1
|
Bai Z, Tian N, Ding Z, Lu Q, Wang Y, Du S, Hui Y. Knockdown of long noncoding RNA AL161431.1 inhibits malignant progression of cholangiocarcinoma. Aging (Albany NY) 2024; 16:11501-11512. [PMID: 39103208 PMCID: PMC11346779 DOI: 10.18632/aging.205898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is one of the most deadly cancers in the world. It usually has a bad prognosis and is challenging to identify in its early stages. Long noncoding RNAs (lncRNAs) have been shown in an increasing number of studies to be important in the control of signaling pathways, cell behaviors, and epigenetic modification that contribute to the growth of tumors. The purpose of this work was to examine the relationship between CCA and lncRNA AL161431.1. METHODS Using TCGA clinical survival data, we evaluated the association between AL161431.1 expression and patient prognosis. Using the program cluster Profiler R, enrichment analysis was performed. Additionally, the association between immune cell infiltration and AL161431.1 expression was evaluated by a review of the TCGA database. Next, to ascertain if AL161431.1 influences tumor growth, migration, and invasion in CCA, functional in vitro assays were conducted. Quantitative real-time polymerase chain reaction (qPCR) was employed to gauge AL161431.1 expression levels in CCA cells. Western blot was used to measure protein levels. RESULTS In CCA, AL161431.1 was extremely expressed. The patients in the high-risk group had a significantly poorer overall survival (OS) than the patients in the low-risk group. A more thorough look at the TCGA data showed a relationship between high expression levels of AL161431.1 and increased infiltration of T cells, T helper cells, and NK CD56dim cells. Furthermore, AL161431.1 knockdown in CCA cells impeded invasion, migration, and proliferation and also lowered the expression of phosphorylated Smad2/Smad3 to restrain the TGFβ/SMAD signaling pathway. CONCLUSIONS Our results indicate that the lncRNA AL161431.1 activates the TGFβ/SMAD signaling pathway to enhance CCA development and metastasis. AL161431.1 could be a novel target for cholangiocarcinoma treatment or a diagnostic marker.
Collapse
Affiliation(s)
- Zhoulan Bai
- Department of Radiation Oncology, General Hospital of Ningxia Medical University; Cancer Institute, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Na Tian
- Department of Cardiology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Zhe Ding
- Department of Radiation Oncology, General Hospital of Ningxia Medical University; Cancer Institute, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Qing Lu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University; Cancer Institute, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Yuchen Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University; Cancer Institute, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Shangting Du
- Department of Cardiology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| |
Collapse
|
2
|
Xu T, Lyu L, Zheng J, Li L. Advances in omics-based biomarker discovery for biliary tract malignancy Diagnosis:A narrative review. Mol Cell Probes 2024; 76:101970. [PMID: 38964426 DOI: 10.1016/j.mcp.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biliary tract neoplasms, which originate from the intrahepatic or extrahepatic biliary epithelium, are relatively rare but diagnostically challenging types of tumours, and their morbidity and mortality have increased in recent years. Due to ineffective early diagnostic methods, once detected, patients are in an advanced stage with a poor prognosis and few treatment options. With the development of omics technologies, the associations between microorganisms, bile acid and salts, noncoding RNAs and biliary tract malignancies have been gradually revealed, providing new methods for the discovery of diagnostic biomarkers. Here, we review the research advances in microbiomics, transcriptomics, metabolomics, and proteomics in the discovery of diagnostic biomarkers for biliary tract malignancies.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lingna Lyu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Junfu Zheng
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| |
Collapse
|
3
|
Rashwan HH, Taher AM, Hassan HA, Awaji AA, Kiriacos CJ, Assal RA, Youness RA. Harnessing the supremacy of MEG3 LncRNA to defeat gastrointestinal malignancies. Pathol Res Pract 2024; 256:155223. [PMID: 38452587 DOI: 10.1016/j.prp.2024.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a pivotal role in the carcinogenesis and progression of various human malignancies including gastrointestinal malignancies. This comprehensive review reports the functions and mechanisms of the lncRNA maternally expressed gene 3 (MEG3) involved in gastrointestinal malignancies. It summarizes its roles in mediating the regulation of cellular proliferation, apoptosis, migration, invasiveness, epithelial-to-mesenchymal transition, and drug resistance in several gastrointestinal cancers such as colorectal cancer, gall bladder cancer, pancreatic cancer, gastric cancer, esophageal cancer, cholangiocarcinoma, gastrointestinal stromal tumors and most importantly, hepatocellular carcinoma. In addition, the authors briefly highlight its implicated mechanistic role and interactions with different non-coding RNAs and oncogenic signaling cascades. This review presents the rationale for developing non coding RNA-based anticancer therapy via harnessing the power of MEG3 in gastrointestinal malignancies.
