years, the epigenetic alterations observed in scoliosis have been analyzed in numerous studies to determine the pathogenesis and progression of this condition, however, there is currently no comprehensive review of the epigenetic factors to date. We searched PubMed, Embase, and Web of Science databases for relative studies without language and date restrictions in March 2023. Twenty-five studies were included in this review and analyzed from the four main aspects of epigenetic alteration: DNA methylation, non-coding RNAs, histone modifications, and chromatin remodeling. The relationship between DNA methylation, non-coding RNAs, and scoliosis was considerably reported in the literature, and the corresponding related signaling pathways and novel biomarkers observed in scoliosis provide insights into innovative prevention and treatment strategies. However, the role of histone modifications is rarely reported in scoliosis, and few studies have investigated the relationship between scoliosis and chromatin remodeling. Therefore, these related fields need to be further explored to elucidate the overall effects of epigenetics in scoliosis.
Collapse
Affiliation(s)
| | | | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
4
|
Huang Z, Qiu Y, Qi J, Ma X, Cheng Q, Wu J. Association between air pollutants and birth defects in Xiamen, China. Front Pediatr 2023; 11:1132885. [PMID: 37303750 PMCID: PMC10254403 DOI: 10.3389/fped.2023.1132885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To explore the relationship between common air pollution and common birth defects, and to provide reference for the prevention of birth defects. Methods We conducted a case-control study in Xiamen, a city in southeastern China from 2019 to 2020. Logistics regression was used to analyze the relationship between sulfur dioxide(SO2), fine particulate matter 2.5(PM2.5), nitrogen dioxide(NO2), ozone(O3), carbon monoxide(CO) and the occurrence of common birth defects such as congenital heart disease, facial cleft, and finger deformity. Results SO2 significantly increased the risk of birth defects such as congenital heart disease, cleft lip and/or cleft palate, and ear deformity in the first and second months of pregnancy. Conclusion Exposure to common air pollutants increases the risk of birth defects, and SO2 significantly affects the occurrence of birth defects in the first two months of pregnancy.
Collapse
Affiliation(s)
- Zhimeng Huang
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Xiamen, China
| | - Jiawen Qi
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohui Ma
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Qiliang Cheng
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jinzhun Wu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Montemurro N, Ricciardi L, Scerrati A, Ippolito G, Lofrese G, Trungu S, Stoccoro A. The Potential Role of Dysregulated miRNAs in Adolescent Idiopathic Scoliosis and 22q11.2 Deletion Syndrome. J Pers Med 2022; 12:1925. [PMID: 36422101 PMCID: PMC9695868 DOI: 10.3390/jpm12111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Adolescent idiopathic scoliosis (AIS), affecting 2-4% of adolescents, is a multifactorial spinal disease. Interactions between genetic and environmental factors can influence disease onset through epigenetic mechanisms, including DNA methylation, histone modifications and miRNA expression. Recent evidence reported that, among all clinical features in individuals with 22q11.2 deletion syndrome (DS), scoliosis can occur with a higher incidence than in the general population. Methods: A PubMed and Ovid Medline search was performed for idiopathic scoliosis in the setting of 22q11.2DS and miRNA according to PRISMA guidelines. Results: Four papers, accounting for 2841 individuals, reported clinical data about scoliosis in individuals with 22q11.2DS, showing that approximately 35.1% of the individuals with 22q11.2DS developed scoliosis. Conclusions: 22q11.2DS could be used as a model for the study of AIS. The DGCR8 gene seems to be essential for microRNA biogenesis, which is why we propose that a possible common pathological mechanism between scoliosis and 22q11.2DS could be the dysregulation of microRNA expression. In the current study, we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-1306, thus, corroborating the hypothesis that the two diseases share common molecular alterations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Luca Ricciardi
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Ippolito
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), DSBMC Sapienza Università di Roma-Polo Pontino, 04100 Latina, Italy
| | - Giorgio Lofrese
- Division of Neurosurgery, Ospedale Bufalini, 47023 Cesena, Italy
| | - Sokol Trungu
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
6
|
Li L, Zhang N, Wu X, Feng T, Zhao Z, Pang Y, Zhang Y, Wang N, Ning J, Zhao S, Jiang T, Shi B, Niu Y, Zhang R, Hao G. Exposure to air pollution is associated with congenital anomalies in the population born by in vitro fertilization. ENVIRONMENTAL RESEARCH 2022; 207:112161. [PMID: 34626591 DOI: 10.1016/j.envres.2021.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Congenital anomalies (CAs) are the leading causes for children's disabilities and mortalities worldwide. The associations between air pollution and CAs are not fully characterized in fetuses born by in vitro fertilization (IVF) who are at high risk of congenital anomalies. METHODS We conducted a cross-sectional study including 16,971 IVF cycles from three hospitals in Hebei Province, China, 2014-2019. Air quality data was obtained from 149 air monitoring stations. Individual average daily concentrations of PM2.5, PM10, NO2, SO2, CO, and O3 were estimated by spatiotemporal kriging method. Exposure windows were divided into 5: preantral follicle period, antral follicle period, germinal period, embryonic period and early fetal period. Logistic generalized estimating equations were used to estimate the associations between air pollutants and overall or organ-system specific congenital anomalies. Negative control exposure method was used to detect and reduce bias of estimation. RESULTS We found increasing levels of PM2.5 and PM10 were associated with higher risk of overall congenital anomalies during early fetal period, equating gestation 10-12 weeks (OR: 1.05, 95% CI: 1.02-1.09, p = 0.013 for a 10 μg/m3 increase of PM2.5; OR: 1.03, 95% CI: 1.01-1.06, p = 0.021 for a 10 μg/m3 increase of PM10). Cleft lip and cleft palate were associated with PM10 in germinal period and early fetal period. The CAs of eye, ear, face and neck were related to CO in preantral follicle stage. We did not find an association between chromosome abnormalities and air pollution exposure. CONCLUSIONS We concluded that ambient air pollution was a risk factor for congenital anomalies in the fetuses conceived through IVF, especially exposure in early fetal period.
