1
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
2
|
Wang L, Zeng W, Wang C, Lu Y, Xiong X, Chen S, Huang Q, Yan F, Huang Q. SUMOylation and coupling of eNOS mediated by PIAS1 contribute to maintenance of vascular homeostasis. FASEB J 2024; 38:e23362. [PMID: 38102979 DOI: 10.1096/fj.202301963r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanli Lu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feixing Yan
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
3
|
Zhang W, Li F, Hou J, Cheng Y, Zhang W, Liang X, Wang J. Aberrant SUMO2/3 modification of RUNX1 upon SENP1 inhibition is linked to the development of diabetic retinopathy in mice. Exp Eye Res 2023; 237:109695. [PMID: 37890757 DOI: 10.1016/j.exer.2023.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Our previous report established that RUNX family transcription factor 1 (RUNX1) promotes proliferation of mouse retinal microvascular endothelial cells (mRMECs) and exacerbates diabetic retinopathy (DR). However, the mechanism behind the upregulation of RUNX1 remains unclear. This study aims to investigate the possible correlation between histone SUMOylation and RUNX1 in DR, as well as the involved molecules. A mouse model of diabetes was induced by streptozotocin (STZ). These mice had increased retinal thickness and elevated production of inflammatory cytokines. Additionally, they showed elevated levels of SUMO1 and SUMO2/3, but reduced levels of SUMO specific peptidase 1 (SENP1) in retinal tissues. Co-immunoprecipitation and Western blot assays revealed that the RUNX1 protein was primarily modified by SUMO2/3, and SENP1 inhibited SUMO2/3 modification, thereby reducing RUNX1 expression. Overexpression of SENP1 alleviated symptoms in mice and alleviated inflammation. In vitro experiments demonstrated that the SENP1 overexpression suppressed the proliferation, migration, and angiogenesis of high-glucose-induced mRMECs. However, further overexpression of RUNX1 counteracted the alleviating effects of SENP1 both in vivo and in vitro. In conclusion, this study demonstrates that the downregulation of SENP1 in DR leads to SUMO2/3-dependent activation of RUNX1. This activation promotes proliferation of mRMECs and exacerbates DR symptoms in mice.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Feng Li
- Central Laboratory, Shanxi Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China
| | - Jiahui Hou
- Department of Clinical Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yan Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Weiliang Zhang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Xing Liang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Jingjing Wang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| |
Collapse
|
4
|
Jin Q, Zhao T, Lin L, Yao X, Teng Y, Zhang D, Jin Y, Yang M. PIAS1 impedes vascular endothelial injury and atherosclerotic plaque formation in diabetes by blocking the RUNX3/TSP-1 axis. Hum Cell 2023; 36:1915-1927. [PMID: 37584829 DOI: 10.1007/s13577-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/17/2023]
Abstract
The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.
Collapse
Affiliation(s)
- Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China.
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Binzhou Medical University, No. 522, Huanghe Third Road, Binzhou, 264003, People's Republic of China.