Collapse
Affiliation(s)
- H H Rashwan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, 12677, Giza, Egypt
| | - A M Taher
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - H A Hassan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - A A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - C J Kiriacos
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt.
| |
Collapse
|
4
|
Shobeiri P, Arabzadeh Bahri R, Khadembashiri MM, Khadembashiri MA, Maleki S, Eslami M, Khalili Dehkordi M, Behnoush AH, Rezaei N. Role of long non-coding RNAs in cholangiocarcinoma: A systematic review and meta-analysis. Cancer Rep (Hoboken) 2024; 7:e2029. [PMID: 38517409 PMCID: PMC10959185 DOI: 10.1002/cnr2.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), as a rare malignancy of the biliary tree, has a poor prognosis most of the time. CCA is highly epigenetically regulated and several long non-coding RNAs (lncRNA) have been investigated to have a diagnostic and prognostic role in CCA. The current study aimed to assess the studies finding relevant lncRNAs in CCA systematically. METHODS International databases, including PubMed, Cochrane Library, and Embase, were comprehensively searched in order to identify studies investigating any lncRNA in CCA. After screening by title/abstract and full-text, necessary data were extracted. Random-effect meta-analysis was performed for pooling the areas under the curve (AUCs), specificity, and sensitivity of lncRNAs for the diagnosis of CCA. RESULTS A total of 33 studies were chosen to be included in the final analysis, comprised of 2677 patients. Meta-analysis of AUCs for evaluation of CCA resulted in pooled AUC of 0.79 (95% CI: 0.75-0.82; I2 = 69.11, p < .01). Additionally, overall sensitivity of 0.80 (95% CI 0.75-0.84) and specificity of 0.77 (95% CI: 0.68-0.84) were observed. Measurement of lncRANs in the assessment of CCA also improved overall survival significantly (effect size 1.61, 95% CI: 1.39-1.82). A similar result was found for progression-free survival (effect size 1.57, 95% CI: 1.20-1.93). CONCLUSION Based on our findings, lncRNAs showed promising results as biomarkers in the diagnosis of CCA since they had acceptable sensitivity and specificity, in addition to the fact that improved survival in this poor prognosis cancer. Further studies might be needed to address this issue and find the best clinically useful lncRNA.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of medicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Razman Arabzadeh Bahri
- School of medicineTehran University of Medical SciencesTehranIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Mohamad Mehdi Khadembashiri
- Neuromusculoskeletal Research CenterIran University of Medical SciencesTehranIran
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Mohamad Amin Khadembashiri
- Neuromusculoskeletal Research CenterIran University of Medical SciencesTehranIran
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Saba Maleki
- School of MedicineGuilan University of Medical SciencesRashtIran
| | - Mohammad Eslami
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | | | - Amir Hossein Behnoush
- School of medicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Zhang L, Jiang G, Lu J, Wang L. LINC00844 suppresses tumor progression and predicts survival outcomes through inhibiting miR-19a-5p in cholangiocarcinoma. Clin Transl Oncol 2024; 26:414-423. [PMID: 37400667 DOI: 10.1007/s12094-023-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a heterogeneous malignancy. The aim of the study was to investigate the regulatory role of long noncoding RNA LINC00844 in CCA progression, explore the underlying molecular mechanisms, and to analyze the potential prognostic value of LINC00844 in CCA patients. METHODS Expression of LINC00844 in CCA cell lines and tissues was examined by reverse transcription-quantitative PCR. Cell counting kit-8 assay was used to assess CCA cell proliferation, and the Transwell assay was used to evaluate tumor cell migration and invasion. miRNAs sponged by LINC00844 were predicted and confirmed using a luciferase reporter assay. Kaplan-Meier survival analysis was performed to evaluate the survival prognosis of CCA patients. RESULTS The expression levels of LINC00844 were decreased in CCA tissues and cells. Overexpression of LINC00844 inhibited cell proliferation, migration and invasion in CCA cells. miR-19a-5p is directly targeted by LINC00844, mediating the inhibitory effects of LINC00844 on the proliferation, migration and invasion of CCA cells. LINC00844 and miR-19a-5p expression were associated with differentiation and tumor node metastasis stage in CCA patients. CCA patients with low LINC00844 expression or overexpression of miR-19a-5p had worse overall survival. CONCLUSION The expression levels of LINC00844 were decreased in both CCA tissues and cells, and high LINC00844 inhibited CCA cell proliferation, migration and invasion through sponging miR-19a-5p. Low LINC00844 and high miR-19a-5p expression were associated with worse overall survival in CCA patients. All the data suggested that the LINC00844/miR-19a-5p axis may provide novel therapeutic targets and prognostic biomarkers for CCA patients.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Guohong Jiang
- Department of Clinical Laboratory, Qingdao Chest Hospital, Qingdao, 266043, Shandong, China
| | - Juan Lu
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China
| | - Lina Wang
- Department of Clinical Laboratory, The Fifth People's Hospital of Zibo, Zichuan District, No. 102 Zi Mining Bureau, Zibo, 255100, Shandong, China.