Collapse
Affiliation(s)
- Lipeng Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Na Zhang
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Xiaohua Wu
- Department of Reproductive Medicine, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050000, PR China
| | - Tengfei Feng
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ning Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shibin Zhao
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Baojun Shi
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
7
|
Mahato S, Talukdar S, Pal S, Debanshi S. How far climatic parameters associated with air quality induced risk state (AQiRS) during COVID-19 persuaded lockdown in India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116975. [PMID: 33784565 DOI: 10.1016/j.envpol.2021.116975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Global temperature rises in response to accumulating greenhouse gases is a well-debated issue in the present time. Historical records show that greenhouse gases positively influence temperature. Lockdown incident has brought an opportunity to justify the relation between greenhouse gas centric air pollutants and climatic variables considering a concise period. The present work has intended to explore the trend of air quality parameters, and air quality induced risk state since pre to during the lockdown period in reference to India and justifies the influence of pollutant parameters on climatic variables. Results showed that after implementation of lockdown, about 70% area experienced air quality improvement during the lockdown. The hazardous area was reduced from 7.52% to 5.17%. The spatial association between air quality components and climatic variables were not found very strong in all the cases. Still, statistically, a significant relation was observed in the case of surface pressure and moisture. From this, it can be stated that pollutant components can control the climatic components. This study recommends that pollution source management could be a partially good step for bringing climatic resilience of a region.
Collapse
Affiliation(s)
- Susanta Mahato
- Department of Geography, University of Gour Banga, Malda, India.
| | - Swapan Talukdar
- Department of Geography, University of Gour Banga, Malda, India.
| | - Swades Pal
- Department of Geography, University of Gour Banga, Malda, India.
| | | |
Collapse
|
8
|
Altered Circulating Cell-free Mitochondrial DNA of Patients with Congenital Scoliosis. Spine (Phila Pa 1976) 2021; 46:499-506. [PMID: 33290375 DOI: 10.1097/brs.0000000000003849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study. OBJECTIVE The aim of this study was to estimate the relationship between circulating cell-free DNA (ccf DNA) and clinical parameters of patients with congenital scoliosis (CS). SUMMARY OF BACKGROUND DATA CS is a complex spinal deformity characteristic of congenital vertebral malformations. Although numerous studies have centered on the etiology of CS, the cause of CS remains unclear. Previously, we reported that circulating cell-free DNA (ccf DNA) is altered in adolescent idiopathic scoliosis (AIS). However, the relationship between ccf DNA and the clinical parameters of patients with CS remains unclear. METHODS The plasma of peripheral blood from 35 patients with CS and 32 age-matched controls was collected for ccf DNA analysis. Quantitative PCR was used to detect ccf n-DNA and ccf mt-DNA levels, and correlation analyses between ccf n-DNA and ccf mt-DNA levels were conducted. Receiver-operating characteristic (ROC) curves were used to analyze the sensitivity and specificity of ccf n-DNA and ccf mt-DNA levels to different characteristics. RESULTS The plasma ccf mt-DNA levels of both ND1 and CYTC were significantly decreased in patients with CS compared with levels in controls both in total and by sex, whereas the plasma ccf n-DNA levels showed no significant difference. There is no difference in both ccf mt-DNA and ccf n-DNA between S-SDV and M-SDV according to The International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) classification. The ROC curve analyses showed a reliable sensitivity and specificity of CS predicted by ccf mt-DNA levels in total but failed to distinguish different ICVAS types. CONCLUSION Significantly decreased plasma ccf mt-DNA levels were observed in patients with CS compared with those in controls. Although this finding has limited significance for clinical practice, it indicates that ccf mt-DNA may predict the onset or development of CS. Further studies should focus on the role of ccf mt-DNA in embryo development and whether ccf mt-DNAs could be considered as a marker for prenatal screening in development disorder like CS.Level of Evidence: 4.