| |
Collapse
|
5
|
Luan J, Ji X, Liu L. PPARγ in Atherosclerotic Endothelial Dysfunction: Regulatory Compounds and PTMs. Int J Mol Sci 2023; 24:14494. [PMID: 37833942 PMCID: PMC10572723 DOI: 10.3390/ijms241914494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The formation of atherosclerotic plaques is one of the main sources of cardiovascular disease. In addition to known risk factors such as dyslipidemia, diabetes, obesity, and hypertension, endothelial dysfunction has been shown to play a key role in the formation and progression of atherosclerosis. Peroxisome proliferator-activated receptor-gamma (PPARγ), a transcription factor belonging to the steroid superfamily, is expressed in the aorta and plays a critical role in protecting endothelial function. It thereby serves as a target for treating both diabetes and atherosclerosis. Although many studies have examined endothelial cell disorders in atherosclerosis, the role of PPARγ in endothelial dysfunction is still not well understood. In this review, we summarize the possible mechanisms of action behind PPARγ regulatory compounds and post-translational modifications (PTMs) of PPARγ in the control of endothelial function. We also explore the potential use of endothelial PPARγ-targeted agents in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200082, China
| |
Collapse
|
6
|
Huang Q, Chen S, Xiong X, Yin T, Zhang Y, Zeng G, Huang Q. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF-κBp65 Pathway. Inflammation 2023; 46:623-638. [PMID: 36401667 DOI: 10.1007/s10753-022-01761-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
Vascular endothelium dysfunction caused by endothelium inflammation is a trigger of numerous cardiovascular diseases. Vascular endothelium inflammation often occurs in patients with obesity. Asprosin (ASP) derived from white adipose tissue plays important roles in maintaining glucose homeostasis. However, effect of ASP on the vascular endothelium inflammation induced by hyperlipidemia and its underlying mechanism remains largely unclear. In this study, models of vascular endothelium inflammation were established to investigate the effect of ASP on the endothelium inflammation both in vivo and in vitro. Our data in vivo showed that recombinant ASP or high-fat diet (HFD) significantly increased the circulating levels of IL-6 and TNF-α and enhanced the adhesion of macrophages to endothelia characterized by the expression increase of CD68, ICAM-1, and VCAM-1 in rats. However, neutralization of ASP with an ASP specific antibody (AASP) significantly antagonized the changes induced by HFD. Similarly, our data in vitro also showed that ASP treatment elevated the expressions of IL-6, TNF-α, and ICAM-1 as well as VCAM-1. More important, our data revealed that the pro-inflammation effect of ASP was achieved by activating the IKKβ-NF-κBp65 pathway other than the oxidative stress pathway both in vivo and in vitro. In conclusion, our results demonstrate that ASP is a pro-inflammation player in the obesity-associated endothelium dysfunction. The findings would provide a novel target for the prevention and treatment of obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tingting Yin
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yanan Zhang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
7
|
Kong Y, Niu A, Yuan W, Zhou Y, Xia M, Xiong X, Lu Y, Yin T, Zhang Y, Chen S, Huang Q, Zeng G, Huang Q. Interaction of FOXO1 and SUMOylated PPARγ1 induced by hyperlipidemia and hyperglycemia favors vascular endothelial insulin resistance and dysfunction. Vascul Pharmacol 2022; 147:107125. [PMID: 36252777 DOI: 10.1016/j.vph.2022.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
PPARγ1 and FOXO1 are the key transcription factors that regulate insulin sensitivity. We previously found that a small ubiquitin-related modifier of PPARγ1 at K77 (SUMOylation) favored endothelial insulin resistance (IR) induced by high fat/high glucose (HF/HG) administration. However, whether and how the crosstalk between SUMOylated PPARγ1 and FOXO1 would mediate the development of the endothelial IR and dysfunction remains unclear. Here, we emphasize how PPARγ1-K77 SUMOylation would interact with FOXO1 and participate in the development of the endothelial IR and dysfunction. Our results show that the combination of HF/HG and PPARγ1-K77 SUMOylation exhibits a synergistic deteriorative effect on the endothelial IR and dysfunction, presenting decreased NO levels and elevated ET-1 levels, weakened PI3K/Akt/eNOS signaling, and impaired endothelium-dependent vasodilation function. The further researches reveal that PPARγ1-K77 SUMOylation readily interacts with FOXO1, and FOXO1 occupies the PPAR response element (PPRE) which is supposed to be occupied by PPARγ, thus resulting in the decrease of PPARγ1 transcription activity and the mitigation of the PI3K/Akt signaling. Moreover, the mitigation of the PI3K/Akt signaling promotes in turn the accumulation of FOXO1 in the nucleus where FOXO1 interacts with the SUMOylated PPARγ1, thus exerting a positive feedback effect on IR pathogenesis. The findings uncover a novel association between PPARγ1-K77 SUMOylation and FOXO1, which contributes to our understanding of the pathogenesis of endothelial IR and dysfunction and provides novel pharmacological targets for diabetic angiopathy.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Ailin Niu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yumeng Zhou