| |
Collapse
|
6
|
Tian T, Li S, Luo H, Li Y, Chen H, Yang Y, Chen G, Xie B, Yan Z, Wang Z, Li L, Jiang Y. LILAR, a novel long noncoding RNA regulating autophagy in the liver tissues of endotoxemic mice through a competing endogenous RNA mechanism. MedComm (Beijing) 2023; 4:e398. [PMID: 37829506 PMCID: PMC10565381 DOI: 10.1002/mco2.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Sepsis is an often-deadly complication of infection that can lead to multiple organ failure. Previous studies have demonstrated that autophagy has a protective effect on liver injury in sepsis. Here, we report a novel long noncoding RNA (lncRNA), named lipopolysaccharide (LPS)-induced liver autophagy regulator (LILAR), which was highly induced in the liver tissues of endotoxemic mice. LILAR deficiency significantly increased the susceptibility of mice to LPS. In contrast, LILAR overexpression rescued the liver injury mediated by LILAR deficiency and increased the survival of LILAR knockout mice with endotoxemia. Autophagy-related protein 13 (Atg13) is a potential downstream target gene of LILAR. LILAR deficiency notably decreased Atg13 expression and suppressed autophagy in the livers of mice challenged with LPS. A reporter gene assay showed that LILAR competitively adsorbed miR-705 to increase the expression of Atg13 in cultured cells, indicating that LILAR participates in the regulation of the autophagy in the liver tissues of endotoxemic mice through a competitive endogenous RNA mechanism. In summary, we identified a novel lncRNA, LILAR, as a hepatic autophagy regulator, which not only promotes our understanding of liver pathophysiology but also provides a potential therapeutic target and/or diagnostic biomarker for liver injury in endotoxemia.
Collapse
Affiliation(s)
- Tian Tian
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shan Li
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yijing Li
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hanghang Chen
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ying Yang
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Guangqin Chen
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Bingyao Xie
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhengzheng Yan
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhenqi Wang
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lei Li
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of ProteomicsState Key Laboratory of Organ Failure ResearchDepartment of PathophysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Du H, Hou S, Zhang L, Liu C, Yu T, Zhang W. LncRNA FALEC increases the proliferation, migration and drug resistance of cholangiocarcinoma through competitive regulation of miR-20a-5p/SHOC2 axis. Aging (Albany NY) 2023; 15:3759-3770. [PMID: 37166421 PMCID: PMC10449288 DOI: 10.18632/aging.204709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND LncRNA is an important regulatory factor in the human genome. We aim to explore the roles of LncFALEC and miR-20a-5p/SHOC2 axis on the proliferation, migration, and Fluorouracil (5-FU) resistance of cholangiocarcinoma (CCA). METHODS In this study, the expression of FALEC and miR-20a-5p in CCA tissues and cell lines (HuCCT1, QBC939, and Huh-28) was detected by RT-qPCR. The FALEC in 5-FU-resistant CCA cell lines (QBC939-R, Huh-28-R) was knocked down to evaluate its effects on cell proliferation, migration, invasion, and drug resistance. RESULTS Our analysis showed that compared with the adjacent non-tumor tissues, FALEC was significantly higher in the CCA tissues and even higher in the samples from 5-FU-resistant patients. Knockdown FALEC increased the sensitivity of 5-FU and decreased migration and invasion of CCA cells. Dual luciferase reporter confirmed that FALEC sponges miR-20a-5p and down-regulated its expression. Moreover, SHOC2 leucine-rich repeat scaffold protein (SHOC2) was the target gene of miR-20a-5p. We found overexpression of FALEC (FALEC-OE) increased resistance of CCA cells to 5-FU significantly, which might contribute to increased SHOC2 expression and activation of the ERK1/2 signaling pathway. CONCLUSIONS In summary, our study revealed that down-regulation of FALEC could inhibit the proliferation, migration, and invasion of CCA cells in vitro by regulating the miR-20a-5p/SHOC2 axis and participating in 5-FU resistance by mediating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haiming Du
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Senlin Hou
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lichao Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chao Liu
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tingting Yu
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
9
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
11
|