Collapse
|
9
|
Li Z, Ma J, Lin Y, Shen J, Wu Z, Chan MTV, Wu WKK. Embryonic gene expression altered by maternal exposure to air pollution in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31699-31705. [PMID: 32500497 DOI: 10.1007/s11356-020-09413-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollution is known to increase the risks for cardiovascular, pulmonary and metabolic diseases. Growing evidences also indicated that air pollution exposure during pregnancy could negatively impact on early embryonic development and children's health. We performed RNA sequencing to identify deregulated mRNAs in air pollution-exposed rat embryos. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyse the potential cellular functions of deregulated mRNAs. Our analysis indicated that a total of 1678 mRNAs were differentially expressed on gestation day 9 upon in utero exposure to fine particulate matter of > 200 μg/m3, among which 1098 mRNAs were downregulated and 580 mRNAs were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed gap junction, cell adhesion, axon guidance and the neurotrophin signalling pathway as key biological processes perturbed by air pollution exposure. Furthermore, reconstruction of the mRNA regulatory network highlighted the central roles of Tbx4, Bmp4, Sox10, Wnt9b, Bmp7 and Foxc2. These data suggested that embryonic mRNA deregulation may underlie the formation of air pollution-associated congenital defects.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianqing Ma
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc.,Orthopaedic Hospital of Xingtai, Xingtai, 054000, Hebei, China
| | - Youxi Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China.
| | - Zhanyong Wu
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc.,Orthopaedic Hospital of Xingtai, Xingtai, 054000, Hebei, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
10
|
Li Z, Ma J, Li X, Chan MTV, Wu WKK, Wu Z, Shen J. Aberrantly expressed long non-coding RNAs in air pollution-induced congenital defects. J Cell Mol Med 2019; 23:7717-7725. [PMID: 31557384 PMCID: PMC6815773 DOI: 10.1111/jcmm.14645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Air pollution has been a serious public health issue over the past few decades particularly in developing countries. Air pollution exposure during pregnancy poses potential threat to offspring as the deleterious substances might pass through placenta to alter foetal development. A growing number of studies have demonstrated that long non-coding RNAs (lncRNAs) participate in the development of many diseases, including congenital defects. Here, we used RNA sequencing to identify differentially expressed lncRNAs in air pollution-exposed rat embryos compared with control group. Our data suggested that 554 lncRNAs (216 up-regulated and 338 down-regulated) were significantly differentially expressed in the air pollution-exposed embryos. Moreover, potential cellular functions of these deregulated lncRNAs were predicted via KEGG signal pathway/GO enrichment analyses, which suggested the possible involvements of neurological process, sensory perception of smell and the G-protein signalling pathway. Furthermore, potential functional network of deregulated lncRNAs and their correlated mRNAs in the development of congenital spinal abnormality was established. Our data suggested that lncRNAs may play a vital role in the pathophysiology of air pollution-exposed congenital spinal malformation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianqing Ma
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
- State Key Laboratory of Digestive DiseasesLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhanyong Wu
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Li Z, Ma J, Shen J, Chan MTV, Wu WKK, Wu Z. Differentially expressed circular RNAs in air pollution-exposed rat embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34421-34429. [PMID: 31637615 DOI: 10.1007/s11356-019-06489-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) are an important class of non-coding RNAs partly by acting as microRNA sponges. Growing evidence indicates that air pollution exposure during pregnancy could lead to congenital defects in the offspring. In this study, using circRNAs sequencing, we profiled differentially expressed circRNAs in rat embryos exposed to a high concentration (> 200 μg/m3) of fine particulate matter (PM2.5) in utero. Compared with the control embryos whose mothers were reared in clean air, 25 and 55 circRNAs were found to be downregulated and upregulated, respectively, in the air pollution-exposed group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of circRNA-coexpressed genes indicated that segmentation, brain development, and system development together with lysine degradation, Rap1 signaling pathway, and adrenergic signaling were deregulated by in utero air pollution exposure. We also identified the central role of three circRNAs, namely circ_015003, circ_030724, and circ_127215 in the circRNA-microRNA interaction network. These data suggested that circRNA deregulation might play a crucial role in the development of air pollution-associated congenital malformations.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqing Ma
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai, Hebei, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhanyong Wu
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai, Hebei, China.
| |
Collapse
|