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Min Xia
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiaowei Xiong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yanli Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Tingting Yin
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yanan Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Sheng Chen
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qianqian Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
8
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
9
|
Lin W, Wen X, Li X, Chen L, Wei W, Zhang L, Chen J. MiR-144 regulates adipogenesis by mediating formation of C/EBPα-FOXO1 protein complex. Biochem Biophys Res Commun 2022; 612:126-133. [PMID: 35525196 DOI: 10.1016/j.bbrc.2022.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
CeRNA effect was an important regulation mode of miRNA mediated bio-activities, however, most of the researches of ceRNA were on ncRNAs synergetic with mRNAs, the exploration of ceRNA effect regulated mRNA interaction was still lack of. Besides, C/EBPα was one of the most crucial adipogenic regulators, which has been demonstrated to form a protein complex with FOXO1 to mediate AdipoQ expression. So that, we try to explore whether the ceRNA effect mediated the interaction of C/EBPα and FOXO1, and identified the key miRNAs of their ceRNA effect. In this paper, we found the ceRNA effect of C/EBPα and FOXO1 mediated their protein complex formation, furthermore regulated its transcriptional role for AdipoQ, thereby influencing pre-adipocytes adipogenesis. More importantly, we demonstrated that the miR-144 was the decisive factor that mediated the ceRNA effect of C/EBPα and FOXO1 to influence AdipoQ, thus regulated pre-adipocytes adipogenesis. This research will provide a new supplementary idea of the miRNA role in mediating coding RNA interaction that regulates pre-adipocyte adipogenesis.
Collapse
Affiliation(s)
- Weimin Lin
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xianyu Wen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuexin Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lei Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Wei
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lifan Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jie Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
10
|
Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9226022. [PMID: 35308169 PMCID: PMC8930249 DOI: 10.1155/2022/9226022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative peritoneal adhesion (PPA) is a major clinical complication after open surgery or laparoscopic procedure. Ligustrazine is the active ingredient extracted from the natural herb Ligusticum chuanxiong Hort, which has promising antiadhesion properties. This study is aimed at revealing the underlying mechanisms of ligustrazine in preventing PPA at molecular and cellular levels. Both rat primary peritoneal mesothelial cells (PMCs) and human PMCs were used for analysis in vitro. Several molecular biological techniques were applied to uncover the potential mechanisms of ligustrazine in preventing PPA. And molecular docking and site-directed mutagenesis assay were used to predict the binding sites of ligustrazine with PPARγ. The bioinformatics analysis was further applied to identify the key pathway in the pathogenesis of PPA. Besides, PPA rodent models were prepared and developed to evaluate the novel ligustrazine nanoparticles in vivo. Ligustrazine could significantly suppress hypoxia-induced PMC functions, such as restricting the production of profibrotic cytokines, inhibiting the expression of migration and adhesion-associated molecules, repressing the expression of cytoskeleton proteins, restricting hypoxia-induced PMCs to obtain myofibroblast-like phenotypes, and reversing ECM remodeling and EMT phenotype transitions by activating PPARγ. The antagonist GW9662 of PPARγ could restore the inhibitory effects of ligustrazine on hypoxia-induced PMC functions. The inhibitor KC7F2 of HIF-1α could repress hypoxia-induced PMC functions, and ligustrazine could downregulate the expression of HIF-1α, which could be reversed by GW9662. And the expression of HIF-1α inhibited by ligustrazine was dramatically reversed after transfection with si-SMRT. The results showed that the benefit of ligustrazine on PMC functions is contributed to the activation of PPARγ on the transrepression of HIF-1α in an SMRT-dependent manner. Molecular docking and site-directed mutagenesis tests uncovered that ligustrazine bound directly to PPARγ, and Val 339/Ile 341 residue was critical for the binding of PPARγ to ligustrazine. Besides, we discovered a novel nanoparticle agent with sustained release behavior, drug delivery efficiency, and good tissue penetration in PPA rodent models. Our study unravels a novel mechanism of ligustrazine in preventing PPA. The findings indicated that ligustrazine is a potential strategy for PPA formation and ligustrazine nanoparticles are promising agents for preclinical application.