Li J, Jiang X, Xu Y, Kang P, Huang P, Meng N, Wang H, Zheng W, Wang H, Wang Z, Zhong X, Cui Y. YY1-induced DLEU1/miR-149-5p Promotes Malignant Biological Behavior of Cholangiocarcinoma through Upregulating YAP1/TEAD2/SOX2. Int J Biol Sci 2022; 18:4301-4315. [PMID: 35864972 PMCID: PMC9295058 DOI: 10.7150/ijbs.66224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma is an extremely malignant cancer with poor prognosis. Finding efficient diagnosis and treatment is the indispensable way to improve the prognosis of CCA patients. Therefore, exploring molecular abnormalities in CCA development is urgently needed. DLEU1 is a potential tumor-related lncRNA and abnormally expressed in multiple cancers. In this study, TCGA data analysis showed upregulation of DLEU1 expression in CCA. Furthermore, we confirmed that DLEU1 expression was increased in CCA tissues and cells compared with corresponding controls. Upregulated DLEU1 was related to poor clinicopathological characteristics. Functionally, silencing DLEU1 inhibited CCA proliferation, invasion, stemness maintenance and chemo-resistance, whereas amplifying DLEU1 promoted malignant biological behavior of CCA cells. Mechanistically, DLEU1 expression was transcriptionally facilitated by transcription factor YY1. Moreover, DLEU1 promoted oncogene YAP1 expression by functioning as a sponge to competitively bind to miR-149-5p. YAP1 promoted CCA proliferation, invasion and stemness maintenance, whereas miR-149-5p inhibited malignant biological behavior of CCA. Rescue experiments confirmed that the cancer-promoting effect of DLEU1 was saved by interfering miR-149-5p or YAP1. Furthermore, YAP1 promoted tumor stemness maintenance partly by acting as a transcriptional coactivator to promote TEAD2-induced SOX2 expression. These findings indicated that YY1-induced DLEU1 played a crucial role in CCA progression via miR-149-5p/YAP1/TEAD2/SOX2 axis.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Pengcheng Kang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Peng Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Nanfeng Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Hang Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Wangyang Zheng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Hao Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Zhidong Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Xiangyu Zhong
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
12
|
Sun D, Li F, Liu L, Yu S, Wang H, Gao X, Liu G, Zhao Y, Qiu G, Jiang X. PSMA3-AS1 induced by transcription factor PAX5 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-376a-3p to up-regulate LAMC1. Aging (Albany NY) 2022; 14:509-525. [PMID: 35022330 PMCID: PMC8791211 DOI: 10.18632/aging.203828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to exhibit a crucial regulatory role in tumor progression, including cholangiocarcinoma (CCA). As a promising lncRNA, proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1) is involved in development of various tumors. However, the role and function of PSMA3-AS1 in CCA remain unclear. The aim of this study is to examine the expression, function, mechanism, and clinical significance of PSMA3-AS1 in CCA development. By TCGA database analysis, we found that PSMA3-AS1 was overexpressed in CCA. Consistent with the TCGA analysis, PSMA3-AS1 was significantly overexpressed in CCA tissues and cells by RT-qPCR. Upregulated PSMA3-AS1 was related to lymph node invasion, advanced TNM stage and poor survival, and was an independent risk factor of prognosis for CCA patients. Functionally, CCK-8, EdU and colony formation assays confirmed that upregulated PSMA3-AS1 promoted CCA cell proliferation, whereas downregulated PSMA3-AS1 inhibited proliferation. This result was further confirmed by subcutaneous tumor formation in nude mice. Wound healing and transwell assays confirmed that increased PSMA3-AS1 promoted CCA cell migration and invasion, whereas decreased PSMA3-AS1 inhibited these biological phenotypes. In addition, PSMA3-AS1 promoted the EMT process of CCA by downregulating E-cadherin and upregulating N-cadherin and vimentin. Mechanistically, transcription factor PAX5 bound to the promoter region of PSMA3-AS1 and promoted its transcription. Simultaneously, PSMA3-AS1 primarily localized in the cytoplasm could competitively bind miR-376a-3p to upregulate LAMC1, thereby accelerating CCA progression. This study uncovers that PSMA3-AS1 functions as a cancer-promoting gene in CCA, and PAX5/PSMA3-AS1/miR-376a-3p/LAMC1 axis plays a vital role in CCA development.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fujun Li
- Department of General Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Lang Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shaobo Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Haicun Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Gao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Guanglin Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xingming Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
13
|
Kong X, Xu R, Wang W, Zeng M, Li Y, Lin M, Zhou W, Fu X, Wu H. CircularLRRC7 is a Potential Tumor Suppressor Associated With miR-1281 and PDXP Expression in Glioblastoma. Front Mol Biosci 2021; 8:743417. [PMID: 34912844 PMCID: PMC8667166 DOI: 10.3389/fmolb.2021.743417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are usually enriched in neural tissues, yet about 80% circRNAs have lower expression in gliomas relative to normal brains, highlighting the importance of circRNAs as tumor suppressors. However, the clinical impact as well as the pathways regulated by the tumor-suppressive circRNAs remain largely unknown in glioblastoma (GBM). Through bioinformatic analysis followed by experimental validation, we found that hsa_circ_0114014 (circLRRC7) was dramatically down-regulated in GBM when compared with normal brain tissues (p < 0.0001). GBM patients with a lower circLRRC7 expression had poorer progression-free survival (PFS, p < 0.05) and overall survival (OS, p < 0.05). Analyses of the predicted target miRNAs of circLRRC7 in CSCD and CRI databases, in combination with the miRNA expression data in GBMs and normal brains from GSE database, revealed miR-1281 as a potential downstream target of circLRRC7. Subsequently, the target genes of hsa-mir-1281 were predicted by TargetScan, miRDB and miRNATAR databases. Intersection analysis and correlation test indicated that PDXP was a potential target of miR-1281. In summary, circLRRC7 may be a tumor suppressor that associated with miR-1281 and PDXP expression in GBM, which may provide novel therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Xue Kong
- School of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Ruiting Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Minghui Zeng
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Xianming Fu
- School of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Liu Y, Sun J, Qi P, Liu Y. Long non-coding RNA titin-antisense RNA1 contributes to growth and metastasis of cholangiocarcinoma by suppressing microRNA-513a-5p to upregulate stratifin. Bioengineered 2021; 12:12611-12624. [PMID: 34903127 PMCID: PMC8810091 DOI: 10.1080/21655979.2021.2011014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most common histological types of primary hepatic malignancy and is associated with poor overall prognosis, causing a ponderous burden on human life. Hence, it is necessary to elucidate the pathogenesis of CCA. The objective of our research was to shed light on the mechanism through which long non-coding RNA titin-antisense RNA1 (lncRNA TTN-AS1) is involved in the development of CCA. Reverse transcription quantitative polymerase chain reaction was used to detect TTN-AS1 expression in CCA samples and cells. Functional experiments were performed using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, and in vivo tumor growth assays. The relationship between TTN-AS1, miR-513a-5p, and stratifin (SFN) was explored using a dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson correlation analysis. The result showed that TTN-AS1 and SFN are highly expressed in CCA tissues. Bioinformatics analysis, luciferase reporter and RIP experiments revealed the correlation between TTN-AS1, miR-513a-5p, and SFN. In addition, silencing TTN-AS1 mitigated CCA cell proliferation and migration. Mechanistically, miR-513a-5p is sponged by TTN-AS1. The miR-513a-5p inhibitor abolished the effect of TTN-AS1 silencing on the aggressive behaviors of CCA cells. Furthermore, we showed that miR-513a-5p is a regulator of CCA by targeting SFN. TTN-AS1 induced CCA cell growth and metastasis via the miR-513a-5p/SFN pathway, which offers a new strategy for therapeutic interventions for CCA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Huanggang Center Hospital, Huanggang, Hubei, China
| | - Jiangyang Sun
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Qi
- Department of General Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of General Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Cagle P, Qi Q, Niture S, Kumar D. KCNQ1OT1: An Oncogenic Long Noncoding RNA. Biomolecules 2021; 11:1602. [PMID: 34827600 PMCID: PMC8615887 DOI: 10.3390/biom11111602] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts greater than 200 nucleotides that do not code for proteins but regulate gene expression. Recent studies indicate that lncRNAs are involved in the modulation of biological functions in human disease. KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) encodes a lncRNA from the opposite strand of KCNQ1 in the CDKN1C/KCNQ1OT1 cluster that is reported to play a vital role in the development and progression of cancer. KCNQ1OT1 regulates cancer cell proliferation, cell cycle, migration and invasion, metastasis, glucose metabolism, and immune evasion. The aberrant expression of KCNQ1OT1 in cancer patients is associated with poor prognosis and decreased survival. This review summarizes recent literature related to the biological functions and molecular mechanisms of KCNQ1OT1 in various human cancers, including colorectal, bladder, breast, oral, melanoma, osteosarcoma, lung, glioma, ovarian, liver, acute myeloid leukemia, prostate, and gastric. We also discuss the role of KCNQ1OT1 as a promising diagnostic biomarker and a novel therapeutic target in human cancers.