Collapse
|
11
|
Hou Z, Chen J, Yang H, Hu X, Yang F. PIAS1 alleviates diabetic peripheral neuropathy through SUMOlation of PPAR-γ and miR-124-induced downregulation of EZH2/STAT3. Cell Death Discov 2021; 7:372. [PMID: 34857740 PMCID: PMC8639830 DOI: 10.1038/s41420-021-00765-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a frequently occurring chronic complication of diabetes. In this study, we aim to explore the regulatory mechanism of protein inhibitor of activated STAT1 (PIAS1) in DPN in terms of autophagy and apoptosis of Schwann cells. The SUMOlation of PPAR-γ by PIAS1 was examined, and ChIP was performed to verify the binding of PPAR-γ to miR-124 promoter region. Dual-luciferase gene reporter assay was used to validate the binding affinity between miR-124 and EZH2/STAT3. Following loss‐ and gain‐of-function experiments, in vitro assays in high glucose-treated Schwann cells (SC4) and in vivo assays in db/db and ob/ob mice were performed to detect the effects of PIAS1 on autophagy and apoptosis of Schwann cells as well as symptoms of DPN by regulating the PPAR-γ-miR-124-EZH2/STAT3. The expression of PIAS1, PPAR-γ, and miR-124 was downregulated in the sciatic nerve tissue of diabetic mice. PIAS1 enhanced the expression of PPAR-γ through direct binding and SUMOlation of PPAR-γ. PPAR-γ enhanced the expression of miR-124 by enhancing the promoter activity of miR-124. Furthermore, miR-124 targeted and inversely modulated EZH2 and STAT3, promoting the autophagy of Schwann cells and inhibiting their apoptosis. In vivo experiments further substantiated that PIAS1 could promote the autophagy and inhibit the apoptosis of Schwann cells through the PPAR-γ-miR-124-EZH2/STAT3 axis. In conclusion, PIAS1 promoted SUMOlation of PPAR-γ to stabilize PPAR-γ expression, which upregulated miR-124 to inactivate EZH2/STAT3, thereby inhibiting apoptosis and promoting autophagy of Schwann cells to suppress the development of DPN.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Huan Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China. .,Department of Anesthesiology, Affiliated Huaihua Hospital, University of South China, Huaihua, 418000, P.R. China.
| |
Collapse
|
12
|
Yuan W, Ma C, Zhou Y, Wang M, Zeng G, Huang Q. Negative regulation of eNOS-NO signaling by over-SUMOylation of PPARγ contributes to insulin resistance and dysfunction of vascular endothelium in rats. Vascul Pharmacol 2019; 122-123:106597. [PMID: 31479752 DOI: 10.1016/j.vph.2019.106597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
SUMOylation of peroxisome proliferator-activated receptor gamma (PPAR γ) plays important regulatory role in its transcriptional activity. Our recent studies in vitro found that over-SUMOylation of PPARγ, like high glucose and high fat (HG/HF), induced endothelial insulin resistance (IR). However, whether such an event occurs in rats remains unclear. Therefore, our study aimed at investigating whether PPARγ over-SUMOylation could mimic high sucrose/fat diet (HFD) to induce endothelial IR and dysfunction and explored its underlying mechanisms. Normal chow-fed rats were intravenously infected with adenoviruses carrying the wild type cDNAs encoding PPARγ, SUMO1 and PIAS1 (protein inhibitor of activated STAT1). HFD-fed rats were regarded as a positive control. Body physical and biochemical parameters, glucose tolerance and vessel function were detected. The expression and SUMOylation levels of PPARγ were measured by western blotting and co-immunoprecipitation. Our results showed that like HFD, PPARγ over-SUMOylation induced endothelial IR and dysfunction via a negative regulation of eNOS-NO pathway. More importantly, we found that PPARγ over-SUMOylation induced endogenous SUMOylation cascade and exacerbated endothelial IR and dysfunction.The findings will deepen the understanding on PPARγ SUMOylation-regulating insulin signaling network and offer a potential target for prevention and cure of diabetic vascular complications.
Collapse
Affiliation(s)
- Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cong Ma
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yumeng Zhou
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Mengxi Wang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|