Collapse
Affiliation(s)
| | | | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; (P.C.); (Q.Q.); (S.N.)
| |
Collapse
|
16
|
Cigliano A, Chen X, Calvisi DF. Current challenges to underpinning the genetic basis for cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:511-526. [PMID: 33888034 PMCID: PMC8173760 DOI: 10.1080/17474124.2021.1915128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
AREAS COVERED This review provides an overview regarding the current scenario and knowledge of the CCA genomic landscape and the potentially actionable molecular aberrations in each CCA subtype. EXPERT OPINION The establishment and advances of high-throughput methodologies applied to genetic and epigenetic profiling are changing many cancer types' therapeutic landscape , including CCA.The large body of data generated must be interpreted appropriately and eventually implemented in clinical practice. The following advancements toward precision medicine in CCA management will require designing better clinical trials with improved methods to stratify biliary tumor patients.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Ahn KS, Kang KJ. Molecular heterogeneity in intrahepatic cholangiocarcinoma. World J Hepatol 2020; 12:1148-1157. [PMID: 33442444 PMCID: PMC7772740 DOI: 10.4254/wjh.v12.i12.1148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous primary liver cancer, and currently there exist only a few options of targeted therapy. Histopathologically, iCCA is sub-classified according to morphology (mass forming type, periductal infiltrating type, and intraductal growing type) and histology (small duct type and large duct type). According to different histopathological types, clinical features such as risk factors and prognosis vary. Recent developments in genomic profiling have revealed several molecular markers for poor prognosis and activation of oncogenic pathways. Exploration of molecular characteristics of iCCA in each patient is a major challenge in a clinical setting, and there is no effective molecular-based targeted therapy. However, several recent studies suggested molecular-based subtypes with corresponding clinical and pathological features. Even though the subtypes have not yet been validated, it is possible that molecular features can be predicted based on clinicopathological characteristics and that this could be used for a more rational approach to integrative clinical and molecular subclassification and targeted therapy. In this review, we explored the genomic landscape of iCCA and attempted to find relevance between clinicopathologic and molecular features in molecular subtypes in several published studies. The results reveal future directions that may lead to a rational approach to the targeted therapy.
Collapse
Affiliation(s)
- Keun Soo Ahn
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Koo Jeong Kang
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea
| |
Collapse
|
18
|
Li J, Guan C, Hu Z, Liu L, Su Z, Kang P, Jiang X, Cui Y. Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p. Hum Cell 2020; 34:187-200. [PMID: 33040228 DOI: 10.1007/s13577-020-00448-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is one of the most aggressive and lethal malignancies. Long noncoding RNAs (lncRNAs) are being found to play crucial roles in CCA progression. This work aims to investigate the roles of long intergenic non-protein coding RNA 667 (LINC00667) in progression of CCA. RT-qPCR and western blot were applied to detect gene expression. Clinical correlation and survival were analyzed by statistical methods. Overexpression and RNA interference approaches were used to investigate the effects of LINC00667 on CCA cells. Tumor xenograft assay was performed to detect the function of LINC00667 in vivo. Transcriptional regulation and competing endogenous RNA (ceRNA) mechanism were predicted via bioinformatics analysis. ChIP, luciferase reporter, and Ago2 RIP assays further confirmed the predicted results. Our data indicated that LINC00667 was highly expressed in CCA tissues and cells, and transcription factor Yin Yang 1 (YY1) induced LINC00667 expression in CCA cells. Up-regulated LINC00667 was significantly associated with lymph node metastasis, advanced TNM stage, and poor prognosis. Knockdown of LINC00667 suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of CCA cells, while overexpression of LINC00667 acquired opposite effects. Moreover, knockdown of LINC00667 inhibited tumor growth in vivo. In addition, LINC00667 was demonstrated to function as a ceRNA for miR-200c-3p, and then LINC00667 up-regulated pyruvate dehydrogenase kinase 1 (PDK1) to promote CCA development by inhibiting miR-200c-3p. These findings identified a pivotal role of LINC00667 in tumorigenesis and development of CCA. Targeting the YY1/LINC00667/miR-200c-3p/PDK1 axis may provide a new therapeutic strategy for CCA treatment.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Canghai Guan
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Lang Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zhilei Su
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Pengcheng Kang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
19
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Metelin AV, Kim EF, Skvortsov DA, Zatsepin TS, Rubtsova MP, Dontsova OA. Panel of potential lncRNA biomarkers can distinguish various types of liver malignant and benign tumors. J Cancer Res Clin Oncol 2020; 147:49-59. [PMID: 32918630 DOI: 10.1007/s00432-020-03378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Liver cancers are among the deadliest malignancies due to a limited efficacy of early diagnostics, the lack of appropriate biomarkers and insufficient discrimination of different types of tumors by classic and molecular methods. In this study, we searched for novel long non-coding RNA (lncRNA) as well as validated several known candidates suitable as probable biomarkers for primary liver tumors of various etiology. METHODS We described a novel lncRNA HELIS (aka "HEalthy LIver Specific") and estimated its expression by RT-qPCR in 82 paired tissue samples from patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), combined HCC-CCA, pediatric hepatoblastoma (HBL) and non-malignant hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH). Additionally, we examined expression of cancer-associated lncRNAs HULC, MALAT1, UCA1, CYTOR, LINC01093 and H19, which were previously studied mainly in HCC. RESULTS We demonstrated that down-regulation of HELIS strongly correlates with carcinogenesis; whereas in tumors with non-hepatocyte origin (HBL, CCA) or in a number of poorly differentiated HCC, this lncRNA is not expressed. We showed that recently discovered LINC01093 is dramatically down-regulated in all malignant liver cancers; while in benign tumors LINC01093 expression is just twice decreased in comparison to adjacent samples. CONCLUSION Our study revealed that among all measured biomarkers only down-regulated HELIS and LINC01093, up-regulated CYTOR and dysregulated HULC are perspective for differential diagnostics of liver cancers; whereas others demonstrated discordant results and cannot be considered as potential universal biomarkers for this purpose.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026.
| | - Natalia L Lazarevich
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
- Biology Department, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Inna F Kustova
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Daria A Shavochkina
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Alexey V Metelin
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Eduard F Kim
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia, 101000
| | - Timofei S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Maria P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| |
Collapse
|
20
|
Li J, Jiang X, Li Z, Huang L, Ji D, Yu L, Zhou Y, Cui Y. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN. Aging (Albany NY) 2020; 12:16304-16325. [PMID: 32857725 PMCID: PMC7485728 DOI: 10.18632/aging.103660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this article is to explore the function and mechanism of HOXD-AS1 in cholangiocarcinoma. TCGA, StarBase and JASPAR were applied to predict the differential expression and molecular mechanism. The qRT-PCR was conducted to detect molecular expression. The effect of HOXD-AS1 on tumor proliferation, metastasis and stemness was measured through corresponding experiments. ChIP, luciferase reporter and RIP assays were implemented to explore the regulatory mechanism of HOXD-AS1 in CCA. In this study, HOXD-AS1 expression was significantly upregulated in CCA tissues and cells compared with control groups, respectively. Increased HOXD-AS1 was markedly correlated with lymph node invasion, advanced TNM stage and poor survival of CCA patients. Moreover, HOXD-AS1 was confirmed to be an unfavorable independent prognostic factor for CCA patients. Functionally, gain- and loss-of-function experiments demonstrated that HOXD-AS1 facilitated tumor proliferation, migration, invasion, EMT, stemness and drug resistance in vitro and in vivo. For the mechanism, transcription factor SP1-induced HOXD-AS1 upregulated oncogene MYCN through competitively binding to miR-520c-3p. Furthermore, HOXD-AS1-induced malignant phenotypes were rescued by interfering miR-520c-3p and MYCN, respectively. SP1/HOXD-AS1/miR-520c-3p/MYCN plays a vital role in initiation and progression of CCA, and HOXD-AS1 is expected to be an efficient biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhenglong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Lining Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Daolin Ji
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yongxu Zhou
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
21
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
22
|
Wang H, Wang L, Tang L, Luo J, Ji H, Zhang W, Zhou J, Li Q, Miao L. Long noncoding RNA SNHG6 promotes proliferation and angiogenesis of cholangiocarcinoma cells through sponging miR-101-3p and activation of E2F8. J Cancer 2020; 11:3002-3012. [PMID: 32226515 PMCID: PMC7086249 DOI: 10.7150/jca.40592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) development is an extremely complex process with alterations occurring in numerous genes. SNHG6, a validated lncRNA, has been reported to regulate the expression of multiple tumor-related genes in hepatocellular carcinoma, colorectal cancer and breast cancer. Here, we elucidated the function and possible molecular mechanisms of SNHG6 in human CCA cells. Our results proved that the expression SNHG6 was upregulated in CCA tissues and cell lines. Ectopic expression of SNHG6 promoted cell proliferation, cell cycle progression, migration, and angiogenesis in CCA cells, whereas knockdown of SNHG6 repressed these cellular processes. Further mechanistic studies revealed that SNHG6 could compete with the transcription factor E2F8 to bind with miR-101-3p, thus affecting E2F8 expression. Taken together, these results provided a comprehensive analysis of the role of SNHG6 in CCA cells and offered important clues to understand the key roles of competing endogenous RNA (ceRNA) mechanisms in human cholangiocarcinoma.
Collapse
Affiliation(s)
- Huishan Wang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Li Wang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Lingyu Tang
- Taizhou hospital of traditional Chinese medicine, 86 Jichuandong Road, Hailing District, Taizhou 225300, Jiangsu Province, China
| | - Jing Luo
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Ji
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Wen Zhang
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Jian Zhou
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing 210011, Jiangsu Province, China
| | - Lin Miao
- Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Cholangiocarcinoma (CCA) are heterogeneous tumors that arise from the malignant transformation of cholangiocytes along the biliary tree. CCA heterogeneity occurs at multiple levels and results in resistance to therapy and poor prognosis. Here, we review the molecular classification of CCA by focusing on the latest progresses based on genetic, epigenetic, transcriptomic and proteomic profiles. In addition, we introduce the emerging field of radiogenomics. RECENT FINDINGS Genome-wide integrative omics approaches have been widely reported by using large cohorts of CCA patients. Morphomolecular correlations have been established, including enrichment of FGFR2 gene fusions and IDH1/2 mutations in iCCA. A specific IDH mutant iCCA subtype displays high mitochondrial and low chromatin modifier expression linked to ARID1A promoter hypermethylation. Examples of translation of these classifications for the management of CCA have also been reported, with prediction of drug efficacy based on genetic alterations. SUMMARY Although there is currently no international consensus on CCA morphomolecular classification, the recent initiatives developed under the umbrella of The European Network for the Study of Cholangiocarcinoma (ENSCCA) should favor new collaborative research. Identifying distinct molecular subgroups and developing appropriate targeted therapies will improve the clinical outcome of patients with CCA.
Collapse
|
24
|
Jiang X, Li J, Wang W, Hu Z, Guan C, Zhao Y, Li W, Cui Y. AR-induced ZEB1-AS1 represents poor prognosis in cholangiocarcinoma and facilitates tumor stemness, proliferation and invasion through mediating miR-133b/HOXB8. Aging (Albany NY) 2020; 12:1237-1255. [PMID: 31978895 PMCID: PMC7053610 DOI: 10.18632/aging.102680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has displayed vital regulatory function in various tumors. However, the biological function of ZEB1-AS1 in cholangiocarcinoma (CCA) remains unclear. In this study, we confirmed that ZEB1-AS1 expression was increased in CCA tissues and cells, respectively. Upregulated ZEB1-AS1 was related to lymph node invasion, advanced TNM stage and poor survival of CCA patients. ZEB1-AS1 exhibited high sensitivity and specificity to be an independent poor prognostic factor of patients with CCA. Functionally, knocking down ZEB1-AS1 attenuated tumor cell stemness, restrained cellular viability in vitro and in vivo, and inhibited CCA cell migration and invasion by reversing epithelial-mesenchymal transition. For the mechanism, androgen receptor (AR) directly promoted ZEB1-AS1 expression, and further ZEB1-AS1 increased oncogene homeobox B8 (HOXB8) by sponging miR-133b. In addition, malignant phenotypes of CCA promoted by ZEB1-AS1 dysregulation were rescued separately through interfering miR-133b and HOXB8, suggesting AR/ZEB1-AS1/miR-133b/HOXB8 exerted crucial functions in tumorigenesis and progression of CCA.
Collapse
Affiliation(s)
- Xingming Jiang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinglin Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Weina Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zengtao Hu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunfu Cui
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|